metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ3-iodido-di­iodidobis(μ2-4′-phenyl-2,2′:6′,2′′-terpyridine)tetra­copper(I)

aCollege of Materials Science and Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China, and bJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: swjuan2000@126.com

(Received 12 November 2007; accepted 21 November 2007; online 6 December 2007)

The title complex, [Cu4I4(C21H15N3)2], lies on an inversion centre located at the centroid of a four-membered ring formed by one of the crystallographically independent CuI ions and a triply bridging iodide ligand. The 2,2′:6′,2′′-terpyridine (phterpy) ligand chelates each of the independent CuI centres in a bidentate fashion, with the N atom of the central pyridyl ring bridging the two CuI centres and those of the outer pyridyl rings binding the two independent CuI ions individually to form a dinuclear system. These are further linked by triply-bridging I anions to form the centrosymmetric tetra­nuclear units. One independent Cu atom binds to each of the inversion-related I anions while the other coordinates to one bridging and one terminal monodentate iodide ligand. The outer pyridyl rings are twisted relative to the central pyridyl ring of the phterpy ligand with dihedral angles of 18.7 (1) and 35.6 (1)°, respectively.

Related literature

For terpyridyl complexes in supra­molecular frameworks and functional materials, see: Constable et al. (2005[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. J. (2005). CrystEngComm, 7, 599-602.]); Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]); Thompson (1997[Thompson, A. M. W. C. (1997). Coord. Chem. Rev. 160, 1-52.]). For common terpyridyl complexes, see: Andres & Schubert (2004[Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.]). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994[Constable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991-1992.]); Hou & Li (2005[Hou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128-130.]). For the preparation of the phterpy ligand, see: Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.])

[Scheme 1]

Experimental

Crystal data
  • [Cu4I4(C21H15N3)2]

  • Mr = 1380.48

  • Monoclinic, P 21 /c

  • a = 8.8536 (6) Å

  • b = 9.7836 (7) Å

  • c = 25.4728 (18) Å

  • β = 102.542 (2)°

  • V = 2153.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 293 (2) K

  • 0.14 × 0.11 × 0.07 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.550, Tmax = 0.728

  • 11822 measured reflections

  • 4208 independent reflections

  • 3267 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.03

  • 4208 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Cu1i 2.5760 (8)
I1—Cu1 2.6317 (8)
I1—Cu2 2.7212 (8)
I2—Cu2 2.4674 (7)
Cu1—N1 2.029 (4)
Cu1—N2 2.212 (4)
Cu1—Cu1i 2.5982 (12)
Cu1—Cu2 2.6604 (11)
Cu2—N3 2.014 (4)
Cu2—N2 2.449 (4)
Cu1i—I1—Cu1 59.85 (2)
Cu1i—I1—Cu2 102.16 (2)
Cu1—I1—Cu2 59.58 (2)
N1—Cu1—N2 77.43 (15)
N1—Cu1—I1i 123.67 (13)
N2—Cu1—I1i 99.72 (10)
N1—Cu1—I1 107.45 (13)
N2—Cu1—I1 121.33 (11)
I1i—Cu1—I1 120.15 (2)
N3—Cu2—N2 75.98 (15)
N3—Cu2—I2 137.12 (12)
N2—Cu2—I2 102.33 (9)
N3—Cu2—I1 100.63 (11)
N2—Cu2—I1 109.59 (9)
I2—Cu2—I1 119.33 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2':6',2"-Terpyridine (terpy) is well known for its applications in the synthesis of supramolecular frameworks and functional materials because of its strong affinity for transition metal ions and the ability to freely functionalize the central pyridyl ring (Constable et al., 2005; Hofmeier & Schubert, 2004; Thompson, 1997). For many reported terpyridyl complexes, the ligand often chelates to a single metal ion to form stable complexes (Andres & Schubert, 2004). Additionally, partitioning of terpy into one monodentate and bidentate domains on coordination to a CuI or AgI center may lead to the formation of polynuclear double helical cations (Constable et al., 1994; Hou & Li, 2005). We report here a new tetranuclear complex, incorporating the 4'-phenyl-2,2':6',2"-terpyridine (phterpy) ligand.

The asymmetric unit of the title complex contains two crystallographically independent CuI ions with distorted tetrahedral geometry, Table 1, defined by the N1 and N2 atoms from the phterpy ligand and two triply briging I1- ions for Cu1 and the N2 and N3 atoms from the phterpy ligand, one triply bridging I1- anion and one monodentate, terminal I2- ion, for Cu2, Fig. 1. The phterpy ligand chelates each of the independent CuI centres in a bidentate fashion, with the N2 atom of the central pyridyl ring bridging the two CuI centres and N1 and N3 of the outer pyridyl rings binding to Cu1 and Cu2 respectively to form a dinuclear system [Cu1···Cu2 distance of 2.6604 (11) Å]. These are further bridged by two symmetry-related I1 and I1A (symmetry code, A: -x, 1 - y, -z) ions to form a centrosymmetric tetranuclear unit. The Cu1···Cu1A distance is 2.5982 (12) Å. The I1- anion bridges three CuI cations and a monodentate I2- anion completes the coordination sphere of the Cu2 cation. The N1 and N3 pyridyl rings are twisted about central N2 pyridyl ring with dihedral angles of 18.7 and 35.6 °, respectively. The values of the bite angles of the terpyridyl unit are 77.43 (15) and 75.98 (15) °, respectively.

Related literature top

For terpyridyl complexes in supramolecular frameworks and functional materials, see: Constable et al. (2005); Hofmeier & Schubert (2004); Thompson (1997). For common terpyridyl complexes, see: Andres & Schubert (2004). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994); Hou & Li (2005). For the preparation of the phterpy ligand, see: Constable et al. (1990)

Experimental top

4'-Phenyl-2,2':6',2"-terpyridine was synthesized using a reported procedure (Constable et al., 1990). The ligand (0.030 g, 0.1 mmol), copper(I) iodide (0.019, 0.1 mmol) and ethanol (8 ml) were mixed in a 12-ml Telfon-lined, stainless-steel Parr bomb. The bomb was heated at 418 K for 72 h and then cooled to room temperature at a rate of 5 K h-1. Black block-shaped crystals were obtained in about 40% yield (0.028 g).

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding, with U(H) = 1.2Ueq(C).

Structure description top

2,2':6',2"-Terpyridine (terpy) is well known for its applications in the synthesis of supramolecular frameworks and functional materials because of its strong affinity for transition metal ions and the ability to freely functionalize the central pyridyl ring (Constable et al., 2005; Hofmeier & Schubert, 2004; Thompson, 1997). For many reported terpyridyl complexes, the ligand often chelates to a single metal ion to form stable complexes (Andres & Schubert, 2004). Additionally, partitioning of terpy into one monodentate and bidentate domains on coordination to a CuI or AgI center may lead to the formation of polynuclear double helical cations (Constable et al., 1994; Hou & Li, 2005). We report here a new tetranuclear complex, incorporating the 4'-phenyl-2,2':6',2"-terpyridine (phterpy) ligand.

The asymmetric unit of the title complex contains two crystallographically independent CuI ions with distorted tetrahedral geometry, Table 1, defined by the N1 and N2 atoms from the phterpy ligand and two triply briging I1- ions for Cu1 and the N2 and N3 atoms from the phterpy ligand, one triply bridging I1- anion and one monodentate, terminal I2- ion, for Cu2, Fig. 1. The phterpy ligand chelates each of the independent CuI centres in a bidentate fashion, with the N2 atom of the central pyridyl ring bridging the two CuI centres and N1 and N3 of the outer pyridyl rings binding to Cu1 and Cu2 respectively to form a dinuclear system [Cu1···Cu2 distance of 2.6604 (11) Å]. These are further bridged by two symmetry-related I1 and I1A (symmetry code, A: -x, 1 - y, -z) ions to form a centrosymmetric tetranuclear unit. The Cu1···Cu1A distance is 2.5982 (12) Å. The I1- anion bridges three CuI cations and a monodentate I2- anion completes the coordination sphere of the Cu2 cation. The N1 and N3 pyridyl rings are twisted about central N2 pyridyl ring with dihedral angles of 18.7 and 35.6 °, respectively. The values of the bite angles of the terpyridyl unit are 77.43 (15) and 75.98 (15) °, respectively.

For terpyridyl complexes in supramolecular frameworks and functional materials, see: Constable et al. (2005); Hofmeier & Schubert (2004); Thompson (1997). For common terpyridyl complexes, see: Andres & Schubert (2004). For terpyridyl CuI and AgI double helical complexes, see: Constable et al. (1994); Hou & Li (2005). For the preparation of the phterpy ligand, see: Constable et al. (1990)

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius; symmetry code, A: -x, 1 - y, -z.
Di-µ3-iodido-diiodidobis(µ2-4'-phenyl-2,2':6',2''- terpyridine)tetracopper(I) top
Crystal data top
[Cu4I4(C21H15N3)2]F(000) = 1304
Mr = 1380.48Dx = 2.129 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1992 reflections
a = 8.8536 (6) Åθ = 2.4–24.8°
b = 9.7836 (7) ŵ = 4.85 mm1
c = 25.4728 (18) ÅT = 293 K
β = 102.542 (2)°Block, black
V = 2153.8 (3) Å30.14 × 0.11 × 0.07 mm
Z = 2
Data collection top
Bruker APEX area-detector
diffractometer
4208 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.550, Tmax = 0.728k = 1210
11822 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
4208 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu4I4(C21H15N3)2]V = 2153.8 (3) Å3
Mr = 1380.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8536 (6) ŵ = 4.85 mm1
b = 9.7836 (7) ÅT = 293 K
c = 25.4728 (18) Å0.14 × 0.11 × 0.07 mm
β = 102.542 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
4208 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3267 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.728Rint = 0.025
11822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 1.14 e Å3
4208 reflectionsΔρmin = 0.59 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.20412 (4)0.35622 (4)0.017321 (14)0.06204 (15)
I20.15633 (4)0.14399 (4)0.141286 (13)0.05679 (14)
Cu10.00247 (8)0.49793 (8)0.05117 (2)0.0555 (2)
Cu20.02931 (8)0.23388 (8)0.07129 (3)0.0582 (2)
N10.0966 (5)0.5543 (4)0.11258 (16)0.0514 (11)
N20.1542 (4)0.3995 (4)0.12147 (15)0.0417 (9)
N30.1674 (5)0.1989 (4)0.04594 (15)0.0455 (10)
C10.2391 (7)0.6083 (7)0.1069 (3)0.0680 (17)
H10.29780.62090.07230.082*
C20.3018 (8)0.6453 (7)0.1488 (3)0.078 (2)
H20.40160.68050.14310.093*
C30.2136 (9)0.6293 (7)0.2001 (3)0.081 (2)
H30.25150.65700.22970.097*
C40.0680 (7)0.5715 (6)0.2070 (2)0.0640 (16)
H40.00820.55750.24140.077*
C50.0124 (6)0.5350 (5)0.1625 (2)0.0481 (12)
C60.1388 (6)0.4662 (5)0.16612 (18)0.0423 (11)
C70.2558 (6)0.4698 (5)0.21210 (18)0.0475 (12)
H70.24180.51900.24190.057*
C80.3941 (6)0.4006 (5)0.21402 (18)0.0448 (12)
C90.4080 (6)0.3321 (5)0.1678 (2)0.0475 (12)
H90.49890.28500.16710.057*
C100.2884 (6)0.3325 (5)0.12245 (19)0.0428 (11)
C110.2994 (6)0.2570 (5)0.07320 (18)0.0418 (11)
C120.4370 (6)0.2468 (5)0.0554 (2)0.0511 (13)
H120.52610.29030.07400.061*
C130.4395 (7)0.1722 (5)0.0102 (2)0.0539 (14)
H130.53100.16270.00170.065*
C140.3049 (7)0.1111 (6)0.0177 (2)0.0569 (15)
H140.30390.05990.04860.068*
C150.1743 (6)0.1281 (5)0.00135 (19)0.0490 (13)
H150.08360.08810.01770.059*
C160.5203 (6)0.3988 (5)0.26341 (19)0.0480 (12)
C170.4964 (7)0.4382 (6)0.3127 (2)0.0629 (15)
H170.39810.46650.31540.075*
C180.6128 (8)0.4373 (7)0.3581 (2)0.0728 (18)
H180.59230.46280.39110.087*
C190.7590 (8)0.3989 (7)0.3548 (3)0.078 (2)
H190.83840.39970.38550.093*
C200.7890 (8)0.3592 (7)0.3067 (3)0.079 (2)
H200.88820.33240.30450.094*
C210.6691 (7)0.3593 (6)0.2610 (2)0.0686 (17)
H210.68940.33220.22830.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0509 (2)0.0852 (3)0.0451 (2)0.01917 (18)0.00047 (17)0.01160 (18)
I20.0519 (2)0.0800 (3)0.0395 (2)0.00421 (17)0.01224 (16)0.01046 (16)
Cu10.0535 (4)0.0751 (5)0.0373 (3)0.0026 (3)0.0088 (3)0.0060 (3)
Cu20.0506 (4)0.0782 (5)0.0497 (4)0.0087 (3)0.0191 (3)0.0008 (3)
N10.048 (3)0.060 (3)0.047 (2)0.006 (2)0.012 (2)0.005 (2)
N20.038 (2)0.054 (2)0.033 (2)0.0018 (19)0.0069 (17)0.0023 (18)
N30.043 (2)0.056 (3)0.037 (2)0.003 (2)0.0071 (18)0.0025 (19)
C10.065 (4)0.078 (4)0.058 (4)0.022 (3)0.008 (3)0.013 (3)
C20.055 (4)0.093 (5)0.085 (5)0.031 (3)0.015 (4)0.001 (4)
C30.085 (5)0.088 (5)0.078 (5)0.024 (4)0.033 (4)0.011 (4)
C40.062 (4)0.082 (4)0.047 (3)0.011 (3)0.011 (3)0.008 (3)
C50.044 (3)0.058 (3)0.043 (3)0.004 (2)0.011 (2)0.003 (2)
C60.044 (3)0.049 (3)0.034 (2)0.002 (2)0.007 (2)0.001 (2)
C70.055 (3)0.055 (3)0.032 (2)0.001 (2)0.008 (2)0.009 (2)
C80.045 (3)0.051 (3)0.036 (2)0.000 (2)0.004 (2)0.002 (2)
C90.044 (3)0.054 (3)0.042 (3)0.005 (2)0.003 (2)0.003 (2)
C100.038 (3)0.051 (3)0.039 (3)0.004 (2)0.008 (2)0.006 (2)
C110.040 (3)0.048 (3)0.035 (2)0.000 (2)0.004 (2)0.003 (2)
C120.041 (3)0.063 (4)0.047 (3)0.002 (2)0.004 (2)0.006 (2)
C130.048 (3)0.059 (3)0.058 (3)0.006 (3)0.021 (3)0.005 (3)
C140.067 (4)0.059 (4)0.049 (3)0.002 (3)0.021 (3)0.010 (3)
C150.050 (3)0.062 (3)0.034 (3)0.011 (2)0.006 (2)0.009 (2)
C160.048 (3)0.051 (3)0.040 (3)0.000 (2)0.002 (2)0.005 (2)
C170.053 (3)0.080 (4)0.052 (3)0.003 (3)0.003 (3)0.013 (3)
C180.077 (5)0.092 (5)0.043 (3)0.006 (4)0.002 (3)0.009 (3)
C190.071 (5)0.088 (5)0.058 (4)0.008 (4)0.023 (3)0.001 (3)
C200.060 (4)0.103 (6)0.062 (4)0.008 (4)0.010 (3)0.007 (4)
C210.060 (4)0.090 (5)0.050 (3)0.008 (3)0.000 (3)0.012 (3)
Geometric parameters (Å, º) top
I1—Cu1i2.5760 (8)C7—C81.391 (7)
I1—Cu12.6317 (8)C7—H70.9300
I1—Cu22.7212 (8)C8—C91.384 (7)
I2—Cu22.4674 (7)C8—C161.490 (6)
Cu1—N12.029 (4)C9—C101.387 (7)
Cu1—N22.212 (4)C9—H90.9300
Cu1—I1i2.5760 (8)C10—C111.478 (6)
Cu1—Cu1i2.5982 (12)C11—C121.393 (7)
Cu1—Cu22.6604 (11)C12—C131.367 (7)
Cu2—N32.014 (4)C12—H120.9300
Cu2—N22.449 (4)C13—C141.384 (8)
N1—C51.340 (6)C13—H130.9300
N1—C11.346 (7)C14—C151.358 (7)
N2—C61.343 (6)C14—H140.9300
N2—C101.352 (6)C15—H150.9300
N3—C151.343 (6)C16—C171.373 (7)
N3—C111.349 (6)C16—C211.387 (8)
C1—C21.356 (9)C17—C181.373 (8)
C1—H10.9300C17—H170.9300
C2—C31.377 (10)C18—C191.369 (9)
C2—H20.9300C18—H180.9300
C3—C41.383 (9)C19—C201.365 (9)
C3—H30.9300C19—H190.9300
C4—C51.377 (7)C20—C211.395 (8)
C4—H40.9300C20—H200.9300
C5—C61.484 (7)C21—H210.9300
C6—C71.385 (7)
Cu1i—I1—Cu159.85 (2)N1—C5—C4121.3 (5)
Cu1i—I1—Cu2102.16 (2)N1—C5—C6115.6 (4)
Cu1—I1—Cu259.58 (2)C4—C5—C6123.1 (5)
N1—Cu1—N277.43 (15)N2—C6—C7122.3 (4)
N1—Cu1—I1i123.67 (13)N2—C6—C5115.1 (4)
N2—Cu1—I1i99.72 (10)C7—C6—C5122.7 (4)
N1—Cu1—Cu1i148.60 (13)C6—C7—C8120.5 (4)
N2—Cu1—Cu1i133.94 (11)C6—C7—H7119.7
I1i—Cu1—Cu1i61.14 (3)C8—C7—H7119.7
N1—Cu1—I1107.45 (13)C9—C8—C7116.5 (4)
N2—Cu1—I1121.33 (11)C9—C8—C16121.6 (5)
I1i—Cu1—I1120.15 (2)C7—C8—C16121.9 (4)
Cu1i—Cu1—I159.01 (3)C8—C9—C10120.9 (5)
N1—Cu1—Cu291.95 (12)C8—C9—H9119.5
N2—Cu1—Cu259.51 (10)C10—C9—H9119.5
I1i—Cu1—Cu2135.42 (3)N2—C10—C9121.7 (5)
Cu1i—Cu1—Cu2103.24 (4)N2—C10—C11116.5 (4)
I1—Cu1—Cu261.89 (2)C9—C10—C11121.7 (5)
N3—Cu2—N275.98 (15)N3—C11—C12121.6 (4)
N3—Cu2—I2137.12 (12)N3—C11—C10116.0 (4)
N2—Cu2—I2102.33 (9)C12—C11—C10122.4 (4)
N3—Cu2—Cu188.18 (13)C13—C12—C11119.2 (5)
N2—Cu2—Cu151.10 (9)C13—C12—H12120.4
I2—Cu2—Cu1124.69 (3)C11—C12—H12120.4
N3—Cu2—I1100.63 (11)C12—C13—C14119.6 (5)
N2—Cu2—I1109.59 (9)C12—C13—H13120.2
I2—Cu2—I1119.33 (3)C14—C13—H13120.2
Cu1—Cu2—I158.54 (2)C15—C14—C13117.9 (5)
C5—N1—C1118.2 (5)C15—C14—H14121.0
C5—N1—Cu1116.7 (3)C13—C14—H14121.0
C1—N1—Cu1125.1 (4)N3—C15—C14124.4 (5)
C6—N2—C10118.0 (4)N3—C15—H15117.8
C6—N2—Cu1108.6 (3)C14—C15—H15117.8
C10—N2—Cu1127.1 (3)C17—C16—C21117.0 (5)
C6—N2—Cu2125.8 (3)C17—C16—C8122.2 (5)
C10—N2—Cu299.8 (3)C21—C16—C8120.8 (5)
Cu1—N2—Cu269.39 (11)C16—C17—C18122.2 (6)
C15—N3—C11117.3 (4)C16—C17—H17118.9
C15—N3—Cu2124.1 (3)C18—C17—H17118.9
C11—N3—Cu2118.5 (3)C19—C18—C17119.8 (6)
N1—C1—C2123.7 (6)C19—C18—H18120.1
N1—C1—H1118.1C17—C18—H18120.1
C2—C1—H1118.1C20—C19—C18120.3 (6)
C1—C2—C3118.2 (6)C20—C19—H19119.8
C1—C2—H2120.9C18—C19—H19119.8
C3—C2—H2120.9C19—C20—C21119.2 (7)
C2—C3—C4119.2 (6)C19—C20—H20120.4
C2—C3—H3120.4C21—C20—H20120.4
C4—C3—H3120.4C16—C21—C20121.5 (6)
C5—C4—C3119.5 (6)C16—C21—H21119.3
C5—C4—H4120.3C20—C21—H21119.3
C3—C4—H4120.3
Cu1i—I1—Cu1—N1148.74 (13)I2—Cu2—N3—C15103.2 (4)
Cu2—I1—Cu1—N182.68 (13)Cu1—Cu2—N3—C15113.5 (4)
Cu1i—I1—Cu1—N2125.60 (13)I1—Cu2—N3—C1556.0 (4)
Cu2—I1—Cu1—N22.98 (12)N2—Cu2—N3—C1111.9 (3)
Cu1i—I1—Cu1—I1i0.0I2—Cu2—N3—C1181.2 (4)
Cu2—I1—Cu1—I1i128.58 (4)Cu1—Cu2—N3—C1162.1 (3)
Cu2—I1—Cu1—Cu1i128.58 (4)I1—Cu2—N3—C11119.6 (3)
Cu1i—I1—Cu1—Cu2128.58 (4)C5—N1—C1—C20.6 (10)
N1—Cu1—Cu2—N3147.57 (16)Cu1—N1—C1—C2179.8 (5)
N2—Cu1—Cu2—N373.40 (16)N1—C1—C2—C31.3 (11)
I1i—Cu1—Cu2—N31.98 (12)C1—C2—C3—C42.5 (11)
Cu1i—Cu1—Cu2—N360.13 (11)C2—C3—C4—C51.9 (10)
I1—Cu1—Cu2—N3103.64 (11)C1—N1—C5—C41.2 (8)
N1—Cu1—Cu2—N274.17 (17)Cu1—N1—C5—C4179.1 (4)
I1i—Cu1—Cu2—N271.42 (12)C1—N1—C5—C6175.8 (5)
Cu1i—Cu1—Cu2—N2133.53 (12)Cu1—N1—C5—C63.8 (6)
I1—Cu1—Cu2—N2177.04 (12)C3—C4—C5—N10.0 (9)
N1—Cu1—Cu2—I22.84 (13)C3—C4—C5—C6176.8 (6)
N2—Cu1—Cu2—I277.01 (12)C10—N2—C6—C71.0 (7)
I1i—Cu1—Cu2—I2148.43 (3)Cu1—N2—C6—C7153.0 (4)
Cu1i—Cu1—Cu2—I2149.46 (4)Cu2—N2—C6—C7129.4 (4)
I1—Cu1—Cu2—I2105.95 (4)C10—N2—C6—C5178.8 (4)
N1—Cu1—Cu2—I1108.79 (12)Cu1—N2—C6—C527.1 (5)
N2—Cu1—Cu2—I1177.04 (12)Cu2—N2—C6—C550.4 (6)
I1i—Cu1—Cu2—I1105.62 (4)N1—C5—C6—N217.4 (7)
Cu1i—Cu1—Cu2—I143.51 (3)C4—C5—C6—N2159.6 (5)
Cu1i—I1—Cu2—N337.47 (13)N1—C5—C6—C7162.7 (5)
Cu1—I1—Cu2—N381.21 (13)C4—C5—C6—C720.3 (8)
Cu1i—I1—Cu2—N241.30 (10)N2—C6—C7—C81.6 (8)
Cu1—I1—Cu2—N22.44 (10)C5—C6—C7—C8178.3 (5)
Cu1i—I1—Cu2—I2158.68 (3)C6—C7—C8—C91.3 (8)
Cu1—I1—Cu2—I2114.93 (4)C6—C7—C8—C16178.0 (5)
Cu1i—I1—Cu2—Cu143.74 (3)C7—C8—C9—C100.6 (8)
N2—Cu1—N1—C513.9 (4)C16—C8—C9—C10178.8 (5)
I1i—Cu1—N1—C579.5 (4)C6—N2—C10—C90.3 (7)
Cu1i—Cu1—N1—C5168.2 (3)Cu1—N2—C10—C9148.4 (4)
I1—Cu1—N1—C5133.2 (4)Cu2—N2—C10—C9140.1 (4)
Cu2—Cu1—N1—C572.1 (4)C6—N2—C10—C11178.2 (4)
N2—Cu1—N1—C1165.7 (5)Cu1—N2—C10—C1133.1 (6)
I1i—Cu1—N1—C1100.9 (5)Cu2—N2—C10—C1138.4 (5)
Cu1i—Cu1—N1—C112.2 (6)C8—C9—C10—N20.1 (8)
I1—Cu1—N1—C146.4 (5)C8—C9—C10—C11178.4 (5)
Cu2—Cu1—N1—C1107.5 (5)C15—N3—C11—C121.4 (7)
N1—Cu1—N2—C622.3 (3)Cu2—N3—C11—C12174.5 (4)
I1i—Cu1—N2—C6100.2 (3)C15—N3—C11—C10179.2 (4)
Cu1i—Cu1—N2—C6159.2 (3)Cu2—N3—C11—C104.9 (6)
I1—Cu1—N2—C6125.3 (3)N2—C10—C11—N334.7 (6)
Cu2—Cu1—N2—C6122.2 (3)C9—C10—C11—N3143.8 (5)
N1—Cu1—N2—C10173.4 (4)N2—C10—C11—C12144.6 (5)
I1i—Cu1—N2—C1050.8 (4)C9—C10—C11—C1236.8 (7)
Cu1i—Cu1—N2—C108.2 (5)N3—C11—C12—C132.3 (8)
I1—Cu1—N2—C1083.7 (4)C10—C11—C12—C13178.3 (5)
Cu2—Cu1—N2—C1086.7 (4)C11—C12—C13—C141.6 (8)
N1—Cu1—N2—Cu299.89 (14)C12—C13—C14—C150.0 (8)
I1i—Cu1—N2—Cu2137.55 (6)C11—N3—C15—C140.3 (8)
Cu1i—Cu1—N2—Cu278.55 (14)Cu2—N3—C15—C14175.9 (4)
I1—Cu1—N2—Cu23.05 (12)C13—C14—C15—N30.9 (9)
N3—Cu2—N2—C6162.3 (4)C9—C8—C16—C17164.7 (5)
I2—Cu2—N2—C626.4 (4)C7—C8—C16—C1714.7 (8)
Cu1—Cu2—N2—C698.5 (4)C9—C8—C16—C2116.6 (8)
I1—Cu2—N2—C6101.2 (4)C7—C8—C16—C21164.0 (5)
N3—Cu2—N2—C1026.9 (3)C21—C16—C17—C180.9 (9)
I2—Cu2—N2—C10109.0 (3)C8—C16—C17—C18179.6 (6)
Cu1—Cu2—N2—C10126.1 (3)C16—C17—C18—C191.4 (10)
I1—Cu2—N2—C10123.4 (3)C17—C18—C19—C201.1 (11)
N3—Cu2—N2—Cu199.16 (15)C18—C19—C20—C210.4 (11)
I2—Cu2—N2—Cu1124.90 (7)C17—C16—C21—C200.2 (9)
I1—Cu2—N2—Cu12.68 (11)C8—C16—C21—C20178.9 (6)
N2—Cu2—N3—C15163.7 (4)C19—C20—C21—C160.0 (11)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu4I4(C21H15N3)2]
Mr1380.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8536 (6), 9.7836 (7), 25.4728 (18)
β (°) 102.542 (2)
V3)2153.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.14 × 0.11 × 0.07
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.550, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
11822, 4208, 3267
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.03
No. of reflections4208
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.59

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
I1—Cu1i2.5760 (8)Cu1—N22.212 (4)
I1—Cu12.6317 (8)Cu1—Cu1i2.5982 (12)
I1—Cu22.7212 (8)Cu1—Cu22.6604 (11)
I2—Cu22.4674 (7)Cu2—N32.014 (4)
Cu1—N12.029 (4)Cu2—N22.449 (4)
Cu1i—I1—Cu159.85 (2)I1i—Cu1—I1120.15 (2)
Cu1i—I1—Cu2102.16 (2)N3—Cu2—N275.98 (15)
Cu1—I1—Cu259.58 (2)N3—Cu2—I2137.12 (12)
N1—Cu1—N277.43 (15)N2—Cu2—I2102.33 (9)
N1—Cu1—I1i123.67 (13)N3—Cu2—I1100.63 (11)
N2—Cu1—I1i99.72 (10)N2—Cu2—I1109.59 (9)
N1—Cu1—I1107.45 (13)I2—Cu2—I1119.33 (3)
N2—Cu1—I1121.33 (11)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank Jiangxi Science and Technology Normal University for supporting this study.

References

First citationAndres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Edwards, A. J., Hannon, M. J. & Raithby, P. R. (1994). J. Chem. Soc. Chem. Commun. pp. 1991–1992.  CrossRef Web of Science Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. J. (2005). CrystEngComm, 7, 599–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHou, L. & Li, D. (2005). Inorg. Chem. Commun. 8, 128–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationThompson, A. M. W. C. (1997). Coord. Chem. Rev. 160, 1–52.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds