metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pentane-1,5-di­ammonium tetra­chlorido­palladate(II)

aUniversité de Montréal, Département de Chimie, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: thierry.maris@umontreal.ca

(Received 13 November 2007; accepted 21 November 2007; online 18 December 2007)

In the title compound, [NH3(CH2)5NH3][PdCl4], the square-planar [PdCl4]2− anions are centrosymmetric while the diammonium cation lies in a general position. In addition to electrostatic inter­actions, the two species are linked through N—H⋯Cl hydrogen bonds to form a three-dimensional network.

Related literature

The title compound is isostructural with its tetra­chlorido- and tetra­bromido­cuprate(II) analogues (Garland et al., 1990[Garland, J. K., Emerson, K. & Pressprich, M. R. (1990). Acta Cryst. C46, 1603-1609.]). For similar tetra­chlorido­palladate(II) compounds, see: Willett & Willett (1977[Willett, R. D. & Willett, J. J. (1977). Acta Cryst. B33, 1639-1641.]); Berg & Søtofte (1976[Berg, R. W. & Søtofte, I. (1976). Acta Chem. Scand. A, 30, 843-844.]); Maris et al. (1996[Maris, T., Bravic, G., Chanh, N. B., Leger, J. M., Bissey, J. C., Villesuzanne, A., Zouari, Z. & Daoud, A. (1996). J. Phys. Chem. Solids, 57, 1963-1975.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H16N2)[PdCl4]

  • Mr = 352.40

  • Monoclinic, P 21 /c

  • a = 8.091 (2) Å

  • b = 7.276 (2) Å

  • c = 20.843 (5) Å

  • β = 98.279 (2)°

  • V = 1214.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: integration (Blessing; 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]) Tmin = 0.662, Tmax = 0.833

  • 2816 measured reflections

  • 2783 independent reflections

  • 2771 reflections with I > 2σ(I)

  • Rint = 0.025

  • 5 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 0.99

  • 2783 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—Cl2 2.3129 (4)
Pd1—Cl1 2.3183 (6)
Pd2—Cl3 2.3160 (4)
Pd2—Cl4 2.3207 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl2i 0.89 2.88 3.4171 (11) 120
N1—H1C⋯Cl4ii 0.89 2.51 3.3539 (17) 158
N1—H1A⋯Cl2iii 0.89 2.53 3.3107 (13) 147
N1—H1B⋯Cl1 0.89 2.60 3.4680 (12) 165
N7—H7A⋯Cl1iv 0.89 2.53 3.2512 (15) 138
N7—H7B⋯Cl4v 0.89 2.51 3.3702 (12) 163
N7—H7C⋯Cl3iv 0.89 2.44 3.2821 (13) 158
N7—H7A⋯Cl2vi 0.89 2.70 3.4614 (13) 145
N7—H7B⋯Cl3v 0.89 2.86 3.3907 (11) 120
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4-PC Software (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: modified version of NRC-2/NRC2A (Ahmed et al., 1973[Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). J. Appl. Cryst. 6, 309-346.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ATOMS (Dowty, 2003[Dowty, E. (2003). ATOMS. Version 6.1. Shape Software, Kingsport, Tennessee, USA. http://www.shapesoftware.com]) and Materials Studio (Accelrys, 2002[Accelrys (2002). Materials Studio. Version 2.2. Accelrys Inc., San Diego, California, USA.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX Version 6.0. University of Montréal, Canada.]) and publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

Extensive studies have been carried out on the crystal structures, phase transitions and physical properties of two-dimensional perovskite-like compounds of the families (CnH2n+1NH3)2MX4 and [NH3-(CH2)n-NH3]MX4, where X represents a halogen atom and M is a divalent metal. A few tetrachloropalladate compounds of these families have been structurally characterized: (C3H7NH3)2 [PdC14] (Willett & Willett, 1977), [NH3-(CH2)2-NH3][PdC14] (Berg & Søtofte, 1976) and [NH3-(CH2)4-NH3][PdC14] (Maris et al., 1996). We report here the crystal structure, determined at room temperature, of the title palladium-chloride compound [NH3-(CH2)5-NH3][PdCl4] (I).

The asymmetric unit of (I) contains one cation in general position and two distinct half [PdCl4]2- units (Fig. 1). The Pd atoms lie on inversion centers and display a square-planar coordination environment with four Cl- ligands. The Pd—Cl distances range from 2.3129 (4) to 2.3207 (6) Å (Table 1). The [PdCl4] moieties pack via longer Pd—Cl contacts (3.0244 (9) and 3.1788 (9) Å) to form puckered two-dimensional layers in the (a,b) plane. The cations are located between these layers and the whole crystallographic organization can be described as a succession of organic and inorganic layers. The diammonium chain adopts a left-handed conformation at one end with a terminal C—C—C—N torsion angles of 67.86 (12)°. The whole chain makes an angle of 83.55 (3)° with the palladium layer.

The link between the two moieties and the crystal packing is achieved by several hydrogen bonds involving the H atoms of the ammonium groups and the Cl atoms. The three shortest hydrogen bonds (Fig. 2) show a pattern similar to the hydrogen bond scheme found in the tetrachloro and tetrabromocuprate(II) analogues. (Garland et al. 1990). Additional contacts (Table 2) with longer hydrogen chlorine distances and more acute N—H···Cl angles are also present.

Related literature top

The title compound is isostructural with its tetrachloro- and tetrabromocuprate(II) analogues (Garland et al., 1990). For similar tetrachloropalladate(II) compounds, see: Willett & Willett (1977); Berg & Søtofte (1976); Maris et al. (1996).

Experimental top

Crystals for X-ray structural analysis were grown by slow evaporation at room temperature of a saturated aqueous solution obtained by dissolving PdCl2 (0.2 g, 1.12 mmol) and NH2(CH2)5NH2 (0.12 g, 1.12 mmol) in an excess of concentrated HCl.

Refinement top

H atoms of the carbon chain skeleton were positioned geometrically and refined using a riding model with Uiso(H) values of 1.2Ueq(C). H atoms of the ammonium groups were located from difference Fourier map and refined as riding atoms with Uiso(H) values of 1.5Ueq(N).

Structure description top

Extensive studies have been carried out on the crystal structures, phase transitions and physical properties of two-dimensional perovskite-like compounds of the families (CnH2n+1NH3)2MX4 and [NH3-(CH2)n-NH3]MX4, where X represents a halogen atom and M is a divalent metal. A few tetrachloropalladate compounds of these families have been structurally characterized: (C3H7NH3)2 [PdC14] (Willett & Willett, 1977), [NH3-(CH2)2-NH3][PdC14] (Berg & Søtofte, 1976) and [NH3-(CH2)4-NH3][PdC14] (Maris et al., 1996). We report here the crystal structure, determined at room temperature, of the title palladium-chloride compound [NH3-(CH2)5-NH3][PdCl4] (I).

The asymmetric unit of (I) contains one cation in general position and two distinct half [PdCl4]2- units (Fig. 1). The Pd atoms lie on inversion centers and display a square-planar coordination environment with four Cl- ligands. The Pd—Cl distances range from 2.3129 (4) to 2.3207 (6) Å (Table 1). The [PdCl4] moieties pack via longer Pd—Cl contacts (3.0244 (9) and 3.1788 (9) Å) to form puckered two-dimensional layers in the (a,b) plane. The cations are located between these layers and the whole crystallographic organization can be described as a succession of organic and inorganic layers. The diammonium chain adopts a left-handed conformation at one end with a terminal C—C—C—N torsion angles of 67.86 (12)°. The whole chain makes an angle of 83.55 (3)° with the palladium layer.

The link between the two moieties and the crystal packing is achieved by several hydrogen bonds involving the H atoms of the ammonium groups and the Cl atoms. The three shortest hydrogen bonds (Fig. 2) show a pattern similar to the hydrogen bond scheme found in the tetrachloro and tetrabromocuprate(II) analogues. (Garland et al. 1990). Additional contacts (Table 2) with longer hydrogen chlorine distances and more acute N—H···Cl angles are also present.

The title compound is isostructural with its tetrachloro- and tetrabromocuprate(II) analogues (Garland et al., 1990). For similar tetrachloropalladate(II) compounds, see: Willett & Willett (1977); Berg & Søtofte (1976); Maris et al. (1996).

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1992); data reduction: modified version of NRC-2/NRC2A (Ahmed et al., 1973); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2003) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The structure of (I) with thermal ellipsoids shown at the 50% probability level. Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. Packing diagram showing the shortest N—H···Cl hydrogen bond interactions as dashed lines. Symmetry codes: (ii) 1 - x, 1 - y, -z; (iii) x, y + 1, z; (iv) 1 - x, y + 1/2, 1/2 - z; (v) x, 1/2 - y, 1/2 + z.
Pentane-1,5-diammonium tetrachloridopalladate(II) top
Crystal data top
(C5H16N2)[PdCl4]F(000) = 696
Mr = 352.40Dx = 1.928 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.091 (2) Åθ = 7.5–16.8°
b = 7.276 (2) ŵ = 2.37 mm1
c = 20.843 (5) ÅT = 298 K
β = 98.279 (2)°Plate, dark red
V = 1214.2 (5) Å30.19 × 0.15 × 0.08 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2771 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.4°, θmin = 2.0°
ω/2θ scansh = 1010
Absorption correction: integration
(Blessing; 1989)
k = 09
Tmin = 0.662, Tmax = 0.833l = 026
2816 measured reflections5 standard reflections every 60 min
2783 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0883P)2]
where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max = 0.003
112 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
(C5H16N2)[PdCl4]V = 1214.2 (5) Å3
Mr = 352.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.091 (2) ŵ = 2.37 mm1
b = 7.276 (2) ÅT = 298 K
c = 20.843 (5) Å0.19 × 0.15 × 0.08 mm
β = 98.279 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2771 reflections with I > 2σ(I)
Absorption correction: integration
(Blessing; 1989)
Rint = 0.025
Tmin = 0.662, Tmax = 0.8335 standard reflections every 60 min
2816 measured reflections intensity decay: none
2783 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.74 e Å3
2783 reflectionsΔρmin = 0.69 e Å3
112 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.00000.01948 (10)
Cl10.09323 (3)0.01856 (2)0.110313 (8)0.03247 (10)
Cl20.195673 (16)0.21942 (2)0.017283 (7)0.02727 (10)
Pd20.50000.50000.00000.01998 (10)
Cl30.711649 (16)0.285055 (19)0.022152 (8)0.02908 (10)
Cl40.51179 (2)0.46485 (3)0.109913 (8)0.03058 (10)
N10.07248 (18)0.49394 (9)0.10015 (5)0.0386 (2)
H1A0.01980.54720.06450.058*
H1B0.07360.37270.09450.058*
H1C0.17690.53550.10800.058*
C20.01184 (11)0.53613 (14)0.15356 (5)0.03569 (19)
H2A0.12600.49240.14410.043*
H2B0.01570.66860.15830.043*
C30.06862 (13)0.45279 (14)0.21793 (4)0.0467 (2)
H3A0.00620.47060.24980.056*
H3B0.08090.32150.21210.056*
C40.23397 (14)0.5307 (2)0.24383 (5)0.0461 (3)
H4A0.22590.66370.24370.055*
H4B0.31370.49640.21540.055*
C50.29934 (12)0.46619 (13)0.31257 (4)0.04003 (19)
H5A0.22170.50390.34150.048*
H5B0.30470.33300.31320.048*
C60.46483 (13)0.54043 (14)0.33643 (4)0.0408 (2)
H6A0.46390.67270.33060.049*
H6B0.54610.48900.31150.049*
N70.51365 (16)0.49611 (10)0.40599 (6)0.0420 (2)
H7A0.61480.54150.41950.063*
H7B0.51510.37470.41120.063*
H7C0.44030.54560.42890.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01015 (15)0.01755 (17)0.03049 (14)0.00113 (1)0.00208 (12)0.00208 (2)
Cl10.02387 (16)0.04333 (16)0.02952 (15)0.00249 (6)0.00153 (11)0.00146 (5)
Cl20.01297 (15)0.02395 (15)0.04395 (15)0.00589 (4)0.00088 (10)0.00250 (5)
Pd20.01077 (15)0.01766 (17)0.03179 (14)0.00019 (1)0.00401 (12)0.00195 (2)
Cl30.01415 (15)0.02303 (15)0.04964 (15)0.00526 (5)0.00317 (10)0.00050 (5)
Cl40.02803 (16)0.03239 (15)0.03202 (15)0.00018 (7)0.00674 (10)0.00025 (5)
N10.0377 (5)0.0413 (5)0.0359 (4)0.0059 (2)0.0023 (4)0.0095 (2)
C20.0383 (5)0.0295 (3)0.0379 (4)0.0061 (3)0.0008 (3)0.0068 (3)
C30.0466 (5)0.0525 (5)0.0396 (4)0.0105 (4)0.0016 (3)0.0077 (4)
C40.0370 (5)0.0562 (5)0.0433 (5)0.0005 (4)0.0005 (4)0.0053 (4)
C50.0324 (5)0.0496 (4)0.0390 (4)0.0051 (3)0.0082 (3)0.0042 (3)
C60.0456 (5)0.0268 (3)0.0465 (4)0.0104 (4)0.0055 (4)0.0088 (3)
N70.0300 (5)0.0518 (5)0.0443 (5)0.0080 (2)0.0057 (5)0.0125 (3)
Geometric parameters (Å, º) top
Pd1—Cl22.3129 (4)C3—C41.4814 (13)
Pd1—Cl2i2.3129 (4)C3—H3A0.9700
Pd1—Cl12.3183 (6)C3—H3B0.9700
Pd1—Cl1i2.3183 (6)C4—C51.5279 (16)
Pd2—Cl3ii2.3160 (4)C4—H4A0.9700
Pd2—Cl32.3160 (4)C4—H4B0.9700
Pd2—Cl42.3207 (6)C5—C61.4629 (13)
Pd2—Cl4ii2.3207 (6)C5—H5A0.9700
N1—C21.4205 (14)C5—H5B0.9700
N1—H1A0.8900C6—N71.4822 (14)
N1—H1B0.8900C6—H6A0.9700
N1—H1C0.8900C6—H6B0.9700
C2—C31.5298 (13)N7—H7A0.8900
C2—H2A0.9700N7—H7B0.8900
C2—H2B0.9700N7—H7C0.8900
Pd1···Cl3iii3.2044 (9)Pd2···Cl2i3.1788 (9)
Pd1···Cl3iv3.2044 (9)Pd2···Cl2v3.1789 (9)
Cl2—Pd1—Cl2i180.0C4—C3—H3B108.6
Cl2—Pd1—Cl191.031 (9)C2—C3—H3B108.6
Cl2i—Pd1—Cl188.970 (10)H3A—C3—H3B107.6
Cl2—Pd1—Cl1i88.969 (10)C3—C4—C5113.37 (10)
Cl2i—Pd1—Cl1i91.030 (10)C3—C4—H4A108.9
Cl1—Pd1—Cl1i180.000 (3)C5—C4—H4A108.9
Cl3ii—Pd2—Cl3180.0C3—C4—H4B108.9
Cl3ii—Pd2—Cl490.681 (8)C5—C4—H4B108.9
Cl3—Pd2—Cl489.317 (8)H4A—C4—H4B107.7
Cl3ii—Pd2—Cl4ii89.320 (9)C6—C5—C4112.44 (8)
Cl3—Pd2—Cl4ii90.682 (8)C6—C5—H5A109.1
Cl4—Pd2—Cl4ii180.0C4—C5—H5A109.1
C2—N1—H1A109.5C6—C5—H5B109.1
C2—N1—H1B109.5C4—C5—H5B109.1
H1A—N1—H1B109.5H5A—C5—H5B107.8
C2—N1—H1C109.5C5—C6—N7110.74 (8)
H1A—N1—H1C109.5C5—C6—H6A109.5
H1B—N1—H1C109.5N7—C6—H6A109.5
N1—C2—C3114.20 (9)C5—C6—H6B109.5
N1—C2—H2A108.7N7—C6—H6B109.5
C3—C2—H2A108.7H6A—C6—H6B108.1
N1—C2—H2B108.7C6—N7—H7A109.5
C3—C2—H2B108.7C6—N7—H7B109.5
H2A—C2—H2B107.6H7A—N7—H7B109.5
C4—C3—C2114.57 (9)C6—N7—H7C109.5
C4—C3—H3A108.6H7A—N7—H7C109.5
C2—C3—H3A108.6H7B—N7—H7C109.5
N1—C2—C3—C467.86 (12)C3—C4—C5—C6178.30 (9)
C2—C3—C4—C5171.37 (9)C4—C5—C6—N7172.18 (9)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.892.883.4171 (11)120
N1—H1C···Cl4ii0.892.513.3539 (17)158
N1—H1A···Cl2vi0.892.533.3107 (13)147
N1—H1B···Cl10.892.603.4680 (12)165
N7—H7A···Cl1vii0.892.533.2512 (15)138
N7—H7B···Cl4viii0.892.513.3702 (12)163
N7—H7C···Cl3vii0.892.443.2821 (13)158
N7—H7A···Cl2ix0.892.703.4614 (13)145
N7—H7B···Cl3viii0.892.863.3907 (11)120
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H16N2)[PdCl4]
Mr352.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.091 (2), 7.276 (2), 20.843 (5)
β (°) 98.279 (2)
V3)1214.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.19 × 0.15 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionIntegration
(Blessing; 1989)
Tmin, Tmax0.662, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
2816, 2783, 2771
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 0.99
No. of reflections2783
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.69

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1992), modified version of NRC-2/NRC2A (Ahmed et al., 1973), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2003) and Materials Studio (Accelrys, 2002), UdMX (Maris, 2004) and publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Pd1—Cl22.3129 (4)C2—C31.5298 (13)
Pd1—Cl12.3183 (6)C3—C41.4814 (13)
Pd2—Cl32.3160 (4)C4—C51.5279 (16)
Pd2—Cl42.3207 (6)C5—C61.4629 (13)
N1—C21.4205 (14)C6—N71.4822 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.892.883.4171 (11)120.1
N1—H1C···Cl4ii0.892.513.3539 (17)157.7
N1—H1A···Cl2iii0.892.533.3107 (13)146.9
N1—H1B···Cl10.892.603.4680 (12)165.2
N7—H7A···Cl1iv0.892.533.2512 (15)138.2
N7—H7B···Cl4v0.892.513.3702 (12)163.0
N7—H7C···Cl3iv0.892.443.2821 (13)158.2
N7—H7A···Cl2vi0.892.703.4614 (13)144.5
N7—H7B···Cl3v0.892.863.3907 (11)120.0
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

Dr Jean Michel Leger is acknowledged for assistance during a preliminary investigation.

References

First citationAccelrys (2002). Materials Studio. Version 2.2. Accelrys Inc., San Diego, California, USA.  Google Scholar
First citationAhmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). J. Appl. Cryst. 6, 309–346.  CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerg, R. W. & Søtofte, I. (1976). Acta Chem. Scand. A, 30, 843–844.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2003). ATOMS. Version 6.1. Shape Software, Kingsport, Tennessee, USA. http://www.shapesoftware.com  Google Scholar
First citationEnraf–Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGarland, J. K., Emerson, K. & Pressprich, M. R. (1990). Acta Cryst. C46, 1603–1609.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaris, T. (2004). UdMX Version 6.0. University of Montréal, Canada.  Google Scholar
First citationMaris, T., Bravic, G., Chanh, N. B., Leger, J. M., Bissey, J. C., Villesuzanne, A., Zouari, Z. & Daoud, A. (1996). J. Phys. Chem. Solids, 57, 1963–1975.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar
First citationWillett, R. D. & Willett, J. J. (1977). Acta Cryst. B33, 1639–1641.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds