organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-(1-naphth­yl)-3′′-(1-naphthyl­methyl­ene)acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-1′′-cyclo­hexane-2,2′′-dione

aDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and bDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 12 November 2007; accepted 20 November 2007; online 6 December 2007)

In the title compound, C42H33NO2, the six-membered cyclo­hexa­none ring adopts a slightly distorted chair conformation and the five-membered pyrrolidine ring is in an envelope conformation. The mol­ecular structure features four intra­molecular C—H⋯O inter­actions and an intra­molecular C—H⋯π inter­action. Furthermore, the crystal packing is stabilized by an inter­molecular C—H⋯O and three inter­molecular C—H⋯π inter­actions.

Related literature

For the biological importance of pyran derivatives, see: Babu & Raghunathan (2007[Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305-308.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); De March et al. (2002[De March, P., Elias, L., Figueredo, M. & Font, J. (2002). Tetrahedron, 58, 2667-2672.]); Escolano & Jones (2000[Escolano, C. & Jones, K. (2000). Tetrahedron Lett. 41, 8951-8955.]); Fejes et al. (2001[Fejes, I., Nyerges, M., Szollosy, A., Blasko, G. & Toke, L. (2001). Tetrahedron, 57, 1129-1137.]); Poornachandran & Raghunathan (2006[Poornachandran, M. & Raghunathan, R. (2006). Tetrahedron, 62, 11274-11281.]); Raj & Raghunathan (2001[Raj, A. A. & Raghunathan, R. (2001). Tetrahedron, 57, 10293-10298.]); Raj et al. (2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Pinna et al. (2002[Pinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485-2496.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C42H33NO2

  • Mr = 583.69

  • Monoclinic, P 21 /n

  • a = 12.4398 (8) Å

  • b = 17.3501 (11) Å

  • c = 14.4685 (9) Å

  • β = 90.728 (17)°

  • V = 3122.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.943, Tmax = 0.986

  • 6169 measured reflections

  • 5489 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.02

  • 5489 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C7/C70–72/C80, C95–C100, C26–C31 and C72–76/80 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O1 0.97 2.37 3.084 (3) 130
C8—H8A⋯O1 0.97 2.51 3.078 (4) 117
C9—H9⋯O2 0.98 2.26 2.803 (3) 114
C21—H21⋯O2 0.93 2.42 2.750 (3) 101
C73—H73⋯O1i 0.93 2.50 3.231 (4) 136
C4—H4ACg1 0.97 2.64 3.337 (3) 129
C75—H75⋯Cg2ii 0.93 2.74 3.646 (3) 164
C78—H78⋯Cg3iii 0.93 2.82 3.622 (4) 145
C96—H96⋯Cg4iv 0.93 2.96 3.742 (4) 142
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Express; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000[Bruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

1,3-Dipolar cycloaddition of azomethine ylides to alkenes affords pyrrolidines with high selectivities. Azomethine ylides are reactive and versatile 1,3-dipoles, which react readily with diverse dipolarophiles affording pyrrolizines, pyrrolidines and pyrazolidines (Fejes et al., 2001; De March et al., 2002). Pyrrolidine derivatives are widely used as organic catalysts and also serve as important structural units in biologically active molecules. Pyrrolidine derivatives, apart from displaying important biological activities (Pinna et al., 2002; Escolano & Jones, 2000), are present in natural products such as cephalotoxin, kainic acid, domoic acid and quinocarcin. The cycloaddition of azomethine ylides to dipolarophiles with exocyclic double bonds affords spiro-pyrrolidines (Raj & Raghunathan, 2001; Poornachandran & Raghunathan, 2006), which display important biological activities (Raj et al., 2003). Synthesis of spiro compounds has drawn considerable attention from chemists, in view of their very good antimycobacterial activity (Chande et al., 2005). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007).

In the title compound (I), Fig. 1, the six-membered cyclohexanone ring adopts a slightly distorted chair conformation [q2=0.283 (3) Å, π2=202.3 (5)° and q3=0.419 (3) Å; Cremer & Pople, 1975] and the five-membered pyrrolidine ring is in envelope conformation [q2=0.401 (3) Å and π2=351.5 (4)°; Cremer & Pople, 1975] (Fig. 1). The dihedral angles between the acenaphthene group and the planes through the naphthyl rings are observed to be 78.7 (1) and 33.2 (1)°. Planes through the naphthyl units themselves are oriented at a dihedral angle of 68.3 (1)°.

The molecular structure features four C—H···O and a C—H···π intramolecular interactions (Desiraju & Steiner, 1999) and the crystal packing is further stabilized by a C—H···O and three C—H···π intermolecular interactions (Fig 2; Table 1). The centroids in detailed in Table 1 are identified as follows: Cg1 - ring C7/C70–72/C80; Cg2 - ring C95–100; Cg3 - ring C26–31; Cg4 - ring C72–76/80.

Related literature top

For the biological importance of pyran derivatives, see: Babu & Raghunathan (2007); Chande et al. (2005); De March et al. (2002); Escolano & Jones (2000); Fejes et al. (2001); Poornachandran & Raghunathan (2006); Raj & Raghunathan (2001); Raj et al. (2003); Pinna et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactons, see: Desiraju & Steiner (1999).

Experimental top

A mixture of 2,6-bis[(E)-1-naphthylmethylidene] cyclohexanone (1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure 1-methyl-4-(1-naphthyl)-pyrrolo-(spiro-[2.2"]-acenaphthene-1'-one) -spiro[3.3']-6'-(1-naphthyl)methylidenecyclohexanone as yellow solid. The compound was recrystallized from a 1:1 mixture of methanol:ethyl acetate and a yellow solid is obtained, Yield 98%

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Structure description top

1,3-Dipolar cycloaddition of azomethine ylides to alkenes affords pyrrolidines with high selectivities. Azomethine ylides are reactive and versatile 1,3-dipoles, which react readily with diverse dipolarophiles affording pyrrolizines, pyrrolidines and pyrazolidines (Fejes et al., 2001; De March et al., 2002). Pyrrolidine derivatives are widely used as organic catalysts and also serve as important structural units in biologically active molecules. Pyrrolidine derivatives, apart from displaying important biological activities (Pinna et al., 2002; Escolano & Jones, 2000), are present in natural products such as cephalotoxin, kainic acid, domoic acid and quinocarcin. The cycloaddition of azomethine ylides to dipolarophiles with exocyclic double bonds affords spiro-pyrrolidines (Raj & Raghunathan, 2001; Poornachandran & Raghunathan, 2006), which display important biological activities (Raj et al., 2003). Synthesis of spiro compounds has drawn considerable attention from chemists, in view of their very good antimycobacterial activity (Chande et al., 2005). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007).

In the title compound (I), Fig. 1, the six-membered cyclohexanone ring adopts a slightly distorted chair conformation [q2=0.283 (3) Å, π2=202.3 (5)° and q3=0.419 (3) Å; Cremer & Pople, 1975] and the five-membered pyrrolidine ring is in envelope conformation [q2=0.401 (3) Å and π2=351.5 (4)°; Cremer & Pople, 1975] (Fig. 1). The dihedral angles between the acenaphthene group and the planes through the naphthyl rings are observed to be 78.7 (1) and 33.2 (1)°. Planes through the naphthyl units themselves are oriented at a dihedral angle of 68.3 (1)°.

The molecular structure features four C—H···O and a C—H···π intramolecular interactions (Desiraju & Steiner, 1999) and the crystal packing is further stabilized by a C—H···O and three C—H···π intermolecular interactions (Fig 2; Table 1). The centroids in detailed in Table 1 are identified as follows: Cg1 - ring C7/C70–72/C80; Cg2 - ring C95–100; Cg3 - ring C26–31; Cg4 - ring C72–76/80.

For the biological importance of pyran derivatives, see: Babu & Raghunathan (2007); Chande et al. (2005); De March et al. (2002); Escolano & Jones (2000); Fejes et al. (2001); Poornachandran & Raghunathan (2006); Raj & Raghunathan (2001); Raj et al. (2003); Pinna et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactons, see: Desiraju & Steiner (1999).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the molecules, viewed down the a-axis.
1'-Methyl-4'-(1-naphthyl)-3''-(1-naphthylmethylene)acenaphthene-1-spiro- 2'-pyrrolidine-3'-spiro-1''-cyclohexane-2,2''-dione top
Crystal data top
C42H33NO2F(000) = 1232
Mr = 583.69Dx = 1.242 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.4398 (8) Åθ = 9.4–13.6°
b = 17.3501 (11) ŵ = 0.08 mm1
c = 14.4685 (9) ÅT = 293 K
β = 90.728 (17)°Block, pale yellow
V = 3122.5 (3) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Nonius MACH3 sealed tube
diffractometer
3098 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 120
Tmin = 0.943, Tmax = 0.986l = 1717
6169 measured reflections3 standard reflections every 60 min
5489 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.7574P]
where P = (Fo2 + 2Fc2)/3
5489 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C42H33NO2V = 3122.5 (3) Å3
Mr = 583.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4398 (8) ŵ = 0.08 mm1
b = 17.3501 (11) ÅT = 293 K
c = 14.4685 (9) Å0.22 × 0.18 × 0.16 mm
β = 90.728 (17)°
Data collection top
Nonius MACH3 sealed tube
diffractometer
3098 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.943, Tmax = 0.9863 standard reflections every 60 min
6169 measured reflections intensity decay: none
5489 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
5489 reflectionsΔρmin = 0.24 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C310.40070 (19)0.14164 (18)1.02686 (18)0.0648 (7)
C230.4443 (2)0.26622 (19)0.9649 (2)0.0809 (8)
H230.46090.29770.91500.097*
C960.4902 (5)0.3913 (2)0.4021 (3)0.1277 (18)
H960.47490.43540.36800.153*
C260.3922 (2)0.1747 (2)1.1160 (2)0.0769 (8)
C10.4091 (2)0.13447 (13)0.69369 (16)0.0542 (6)
C760.1547 (2)0.07341 (14)0.80960 (19)0.0681 (7)
C800.1785 (2)0.02788 (13)0.73238 (17)0.0573 (6)
C220.4280 (2)0.18940 (17)0.95041 (18)0.0653 (7)
C950.4139 (4)0.3296 (2)0.4043 (2)0.0971 (11)
C270.3649 (3)0.1256 (3)1.1910 (2)0.1050 (12)
H270.36050.14621.25020.126*
O10.11519 (16)0.06038 (12)0.52182 (13)0.0769 (5)
C980.6076 (3)0.3212 (2)0.5014 (3)0.1121 (13)
H980.67280.31830.53340.135*
C990.5353 (3)0.26097 (18)0.5068 (2)0.0833 (9)
H990.55230.21820.54290.100*
C70.27886 (19)0.04002 (13)0.61796 (16)0.0553 (6)
C20.37832 (18)0.17015 (14)0.78418 (16)0.0539 (6)
N20.34277 (17)0.00032 (12)0.54755 (15)0.0670 (6)
C290.3521 (3)0.0180 (2)1.0906 (2)0.0988 (10)
H290.33830.03421.08180.119*
C210.4406 (2)0.15553 (16)0.85697 (18)0.0654 (7)
H210.49710.12110.84890.079*
C250.4114 (2)0.2541 (3)1.1274 (2)0.0935 (11)
H250.40690.27601.18590.112*
C280.3450 (3)0.0490 (3)1.1782 (3)0.1136 (13)
H280.32690.01791.22800.136*
C50.2369 (2)0.18867 (14)0.62718 (16)0.0554 (6)
H5A0.26760.23830.61140.067*
H5B0.17830.17850.58400.067*
C80.3543 (2)0.05347 (16)0.47035 (19)0.0742 (8)
H8A0.28810.05730.43450.089*
H8B0.41190.03750.43000.089*
C30.2801 (2)0.22026 (16)0.78963 (17)0.0640 (7)
H3A0.29940.27300.77480.077*
H3B0.25330.21950.85230.077*
C920.2646 (3)0.2095 (2)0.4123 (2)0.0912 (10)
H920.21420.16990.41430.109*
C300.3787 (2)0.06225 (19)1.0169 (2)0.0760 (8)
H300.38260.03980.95860.091*
C750.0458 (3)0.09408 (18)0.8194 (2)0.0869 (9)
H750.02540.12310.87020.104*
C740.0301 (3)0.07252 (19)0.7561 (3)0.0910 (10)
H740.10100.08770.76470.109*
C720.1000 (2)0.00583 (15)0.66737 (17)0.0603 (6)
C710.1555 (2)0.03648 (14)0.59335 (18)0.0589 (6)
C940.3165 (5)0.3341 (3)0.3563 (3)0.1228 (17)
H940.30220.37790.32120.147*
C930.2409 (4)0.2770 (3)0.3584 (2)0.1118 (13)
H930.17620.28180.32600.134*
C90.3810 (2)0.12982 (14)0.51825 (17)0.0609 (7)
H90.45850.12920.53110.073*
C240.4365 (2)0.2991 (2)1.0536 (3)0.0944 (11)
H240.44850.35161.06180.113*
C970.5839 (5)0.3858 (3)0.4489 (4)0.143 (2)
H970.63340.42590.44590.171*
C1000.4371 (3)0.26315 (16)0.45885 (19)0.0763 (9)
C60.32354 (19)0.12593 (13)0.61563 (15)0.0528 (6)
C730.0050 (2)0.02810 (17)0.6779 (2)0.0769 (8)
H730.05780.01430.63490.092*
C910.3588 (2)0.20153 (16)0.46075 (18)0.0699 (8)
C40.19211 (19)0.19324 (15)0.72368 (16)0.0580 (6)
H4A0.16630.14300.74250.070*
H4B0.13220.22900.72470.070*
C770.2434 (3)0.09586 (15)0.8653 (2)0.0808 (9)
H770.23240.12360.91940.097*
C780.3445 (3)0.07686 (16)0.8400 (2)0.0829 (9)
H780.40190.09430.87610.100*
C790.3667 (2)0.03199 (15)0.7614 (2)0.0736 (8)
H790.43720.02090.74560.088*
C700.2830 (2)0.00505 (13)0.70856 (17)0.0572 (6)
C100.3049 (3)0.07619 (17)0.5196 (2)0.0916 (10)
H10A0.23430.07200.49250.137*
H10B0.30230.10920.57280.137*
H10C0.35320.09760.47530.137*
O20.50114 (14)0.11274 (11)0.68220 (12)0.0725 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.0473 (14)0.090 (2)0.0573 (16)0.0081 (13)0.0047 (11)0.0089 (15)
C230.081 (2)0.082 (2)0.079 (2)0.0038 (16)0.0039 (16)0.0090 (17)
C960.202 (5)0.071 (3)0.113 (4)0.006 (3)0.079 (4)0.021 (2)
C260.0566 (16)0.111 (3)0.0627 (18)0.0165 (16)0.0038 (13)0.0151 (18)
C10.0554 (15)0.0486 (14)0.0588 (15)0.0017 (11)0.0139 (11)0.0046 (11)
C760.095 (2)0.0458 (14)0.0639 (17)0.0112 (14)0.0151 (15)0.0039 (13)
C800.0722 (17)0.0434 (13)0.0566 (15)0.0049 (12)0.0085 (13)0.0059 (12)
C220.0543 (15)0.0771 (19)0.0642 (17)0.0040 (13)0.0078 (12)0.0079 (15)
C950.145 (3)0.072 (2)0.076 (2)0.024 (2)0.050 (2)0.0145 (18)
C270.091 (2)0.165 (4)0.060 (2)0.020 (3)0.0118 (17)0.009 (2)
O10.0827 (13)0.0851 (13)0.0625 (12)0.0054 (10)0.0116 (10)0.0023 (10)
C980.121 (3)0.087 (3)0.130 (3)0.026 (2)0.062 (2)0.022 (2)
C990.090 (2)0.0696 (19)0.092 (2)0.0005 (17)0.0401 (19)0.0078 (16)
C70.0601 (15)0.0514 (14)0.0547 (14)0.0004 (11)0.0092 (11)0.0004 (11)
C20.0542 (14)0.0565 (15)0.0513 (14)0.0078 (12)0.0064 (11)0.0007 (11)
N20.0743 (14)0.0531 (12)0.0740 (14)0.0009 (11)0.0165 (11)0.0073 (11)
C290.099 (2)0.110 (3)0.088 (2)0.001 (2)0.0126 (19)0.013 (2)
C210.0592 (15)0.0738 (18)0.0633 (16)0.0051 (13)0.0011 (13)0.0059 (14)
C250.071 (2)0.129 (3)0.080 (2)0.012 (2)0.0083 (17)0.039 (2)
C280.109 (3)0.148 (4)0.084 (3)0.015 (3)0.023 (2)0.025 (3)
C50.0639 (15)0.0500 (14)0.0525 (14)0.0019 (11)0.0053 (11)0.0007 (11)
C80.086 (2)0.0732 (19)0.0637 (17)0.0031 (15)0.0229 (15)0.0104 (14)
C30.0688 (16)0.0680 (17)0.0553 (15)0.0050 (13)0.0086 (12)0.0020 (13)
C920.110 (3)0.106 (3)0.0574 (17)0.025 (2)0.0134 (17)0.0077 (17)
C300.0715 (18)0.090 (2)0.0669 (18)0.0040 (16)0.0056 (14)0.0005 (16)
C750.110 (3)0.0688 (19)0.082 (2)0.0224 (19)0.030 (2)0.0024 (17)
C740.082 (2)0.090 (2)0.102 (3)0.0288 (19)0.036 (2)0.019 (2)
C720.0638 (16)0.0558 (15)0.0615 (15)0.0080 (12)0.0086 (12)0.0101 (12)
C710.0660 (16)0.0539 (15)0.0568 (15)0.0013 (12)0.0014 (12)0.0084 (13)
C940.190 (5)0.104 (3)0.076 (2)0.057 (3)0.057 (3)0.029 (2)
C930.134 (3)0.134 (4)0.068 (2)0.052 (3)0.020 (2)0.011 (2)
C90.0692 (16)0.0583 (16)0.0556 (15)0.0022 (12)0.0161 (12)0.0016 (12)
C240.076 (2)0.092 (2)0.115 (3)0.0027 (18)0.014 (2)0.038 (2)
C970.194 (6)0.089 (3)0.147 (5)0.026 (4)0.082 (4)0.004 (3)
C1000.110 (2)0.0607 (18)0.0590 (17)0.0103 (17)0.0449 (17)0.0025 (14)
C60.0600 (14)0.0499 (14)0.0486 (13)0.0029 (11)0.0101 (11)0.0006 (11)
C730.0668 (18)0.083 (2)0.082 (2)0.0135 (15)0.0081 (15)0.0172 (17)
C910.088 (2)0.0700 (18)0.0520 (15)0.0099 (16)0.0259 (15)0.0033 (13)
C40.0556 (14)0.0620 (15)0.0566 (14)0.0066 (12)0.0081 (11)0.0004 (12)
C770.130 (3)0.0462 (16)0.0663 (18)0.0080 (17)0.0000 (19)0.0075 (13)
C780.109 (3)0.0551 (17)0.084 (2)0.0058 (17)0.0210 (19)0.0105 (16)
C790.0805 (19)0.0548 (16)0.085 (2)0.0013 (14)0.0076 (16)0.0097 (15)
C700.0646 (16)0.0441 (13)0.0628 (15)0.0005 (12)0.0034 (12)0.0024 (12)
C100.105 (2)0.0616 (19)0.109 (3)0.0059 (17)0.0251 (19)0.0234 (17)
O20.0570 (11)0.0907 (14)0.0700 (12)0.0072 (10)0.0124 (9)0.0036 (10)
Geometric parameters (Å, º) top
C31—C301.411 (4)C25—H250.9300
C31—C261.417 (4)C28—H280.9300
C31—C221.427 (4)C5—C41.512 (3)
C23—C221.364 (4)C5—C61.543 (3)
C23—C241.409 (4)C5—H5A0.9700
C23—H230.9300C5—H5B0.9700
C96—C971.344 (7)C8—C91.530 (4)
C96—C951.431 (6)C8—H8A0.9700
C96—H960.9300C8—H8B0.9700
C26—C251.407 (5)C3—C41.517 (3)
C26—C271.425 (5)C3—H3A0.9700
C1—O21.218 (3)C3—H3B0.9700
C1—C21.502 (3)C92—C911.365 (4)
C1—C61.549 (3)C92—C931.436 (5)
C76—C801.403 (3)C92—H920.9300
C76—C751.411 (4)C30—H300.9300
C76—C771.412 (4)C75—C741.359 (4)
C80—C721.401 (3)C75—H750.9300
C80—C701.405 (3)C74—C731.407 (4)
C22—C211.484 (4)C74—H740.9300
C95—C941.391 (6)C72—C731.373 (4)
C95—C1001.425 (4)C72—C711.477 (4)
C27—C281.363 (5)C94—C931.366 (6)
C27—H270.9300C94—H940.9300
O1—C711.217 (3)C93—H930.9300
C98—C991.381 (4)C9—C911.520 (4)
C98—C971.384 (6)C9—C61.589 (3)
C98—H980.9300C9—H90.9800
C99—C1001.398 (4)C24—H240.9300
C99—H990.9300C97—H970.9300
C7—N21.471 (3)C100—C911.447 (4)
C7—C701.527 (3)C73—H730.9300
C7—C711.572 (3)C4—H4A0.9700
C7—C61.591 (3)C4—H4B0.9700
C2—C211.324 (3)C77—C781.355 (4)
C2—C31.503 (3)C77—H770.9300
N2—C81.457 (3)C78—C791.408 (4)
N2—C101.464 (3)C78—H780.9300
C29—C301.358 (4)C79—C701.366 (3)
C29—C281.381 (5)C79—H790.9300
C29—H290.9300C10—H10A0.9600
C21—H210.9300C10—H10B0.9600
C25—C241.363 (5)C10—H10C0.9600
C30—C31—C26118.2 (3)H3A—C3—H3B108.0
C30—C31—C22122.3 (3)C91—C92—C93122.0 (4)
C26—C31—C22119.5 (3)C91—C92—H92119.0
C22—C23—C24121.6 (3)C93—C92—H92119.0
C22—C23—H23119.2C29—C30—C31121.3 (3)
C24—C23—H23119.2C29—C30—H30119.3
C97—C96—C95120.5 (5)C31—C30—H30119.3
C97—C96—H96119.7C74—C75—C76121.5 (3)
C95—C96—H96119.7C74—C75—H75119.2
C25—C26—C31119.2 (3)C76—C75—H75119.2
C25—C26—C27122.6 (3)C75—C74—C73122.2 (3)
C31—C26—C27118.2 (3)C75—C74—H74118.9
O2—C1—C2119.8 (2)C73—C74—H74118.9
O2—C1—C6120.6 (2)C73—C72—C80120.4 (3)
C2—C1—C6119.6 (2)C73—C72—C71132.4 (3)
C80—C76—C75115.8 (3)C80—C72—C71107.1 (2)
C80—C76—C77116.0 (3)O1—C71—C72126.5 (2)
C75—C76—C77128.1 (3)O1—C71—C7124.7 (2)
C72—C80—C76122.4 (2)C72—C71—C7108.6 (2)
C72—C80—C70113.4 (2)C93—C94—C95122.9 (4)
C76—C80—C70124.0 (2)C93—C94—H94118.5
C23—C22—C31119.0 (3)C95—C94—H94118.5
C23—C22—C21120.7 (3)C94—C93—C92117.9 (4)
C31—C22—C21120.3 (3)C94—C93—H93121.1
C94—C95—C100119.4 (4)C92—C93—H93121.1
C94—C95—C96121.4 (4)C91—C9—C8115.1 (2)
C100—C95—C96119.2 (4)C91—C9—C6116.1 (2)
C28—C27—C26121.6 (3)C8—C9—C6105.51 (19)
C28—C27—H27119.2C91—C9—H9106.5
C26—C27—H27119.2C8—C9—H9106.5
C99—C98—C97120.7 (5)C6—C9—H9106.5
C99—C98—H98119.7C25—C24—C23120.0 (3)
C97—C98—H98119.7C25—C24—H24120.0
C98—C99—C100121.1 (4)C23—C24—H24120.0
C98—C99—H99119.4C96—C97—C98120.7 (5)
C100—C99—H99119.4C96—C97—H97119.7
N2—C7—C70110.0 (2)C98—C97—H97119.7
N2—C7—C71111.06 (19)C99—C100—C95117.8 (3)
C70—C7—C71101.33 (19)C99—C100—C91123.7 (3)
N2—C7—C6103.41 (18)C95—C100—C91118.5 (3)
C70—C7—C6119.34 (19)C5—C6—C1109.17 (19)
C71—C7—C6111.84 (19)C5—C6—C9112.88 (19)
C21—C2—C1117.4 (2)C1—C6—C9109.24 (19)
C21—C2—C3122.5 (2)C5—C6—C7114.45 (19)
C1—C2—C3120.1 (2)C1—C6—C7108.13 (18)
C8—N2—C10113.4 (2)C9—C6—C7102.69 (18)
C8—N2—C7107.08 (19)C72—C73—C74117.7 (3)
C10—N2—C7116.2 (2)C72—C73—H73121.2
C30—C29—C28121.3 (4)C74—C73—H73121.2
C30—C29—H29119.3C92—C91—C100119.3 (3)
C28—C29—H29119.3C92—C91—C9120.8 (3)
C2—C21—C22125.5 (2)C100—C91—C9119.8 (3)
C2—C21—H21117.2C5—C4—C3109.0 (2)
C22—C21—H21117.2C5—C4—H4A109.9
C24—C25—C26120.7 (3)C3—C4—H4A109.9
C24—C25—H25119.7C5—C4—H4B109.9
C26—C25—H25119.7C3—C4—H4B109.9
C27—C28—C29119.4 (4)H4A—C4—H4B108.3
C27—C28—H28120.3C78—C77—C76119.9 (3)
C29—C28—H28120.3C78—C77—H77120.0
C4—C5—C6113.8 (2)C76—C77—H77120.0
C4—C5—H5A108.8C77—C78—C79123.0 (3)
C6—C5—H5A108.8C77—C78—H78118.5
C4—C5—H5B108.8C79—C78—H78118.5
C6—C5—H5B108.8C70—C79—C78119.0 (3)
H5A—C5—H5B107.7C70—C79—H79120.5
N2—C8—C9102.9 (2)C78—C79—H79120.5
N2—C8—H8A111.2C79—C70—C80117.8 (2)
C9—C8—H8A111.2C79—C70—C7132.3 (2)
N2—C8—H8B111.2C80—C70—C7109.5 (2)
C9—C8—H8B111.2N2—C10—H10A109.5
H8A—C8—H8B109.1N2—C10—H10B109.5
C2—C3—C4111.6 (2)H10A—C10—H10B109.5
C2—C3—H3A109.3N2—C10—H10C109.5
C4—C3—H3A109.3H10A—C10—H10C109.5
C2—C3—H3B109.3H10B—C10—H10C109.5
C4—C3—H3B109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.972.373.084 (3)130
C8—H8A···O10.972.513.078 (4)117
C9—H9···O20.982.262.803 (3)114
C21—H21···O20.932.422.750 (3)101
C73—H73···O1i0.932.503.231 (4)136
C4—H4A···Cg10.972.643.337 (3)129
C75—H75···Cg2ii0.932.743.646 (3)164
C78—H78···Cg3iii0.932.823.622 (4)145
C96—H96···Cg4iv0.932.963.742 (4)142
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC42H33NO2
Mr583.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.4398 (8), 17.3501 (11), 14.4685 (9)
β (°) 90.728 (17)
V3)3122.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerNonius MACH3 sealed tube
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.943, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6169, 5489, 3098
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.02
No. of reflections5489
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.972.373.084 (3)130
C8—H8A···O10.972.513.078 (4)117
C9—H9···O20.982.262.803 (3)114
C21—H21···O20.932.422.750 (3)101
C73—H73···O1i0.932.503.231 (4)136
C4—H4A···Cg10.972.643.337 (3)129
C75—H75···Cg2ii0.932.743.646 (3)164
C78—H78···Cg3iii0.932.823.622 (4)145
C96—H96···Cg4iv0.932.963.742 (4)142
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

SA and SAB sincerely thank the Vice Chancellor and management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

References

First citationBabu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305–308.  CAS Google Scholar
First citationBruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe March, P., Elias, L., Figueredo, M. & Font, J. (2002). Tetrahedron, 58, 2667–2672.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEscolano, C. & Jones, K. (2000). Tetrahedron Lett. 41, 8951–8955.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFejes, I., Nyerges, M., Szollosy, A., Blasko, G. & Toke, L. (2001). Tetrahedron, 57, 1129–1137.  Web of Science CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485–2496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoornachandran, M. & Raghunathan, R. (2006). Tetrahedron, 62, 11274–11281.  Web of Science CrossRef CAS Google Scholar
First citationRaj, A. A. & Raghunathan, R. (2001). Tetrahedron, 57, 10293–10298.  CAS Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds