metal-organic compounds
Di-μ3-iodido-diiodidobis(μ2-4′-phenyl-2,2′:6′,2′′-terpyridine)tetracopper(I)
aCollege of Materials Science and Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China, and bJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: swjuan2000@126.com
The title complex, [Cu4I4(C21H15N3)2], lies on an inversion centre located at the centroid of a four-membered ring formed by one of the crystallographically independent CuI ions and a triply bridging iodide ligand. The 2,2′:6′,2′′-terpyridine (phterpy) ligand chelates each of the independent CuI centres in a bidentate fashion, with the N atom of the central pyridyl ring bridging the two CuI centres and those of the outer pyridyl rings binding the two independent CuI ions individually to form a dinuclear system. These are further linked by triply-bridging I− anions to form the centrosymmetric tetranuclear units. One independent Cu atom binds to each of the inversion-related I− anions while the other coordinates to one bridging and one terminal monodentate iodide ligand. The outer pyridyl rings are twisted relative to the central pyridyl ring of the phterpy ligand with dihedral angles of 18.7 (1) and 35.6 (1)°, respectively.
Related literature
For terpyridyl complexes in supramolecular frameworks and functional materials, see: Constable et al. (2005); Hofmeier & Schubert (2004); Thompson (1997). For common terpyridyl complexes, see: Andres & Schubert (2004). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994); Hou & Li (2005). For the preparation of the phterpy ligand, see: Constable et al. (1990)
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807061478/sj2432sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807061478/sj2432Isup2.hkl
4'-Phenyl-2,2':6',2"-terpyridine was synthesized using a reported procedure (Constable et al., 1990). The ligand (0.030 g, 0.1 mmol), copper(I) iodide (0.019, 0.1 mmol) and ethanol (8 ml) were mixed in a 12-ml Telfon-lined, stainless-steel Parr bomb. The bomb was heated at 418 K for 72 h and then cooled to room temperature at a rate of 5 K h-1. Black block-shaped crystals were obtained in about 40% yield (0.028 g).
The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding, with U(H) = 1.2Ueq(C).
2,2':6',2"-Terpyridine (terpy) is well known for its applications in the synthesis of supramolecular frameworks and functional materials because of its strong affinity for transition metal ions and the ability to freely functionalize the central pyridyl ring (Constable et al., 2005; Hofmeier & Schubert, 2004; Thompson, 1997). For many reported terpyridyl complexes, the ligand often chelates to a single metal ion to form stable complexes (Andres & Schubert, 2004). Additionally, partitioning of terpy into one monodentate and bidentate domains on coordination to a CuI or AgI center may lead to the formation of polynuclear double helical cations (Constable et al., 1994; Hou & Li, 2005). We report here a new tetranuclear complex, incorporating the 4'-phenyl-2,2':6',2"-terpyridine (phterpy) ligand.
The
of the title complex contains two crystallographically independent CuI ions with distorted tetrahedral geometry, Table 1, defined by the N1 and N2 atoms from the phterpy ligand and two triply briging I1- ions for Cu1 and the N2 and N3 atoms from the phterpy ligand, one triply bridging I1- anion and one monodentate, terminal I2- ion, for Cu2, Fig. 1. The phterpy ligand chelates each of the independent CuI centres in a bidentate fashion, with the N2 atom of the central pyridyl ring bridging the two CuI centres and N1 and N3 of the outer pyridyl rings binding to Cu1 and Cu2 respectively to form a dinuclear system [Cu1···Cu2 distance of 2.6604 (11) Å]. These are further bridged by two symmetry-related I1 and I1A (symmetry code, A: -x, 1 - y, -z) ions to form a centrosymmetric tetranuclear unit. The Cu1···Cu1A distance is 2.5982 (12) Å. The I1- anion bridges three CuI cations and a monodentate I2- anion completes the coordination sphere of the Cu2 cation. The N1 and N3 pyridyl rings are twisted about central N2 pyridyl ring with dihedral angles of 18.7 and 35.6 °, respectively. The values of the bite angles of the terpyridyl unit are 77.43 (15) and 75.98 (15) °, respectively.For terpyridyl complexes in supramolecular frameworks and functional materials, see: Constable et al. (2005); Hofmeier & Schubert (2004); Thompson (1997). For common terpyridyl complexes, see: Andres & Schubert (2004). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994); Hou & Li (2005). For the preparation of the phterpy ligand, see: Constable et al. (1990)
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius; symmetry code, A: -x, 1 - y, -z. |
[Cu4I4(C21H15N3)2] | F(000) = 1304 |
Mr = 1380.48 | Dx = 2.129 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1992 reflections |
a = 8.8536 (6) Å | θ = 2.4–24.8° |
b = 9.7836 (7) Å | µ = 4.85 mm−1 |
c = 25.4728 (18) Å | T = 293 K |
β = 102.542 (2)° | Block, black |
V = 2153.8 (3) Å3 | 0.14 × 0.11 × 0.07 mm |
Z = 2 |
Bruker APEX area-detector diffractometer | 4208 independent reflections |
Radiation source: fine-focus sealed tube | 3267 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 26.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→8 |
Tmin = 0.550, Tmax = 0.728 | k = −12→10 |
11822 measured reflections | l = −30→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0607P)2] where P = (Fo2 + 2Fc2)/3 |
4208 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Cu4I4(C21H15N3)2] | V = 2153.8 (3) Å3 |
Mr = 1380.48 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8536 (6) Å | µ = 4.85 mm−1 |
b = 9.7836 (7) Å | T = 293 K |
c = 25.4728 (18) Å | 0.14 × 0.11 × 0.07 mm |
β = 102.542 (2)° |
Bruker APEX area-detector diffractometer | 4208 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3267 reflections with I > 2σ(I) |
Tmin = 0.550, Tmax = 0.728 | Rint = 0.025 |
11822 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.14 e Å−3 |
4208 reflections | Δρmin = −0.59 e Å−3 |
253 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | −0.20412 (4) | 0.35622 (4) | −0.017321 (14) | 0.06204 (15) | |
I2 | −0.15633 (4) | 0.14399 (4) | 0.141286 (13) | 0.05679 (14) | |
Cu1 | 0.00247 (8) | 0.49793 (8) | 0.05117 (2) | 0.0555 (2) | |
Cu2 | −0.02931 (8) | 0.23388 (8) | 0.07129 (3) | 0.0582 (2) | |
N1 | −0.0966 (5) | 0.5543 (4) | 0.11258 (16) | 0.0514 (11) | |
N2 | 0.1542 (4) | 0.3995 (4) | 0.12147 (15) | 0.0417 (9) | |
N3 | 0.1674 (5) | 0.1989 (4) | 0.04594 (15) | 0.0455 (10) | |
C1 | −0.2391 (7) | 0.6083 (7) | 0.1069 (3) | 0.0680 (17) | |
H1 | −0.2978 | 0.6209 | 0.0723 | 0.082* | |
C2 | −0.3018 (8) | 0.6453 (7) | 0.1488 (3) | 0.078 (2) | |
H2 | −0.4016 | 0.6805 | 0.1431 | 0.093* | |
C3 | −0.2136 (9) | 0.6293 (7) | 0.2001 (3) | 0.081 (2) | |
H3 | −0.2515 | 0.6570 | 0.2297 | 0.097* | |
C4 | −0.0680 (7) | 0.5715 (6) | 0.2070 (2) | 0.0640 (16) | |
H4 | −0.0082 | 0.5575 | 0.2414 | 0.077* | |
C5 | −0.0124 (6) | 0.5350 (5) | 0.1625 (2) | 0.0481 (12) | |
C6 | 0.1388 (6) | 0.4662 (5) | 0.16612 (18) | 0.0423 (11) | |
C7 | 0.2558 (6) | 0.4698 (5) | 0.21210 (18) | 0.0475 (12) | |
H7 | 0.2418 | 0.5190 | 0.2419 | 0.057* | |
C8 | 0.3941 (6) | 0.4006 (5) | 0.21402 (18) | 0.0448 (12) | |
C9 | 0.4080 (6) | 0.3321 (5) | 0.1678 (2) | 0.0475 (12) | |
H9 | 0.4989 | 0.2850 | 0.1671 | 0.057* | |
C10 | 0.2884 (6) | 0.3325 (5) | 0.12245 (19) | 0.0428 (11) | |
C11 | 0.2994 (6) | 0.2570 (5) | 0.07320 (18) | 0.0418 (11) | |
C12 | 0.4370 (6) | 0.2468 (5) | 0.0554 (2) | 0.0511 (13) | |
H12 | 0.5261 | 0.2903 | 0.0740 | 0.061* | |
C13 | 0.4395 (7) | 0.1722 (5) | 0.0102 (2) | 0.0539 (14) | |
H13 | 0.5310 | 0.1627 | −0.0017 | 0.065* | |
C14 | 0.3049 (7) | 0.1111 (6) | −0.0177 (2) | 0.0569 (15) | |
H14 | 0.3039 | 0.0599 | −0.0486 | 0.068* | |
C15 | 0.1743 (6) | 0.1281 (5) | 0.00135 (19) | 0.0490 (13) | |
H15 | 0.0836 | 0.0881 | −0.0177 | 0.059* | |
C16 | 0.5203 (6) | 0.3988 (5) | 0.26341 (19) | 0.0480 (12) | |
C17 | 0.4964 (7) | 0.4382 (6) | 0.3127 (2) | 0.0629 (15) | |
H17 | 0.3981 | 0.4665 | 0.3154 | 0.075* | |
C18 | 0.6128 (8) | 0.4373 (7) | 0.3581 (2) | 0.0728 (18) | |
H18 | 0.5923 | 0.4628 | 0.3911 | 0.087* | |
C19 | 0.7590 (8) | 0.3989 (7) | 0.3548 (3) | 0.078 (2) | |
H19 | 0.8384 | 0.3997 | 0.3855 | 0.093* | |
C20 | 0.7890 (8) | 0.3592 (7) | 0.3067 (3) | 0.079 (2) | |
H20 | 0.8882 | 0.3324 | 0.3045 | 0.094* | |
C21 | 0.6691 (7) | 0.3593 (6) | 0.2610 (2) | 0.0686 (17) | |
H21 | 0.6894 | 0.3322 | 0.2283 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0509 (2) | 0.0852 (3) | 0.0451 (2) | −0.01917 (18) | −0.00047 (17) | 0.01160 (18) |
I2 | 0.0519 (2) | 0.0800 (3) | 0.0395 (2) | −0.00421 (17) | 0.01224 (16) | 0.01046 (16) |
Cu1 | 0.0535 (4) | 0.0751 (5) | 0.0373 (3) | −0.0026 (3) | 0.0088 (3) | 0.0060 (3) |
Cu2 | 0.0506 (4) | 0.0782 (5) | 0.0497 (4) | −0.0087 (3) | 0.0191 (3) | 0.0008 (3) |
N1 | 0.048 (3) | 0.060 (3) | 0.047 (2) | 0.006 (2) | 0.012 (2) | 0.005 (2) |
N2 | 0.038 (2) | 0.054 (2) | 0.033 (2) | −0.0018 (19) | 0.0069 (17) | −0.0023 (18) |
N3 | 0.043 (2) | 0.056 (3) | 0.037 (2) | −0.003 (2) | 0.0071 (18) | −0.0025 (19) |
C1 | 0.065 (4) | 0.078 (4) | 0.058 (4) | 0.022 (3) | 0.008 (3) | 0.013 (3) |
C2 | 0.055 (4) | 0.093 (5) | 0.085 (5) | 0.031 (3) | 0.015 (4) | 0.001 (4) |
C3 | 0.085 (5) | 0.088 (5) | 0.078 (5) | 0.024 (4) | 0.033 (4) | −0.011 (4) |
C4 | 0.062 (4) | 0.082 (4) | 0.047 (3) | 0.011 (3) | 0.011 (3) | −0.008 (3) |
C5 | 0.044 (3) | 0.058 (3) | 0.043 (3) | 0.004 (2) | 0.011 (2) | −0.003 (2) |
C6 | 0.044 (3) | 0.049 (3) | 0.034 (2) | 0.002 (2) | 0.007 (2) | −0.001 (2) |
C7 | 0.055 (3) | 0.055 (3) | 0.032 (2) | 0.001 (2) | 0.008 (2) | −0.009 (2) |
C8 | 0.045 (3) | 0.051 (3) | 0.036 (2) | 0.000 (2) | 0.004 (2) | −0.002 (2) |
C9 | 0.044 (3) | 0.054 (3) | 0.042 (3) | 0.005 (2) | 0.003 (2) | −0.003 (2) |
C10 | 0.038 (3) | 0.051 (3) | 0.039 (3) | −0.004 (2) | 0.008 (2) | −0.006 (2) |
C11 | 0.040 (3) | 0.048 (3) | 0.035 (2) | 0.000 (2) | 0.004 (2) | −0.003 (2) |
C12 | 0.041 (3) | 0.063 (4) | 0.047 (3) | 0.002 (2) | 0.004 (2) | −0.006 (2) |
C13 | 0.048 (3) | 0.059 (3) | 0.058 (3) | 0.006 (3) | 0.021 (3) | −0.005 (3) |
C14 | 0.067 (4) | 0.059 (4) | 0.049 (3) | −0.002 (3) | 0.021 (3) | −0.010 (3) |
C15 | 0.050 (3) | 0.062 (3) | 0.034 (3) | −0.011 (2) | 0.006 (2) | −0.009 (2) |
C16 | 0.048 (3) | 0.051 (3) | 0.040 (3) | 0.000 (2) | −0.002 (2) | −0.005 (2) |
C17 | 0.053 (3) | 0.080 (4) | 0.052 (3) | −0.003 (3) | 0.003 (3) | −0.013 (3) |
C18 | 0.077 (5) | 0.092 (5) | 0.043 (3) | −0.006 (4) | −0.002 (3) | −0.009 (3) |
C19 | 0.071 (5) | 0.088 (5) | 0.058 (4) | −0.008 (4) | −0.023 (3) | −0.001 (3) |
C20 | 0.060 (4) | 0.103 (6) | 0.062 (4) | 0.008 (4) | −0.010 (3) | −0.007 (4) |
C21 | 0.060 (4) | 0.090 (5) | 0.050 (3) | 0.008 (3) | 0.000 (3) | −0.012 (3) |
I1—Cu1i | 2.5760 (8) | C7—C8 | 1.391 (7) |
I1—Cu1 | 2.6317 (8) | C7—H7 | 0.9300 |
I1—Cu2 | 2.7212 (8) | C8—C9 | 1.384 (7) |
I2—Cu2 | 2.4674 (7) | C8—C16 | 1.490 (6) |
Cu1—N1 | 2.029 (4) | C9—C10 | 1.387 (7) |
Cu1—N2 | 2.212 (4) | C9—H9 | 0.9300 |
Cu1—I1i | 2.5760 (8) | C10—C11 | 1.478 (6) |
Cu1—Cu1i | 2.5982 (12) | C11—C12 | 1.393 (7) |
Cu1—Cu2 | 2.6604 (11) | C12—C13 | 1.367 (7) |
Cu2—N3 | 2.014 (4) | C12—H12 | 0.9300 |
Cu2—N2 | 2.449 (4) | C13—C14 | 1.384 (8) |
N1—C5 | 1.340 (6) | C13—H13 | 0.9300 |
N1—C1 | 1.346 (7) | C14—C15 | 1.358 (7) |
N2—C6 | 1.343 (6) | C14—H14 | 0.9300 |
N2—C10 | 1.352 (6) | C15—H15 | 0.9300 |
N3—C15 | 1.343 (6) | C16—C17 | 1.373 (7) |
N3—C11 | 1.349 (6) | C16—C21 | 1.387 (8) |
C1—C2 | 1.356 (9) | C17—C18 | 1.373 (8) |
C1—H1 | 0.9300 | C17—H17 | 0.9300 |
C2—C3 | 1.377 (10) | C18—C19 | 1.369 (9) |
C2—H2 | 0.9300 | C18—H18 | 0.9300 |
C3—C4 | 1.383 (9) | C19—C20 | 1.365 (9) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C5 | 1.377 (7) | C20—C21 | 1.395 (8) |
C4—H4 | 0.9300 | C20—H20 | 0.9300 |
C5—C6 | 1.484 (7) | C21—H21 | 0.9300 |
C6—C7 | 1.385 (7) | ||
Cu1i—I1—Cu1 | 59.85 (2) | N1—C5—C4 | 121.3 (5) |
Cu1i—I1—Cu2 | 102.16 (2) | N1—C5—C6 | 115.6 (4) |
Cu1—I1—Cu2 | 59.58 (2) | C4—C5—C6 | 123.1 (5) |
N1—Cu1—N2 | 77.43 (15) | N2—C6—C7 | 122.3 (4) |
N1—Cu1—I1i | 123.67 (13) | N2—C6—C5 | 115.1 (4) |
N2—Cu1—I1i | 99.72 (10) | C7—C6—C5 | 122.7 (4) |
N1—Cu1—Cu1i | 148.60 (13) | C6—C7—C8 | 120.5 (4) |
N2—Cu1—Cu1i | 133.94 (11) | C6—C7—H7 | 119.7 |
I1i—Cu1—Cu1i | 61.14 (3) | C8—C7—H7 | 119.7 |
N1—Cu1—I1 | 107.45 (13) | C9—C8—C7 | 116.5 (4) |
N2—Cu1—I1 | 121.33 (11) | C9—C8—C16 | 121.6 (5) |
I1i—Cu1—I1 | 120.15 (2) | C7—C8—C16 | 121.9 (4) |
Cu1i—Cu1—I1 | 59.01 (3) | C8—C9—C10 | 120.9 (5) |
N1—Cu1—Cu2 | 91.95 (12) | C8—C9—H9 | 119.5 |
N2—Cu1—Cu2 | 59.51 (10) | C10—C9—H9 | 119.5 |
I1i—Cu1—Cu2 | 135.42 (3) | N2—C10—C9 | 121.7 (5) |
Cu1i—Cu1—Cu2 | 103.24 (4) | N2—C10—C11 | 116.5 (4) |
I1—Cu1—Cu2 | 61.89 (2) | C9—C10—C11 | 121.7 (5) |
N3—Cu2—N2 | 75.98 (15) | N3—C11—C12 | 121.6 (4) |
N3—Cu2—I2 | 137.12 (12) | N3—C11—C10 | 116.0 (4) |
N2—Cu2—I2 | 102.33 (9) | C12—C11—C10 | 122.4 (4) |
N3—Cu2—Cu1 | 88.18 (13) | C13—C12—C11 | 119.2 (5) |
N2—Cu2—Cu1 | 51.10 (9) | C13—C12—H12 | 120.4 |
I2—Cu2—Cu1 | 124.69 (3) | C11—C12—H12 | 120.4 |
N3—Cu2—I1 | 100.63 (11) | C12—C13—C14 | 119.6 (5) |
N2—Cu2—I1 | 109.59 (9) | C12—C13—H13 | 120.2 |
I2—Cu2—I1 | 119.33 (3) | C14—C13—H13 | 120.2 |
Cu1—Cu2—I1 | 58.54 (2) | C15—C14—C13 | 117.9 (5) |
C5—N1—C1 | 118.2 (5) | C15—C14—H14 | 121.0 |
C5—N1—Cu1 | 116.7 (3) | C13—C14—H14 | 121.0 |
C1—N1—Cu1 | 125.1 (4) | N3—C15—C14 | 124.4 (5) |
C6—N2—C10 | 118.0 (4) | N3—C15—H15 | 117.8 |
C6—N2—Cu1 | 108.6 (3) | C14—C15—H15 | 117.8 |
C10—N2—Cu1 | 127.1 (3) | C17—C16—C21 | 117.0 (5) |
C6—N2—Cu2 | 125.8 (3) | C17—C16—C8 | 122.2 (5) |
C10—N2—Cu2 | 99.8 (3) | C21—C16—C8 | 120.8 (5) |
Cu1—N2—Cu2 | 69.39 (11) | C16—C17—C18 | 122.2 (6) |
C15—N3—C11 | 117.3 (4) | C16—C17—H17 | 118.9 |
C15—N3—Cu2 | 124.1 (3) | C18—C17—H17 | 118.9 |
C11—N3—Cu2 | 118.5 (3) | C19—C18—C17 | 119.8 (6) |
N1—C1—C2 | 123.7 (6) | C19—C18—H18 | 120.1 |
N1—C1—H1 | 118.1 | C17—C18—H18 | 120.1 |
C2—C1—H1 | 118.1 | C20—C19—C18 | 120.3 (6) |
C1—C2—C3 | 118.2 (6) | C20—C19—H19 | 119.8 |
C1—C2—H2 | 120.9 | C18—C19—H19 | 119.8 |
C3—C2—H2 | 120.9 | C19—C20—C21 | 119.2 (7) |
C2—C3—C4 | 119.2 (6) | C19—C20—H20 | 120.4 |
C2—C3—H3 | 120.4 | C21—C20—H20 | 120.4 |
C4—C3—H3 | 120.4 | C16—C21—C20 | 121.5 (6) |
C5—C4—C3 | 119.5 (6) | C16—C21—H21 | 119.3 |
C5—C4—H4 | 120.3 | C20—C21—H21 | 119.3 |
C3—C4—H4 | 120.3 | ||
Cu1i—I1—Cu1—N1 | 148.74 (13) | I2—Cu2—N3—C15 | 103.2 (4) |
Cu2—I1—Cu1—N1 | −82.68 (13) | Cu1—Cu2—N3—C15 | −113.5 (4) |
Cu1i—I1—Cu1—N2 | −125.60 (13) | I1—Cu2—N3—C15 | −56.0 (4) |
Cu2—I1—Cu1—N2 | 2.98 (12) | N2—Cu2—N3—C11 | 11.9 (3) |
Cu1i—I1—Cu1—I1i | 0.0 | I2—Cu2—N3—C11 | −81.2 (4) |
Cu2—I1—Cu1—I1i | 128.58 (4) | Cu1—Cu2—N3—C11 | 62.1 (3) |
Cu2—I1—Cu1—Cu1i | 128.58 (4) | I1—Cu2—N3—C11 | 119.6 (3) |
Cu1i—I1—Cu1—Cu2 | −128.58 (4) | C5—N1—C1—C2 | 0.6 (10) |
N1—Cu1—Cu2—N3 | −147.57 (16) | Cu1—N1—C1—C2 | −179.8 (5) |
N2—Cu1—Cu2—N3 | −73.40 (16) | N1—C1—C2—C3 | 1.3 (11) |
I1i—Cu1—Cu2—N3 | −1.98 (12) | C1—C2—C3—C4 | −2.5 (11) |
Cu1i—Cu1—Cu2—N3 | 60.13 (11) | C2—C3—C4—C5 | 1.9 (10) |
I1—Cu1—Cu2—N3 | 103.64 (11) | C1—N1—C5—C4 | −1.2 (8) |
N1—Cu1—Cu2—N2 | −74.17 (17) | Cu1—N1—C5—C4 | 179.1 (4) |
I1i—Cu1—Cu2—N2 | 71.42 (12) | C1—N1—C5—C6 | 175.8 (5) |
Cu1i—Cu1—Cu2—N2 | 133.53 (12) | Cu1—N1—C5—C6 | −3.8 (6) |
I1—Cu1—Cu2—N2 | 177.04 (12) | C3—C4—C5—N1 | 0.0 (9) |
N1—Cu1—Cu2—I2 | 2.84 (13) | C3—C4—C5—C6 | −176.8 (6) |
N2—Cu1—Cu2—I2 | 77.01 (12) | C10—N2—C6—C7 | 1.0 (7) |
I1i—Cu1—Cu2—I2 | 148.43 (3) | Cu1—N2—C6—C7 | −153.0 (4) |
Cu1i—Cu1—Cu2—I2 | −149.46 (4) | Cu2—N2—C6—C7 | 129.4 (4) |
I1—Cu1—Cu2—I2 | −105.95 (4) | C10—N2—C6—C5 | −178.8 (4) |
N1—Cu1—Cu2—I1 | 108.79 (12) | Cu1—N2—C6—C5 | 27.1 (5) |
N2—Cu1—Cu2—I1 | −177.04 (12) | Cu2—N2—C6—C5 | −50.4 (6) |
I1i—Cu1—Cu2—I1 | −105.62 (4) | N1—C5—C6—N2 | −17.4 (7) |
Cu1i—Cu1—Cu2—I1 | −43.51 (3) | C4—C5—C6—N2 | 159.6 (5) |
Cu1i—I1—Cu2—N3 | −37.47 (13) | N1—C5—C6—C7 | 162.7 (5) |
Cu1—I1—Cu2—N3 | −81.21 (13) | C4—C5—C6—C7 | −20.3 (8) |
Cu1i—I1—Cu2—N2 | 41.30 (10) | N2—C6—C7—C8 | −1.6 (8) |
Cu1—I1—Cu2—N2 | −2.44 (10) | C5—C6—C7—C8 | 178.3 (5) |
Cu1i—I1—Cu2—I2 | 158.68 (3) | C6—C7—C8—C9 | 1.3 (8) |
Cu1—I1—Cu2—I2 | 114.93 (4) | C6—C7—C8—C16 | −178.0 (5) |
Cu1i—I1—Cu2—Cu1 | 43.74 (3) | C7—C8—C9—C10 | −0.6 (8) |
N2—Cu1—N1—C5 | 13.9 (4) | C16—C8—C9—C10 | 178.8 (5) |
I1i—Cu1—N1—C5 | −79.5 (4) | C6—N2—C10—C9 | −0.3 (7) |
Cu1i—Cu1—N1—C5 | −168.2 (3) | Cu1—N2—C10—C9 | 148.4 (4) |
I1—Cu1—N1—C5 | 133.2 (4) | Cu2—N2—C10—C9 | −140.1 (4) |
Cu2—Cu1—N1—C5 | 72.1 (4) | C6—N2—C10—C11 | 178.2 (4) |
N2—Cu1—N1—C1 | −165.7 (5) | Cu1—N2—C10—C11 | −33.1 (6) |
I1i—Cu1—N1—C1 | 100.9 (5) | Cu2—N2—C10—C11 | 38.4 (5) |
Cu1i—Cu1—N1—C1 | 12.2 (6) | C8—C9—C10—N2 | 0.1 (8) |
I1—Cu1—N1—C1 | −46.4 (5) | C8—C9—C10—C11 | −178.4 (5) |
Cu2—Cu1—N1—C1 | −107.5 (5) | C15—N3—C11—C12 | 1.4 (7) |
N1—Cu1—N2—C6 | −22.3 (3) | Cu2—N3—C11—C12 | −174.5 (4) |
I1i—Cu1—N2—C6 | 100.2 (3) | C15—N3—C11—C10 | −179.2 (4) |
Cu1i—Cu1—N2—C6 | 159.2 (3) | Cu2—N3—C11—C10 | 4.9 (6) |
I1—Cu1—N2—C6 | −125.3 (3) | N2—C10—C11—N3 | −34.7 (6) |
Cu2—Cu1—N2—C6 | −122.2 (3) | C9—C10—C11—N3 | 143.8 (5) |
N1—Cu1—N2—C10 | −173.4 (4) | N2—C10—C11—C12 | 144.6 (5) |
I1i—Cu1—N2—C10 | −50.8 (4) | C9—C10—C11—C12 | −36.8 (7) |
Cu1i—Cu1—N2—C10 | 8.2 (5) | N3—C11—C12—C13 | −2.3 (8) |
I1—Cu1—N2—C10 | 83.7 (4) | C10—C11—C12—C13 | 178.3 (5) |
Cu2—Cu1—N2—C10 | 86.7 (4) | C11—C12—C13—C14 | 1.6 (8) |
N1—Cu1—N2—Cu2 | 99.89 (14) | C12—C13—C14—C15 | 0.0 (8) |
I1i—Cu1—N2—Cu2 | −137.55 (6) | C11—N3—C15—C14 | 0.3 (8) |
Cu1i—Cu1—N2—Cu2 | −78.55 (14) | Cu2—N3—C15—C14 | 175.9 (4) |
I1—Cu1—N2—Cu2 | −3.05 (12) | C13—C14—C15—N3 | −0.9 (9) |
N3—Cu2—N2—C6 | −162.3 (4) | C9—C8—C16—C17 | −164.7 (5) |
I2—Cu2—N2—C6 | −26.4 (4) | C7—C8—C16—C17 | 14.7 (8) |
Cu1—Cu2—N2—C6 | 98.5 (4) | C9—C8—C16—C21 | 16.6 (8) |
I1—Cu2—N2—C6 | 101.2 (4) | C7—C8—C16—C21 | −164.0 (5) |
N3—Cu2—N2—C10 | −26.9 (3) | C21—C16—C17—C18 | −0.9 (9) |
I2—Cu2—N2—C10 | 109.0 (3) | C8—C16—C17—C18 | −179.6 (6) |
Cu1—Cu2—N2—C10 | −126.1 (3) | C16—C17—C18—C19 | 1.4 (10) |
I1—Cu2—N2—C10 | −123.4 (3) | C17—C18—C19—C20 | −1.1 (11) |
N3—Cu2—N2—Cu1 | 99.16 (15) | C18—C19—C20—C21 | 0.4 (11) |
I2—Cu2—N2—Cu1 | −124.90 (7) | C17—C16—C21—C20 | 0.2 (9) |
I1—Cu2—N2—Cu1 | 2.68 (11) | C8—C16—C21—C20 | 178.9 (6) |
N2—Cu2—N3—C15 | −163.7 (4) | C19—C20—C21—C16 | 0.0 (11) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu4I4(C21H15N3)2] |
Mr | 1380.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.8536 (6), 9.7836 (7), 25.4728 (18) |
β (°) | 102.542 (2) |
V (Å3) | 2153.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.85 |
Crystal size (mm) | 0.14 × 0.11 × 0.07 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.550, 0.728 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11822, 4208, 3267 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.106, 1.03 |
No. of reflections | 4208 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.14, −0.59 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).
I1—Cu1i | 2.5760 (8) | Cu1—N2 | 2.212 (4) |
I1—Cu1 | 2.6317 (8) | Cu1—Cu1i | 2.5982 (12) |
I1—Cu2 | 2.7212 (8) | Cu1—Cu2 | 2.6604 (11) |
I2—Cu2 | 2.4674 (7) | Cu2—N3 | 2.014 (4) |
Cu1—N1 | 2.029 (4) | Cu2—N2 | 2.449 (4) |
Cu1i—I1—Cu1 | 59.85 (2) | I1i—Cu1—I1 | 120.15 (2) |
Cu1i—I1—Cu2 | 102.16 (2) | N3—Cu2—N2 | 75.98 (15) |
Cu1—I1—Cu2 | 59.58 (2) | N3—Cu2—I2 | 137.12 (12) |
N1—Cu1—N2 | 77.43 (15) | N2—Cu2—I2 | 102.33 (9) |
N1—Cu1—I1i | 123.67 (13) | N3—Cu2—I1 | 100.63 (11) |
N2—Cu1—I1i | 99.72 (10) | N2—Cu2—I1 | 109.59 (9) |
N1—Cu1—I1 | 107.45 (13) | I2—Cu2—I1 | 119.33 (3) |
N2—Cu1—I1 | 121.33 (11) |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
We thank Jiangxi Science and Technology Normal University for supporting this study.
References
Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068. Web of Science CrossRef CAS Google Scholar
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Constable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991–1992. CrossRef Web of Science Google Scholar
Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. J. (2005). CrystEngComm, 7, 599–602. Web of Science CSD CrossRef CAS Google Scholar
Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54. CSD CrossRef CAS Web of Science Google Scholar
Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399. Web of Science CrossRef PubMed CAS Google Scholar
Hou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128–130. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Thompson, A. M. W. C. (1997). Coord. Chem. Rev. 160, 1–52. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,2':6',2"-Terpyridine (terpy) is well known for its applications in the synthesis of supramolecular frameworks and functional materials because of its strong affinity for transition metal ions and the ability to freely functionalize the central pyridyl ring (Constable et al., 2005; Hofmeier & Schubert, 2004; Thompson, 1997). For many reported terpyridyl complexes, the ligand often chelates to a single metal ion to form stable complexes (Andres & Schubert, 2004). Additionally, partitioning of terpy into one monodentate and bidentate domains on coordination to a CuI or AgI center may lead to the formation of polynuclear double helical cations (Constable et al., 1994; Hou & Li, 2005). We report here a new tetranuclear complex, incorporating the 4'-phenyl-2,2':6',2"-terpyridine (phterpy) ligand.
The asymmetric unit of the title complex contains two crystallographically independent CuI ions with distorted tetrahedral geometry, Table 1, defined by the N1 and N2 atoms from the phterpy ligand and two triply briging I1- ions for Cu1 and the N2 and N3 atoms from the phterpy ligand, one triply bridging I1- anion and one monodentate, terminal I2- ion, for Cu2, Fig. 1. The phterpy ligand chelates each of the independent CuI centres in a bidentate fashion, with the N2 atom of the central pyridyl ring bridging the two CuI centres and N1 and N3 of the outer pyridyl rings binding to Cu1 and Cu2 respectively to form a dinuclear system [Cu1···Cu2 distance of 2.6604 (11) Å]. These are further bridged by two symmetry-related I1 and I1A (symmetry code, A: -x, 1 - y, -z) ions to form a centrosymmetric tetranuclear unit. The Cu1···Cu1A distance is 2.5982 (12) Å. The I1- anion bridges three CuI cations and a monodentate I2- anion completes the coordination sphere of the Cu2 cation. The N1 and N3 pyridyl rings are twisted about central N2 pyridyl ring with dihedral angles of 18.7 and 35.6 °, respectively. The values of the bite angles of the terpyridyl unit are 77.43 (15) and 75.98 (15) °, respectively.