metal-organic compounds
Pentane-1,5-diammonium tetrachloridopalladate(II)
aUniversité de Montréal, Département de Chimie, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: thierry.maris@umontreal.ca
In the title compound, [NH3(CH2)5NH3][PdCl4], the square-planar [PdCl4]2− anions are centrosymmetric while the diammonium cation lies in a general position. In addition to electrostatic interactions, the two species are linked through N—H⋯Cl hydrogen bonds to form a three-dimensional network.
Related literature
The title compound is isostructural with its tetrachlorido- and tetrabromidocuprate(II) analogues (Garland et al., 1990). For similar tetrachloridopalladate(II) compounds, see: Willett & Willett (1977); Berg & Søtofte (1976); Maris et al. (1996).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell CAD-4-PC Software; data reduction: modified version of NRC-2/NRC2A (Ahmed et al., 1973); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2003) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2007).
Supporting information
https://doi.org/10.1107/S1600536807061430/sj2439sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807061430/sj2439Isup2.hkl
Crystals for X-ray structural analysis were grown by slow evaporation at room temperature of a saturated aqueous solution obtained by dissolving PdCl2 (0.2 g, 1.12 mmol) and NH2(CH2)5NH2 (0.12 g, 1.12 mmol) in an excess of concentrated HCl.
H atoms of the carbon chain skeleton were positioned geometrically and refined using a riding model with Uiso(H) values of 1.2Ueq(C). H atoms of the ammonium groups were located from difference Fourier map and refined as riding atoms with Uiso(H) values of 1.5Ueq(N).
Extensive studies have been carried out on the crystal structures, phase transitions and physical properties of two-dimensional perovskite-like compounds of the families (CnH2n+1NH3)2MX4 and [NH3-(CH2)n-NH3]MX4, where X represents a halogen atom and M is a divalent metal. A few tetrachloropalladate compounds of these families have been structurally characterized: (C3H7NH3)2 [PdC14] (Willett & Willett, 1977), [NH3-(CH2)2-NH3][PdC14] (Berg & Søtofte, 1976) and [NH3-(CH2)4-NH3][PdC14] (Maris et al., 1996). We report here the
determined at room temperature, of the title palladium-chloride compound [NH3-(CH2)5-NH3][PdCl4] (I).The
of (I) contains one cation in general position and two distinct half [PdCl4]2- units (Fig. 1). The Pd atoms lie on inversion centers and display a square-planar coordination environment with four Cl- ligands. The Pd—Cl distances range from 2.3129 (4) to 2.3207 (6) Å (Table 1). The [PdCl4] moieties pack via longer Pd—Cl contacts (3.0244 (9) and 3.1788 (9) Å) to form puckered two-dimensional layers in the (a,b) plane. The cations are located between these layers and the whole crystallographic organization can be described as a succession of organic and inorganic layers. The diammonium chain adopts a left-handed conformation at one end with a terminal C—C—C—N torsion angles of 67.86 (12)°. The whole chain makes an angle of 83.55 (3)° with the palladium layer.The link between the two moieties and the crystal packing is achieved by several hydrogen bonds involving the H atoms of the ammonium groups and the Cl atoms. The three shortest hydrogen bonds (Fig. 2) show a pattern similar to the hydrogen bond scheme found in the tetrachloro and tetrabromocuprate(II) analogues. (Garland et al. 1990). Additional contacts (Table 2) with longer hydrogen chlorine distances and more acute N—H···Cl angles are also present.
The title compound is isostructural with its tetrachloro- and tetrabromocuprate(II) analogues (Garland et al., 1990). For similar tetrachloropalladate(II) compounds, see: Willett & Willett (1977); Berg & Søtofte (1976); Maris et al. (1996).
Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell
CAD-4-PC Software (Enraf–Nonius, 1992); data reduction: modified version of NRC-2/NRC2A (Ahmed et al., 1973); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2003) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2007).Fig. 1. The structure of (I) with thermal ellipsoids shown at the 50% probability level. Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, 1 - y, -z. | |
Fig. 2. Packing diagram showing the shortest N—H···Cl hydrogen bond interactions as dashed lines. Symmetry codes: (ii) 1 - x, 1 - y, -z; (iii) x, y + 1, z; (iv) 1 - x, y + 1/2, 1/2 - z; (v) x, 1/2 - y, 1/2 + z. |
(C5H16N2)[PdCl4] | F(000) = 696 |
Mr = 352.40 | Dx = 1.928 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.091 (2) Å | θ = 7.5–16.8° |
b = 7.276 (2) Å | µ = 2.37 mm−1 |
c = 20.843 (5) Å | T = 298 K |
β = 98.279 (2)° | Plate, dark red |
V = 1214.2 (5) Å3 | 0.19 × 0.15 × 0.08 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 2771 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 27.4°, θmin = 2.0° |
ω/2θ scans | h = −10→10 |
Absorption correction: integration (Blessing; 1989) | k = 0→9 |
Tmin = 0.662, Tmax = 0.833 | l = 0→26 |
2816 measured reflections | 5 standard reflections every 60 min |
2783 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0883P)2] where P = (Fo2 + 2Fc2)/3 |
2783 reflections | (Δ/σ)max = 0.003 |
112 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
(C5H16N2)[PdCl4] | V = 1214.2 (5) Å3 |
Mr = 352.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.091 (2) Å | µ = 2.37 mm−1 |
b = 7.276 (2) Å | T = 298 K |
c = 20.843 (5) Å | 0.19 × 0.15 × 0.08 mm |
β = 98.279 (2)° |
Enraf–Nonius CAD-4 diffractometer | 2771 reflections with I > 2σ(I) |
Absorption correction: integration (Blessing; 1989) | Rint = 0.025 |
Tmin = 0.662, Tmax = 0.833 | 5 standard reflections every 60 min |
2816 measured reflections | intensity decay: none |
2783 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.74 e Å−3 |
2783 reflections | Δρmin = −0.69 e Å−3 |
112 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.0000 | 0.0000 | 0.0000 | 0.01948 (10) | |
Cl1 | 0.09323 (3) | 0.01856 (2) | 0.110313 (8) | 0.03247 (10) | |
Cl2 | −0.195673 (16) | −0.21942 (2) | 0.017283 (7) | 0.02727 (10) | |
Pd2 | 0.5000 | 0.5000 | 0.0000 | 0.01998 (10) | |
Cl3 | 0.711649 (16) | 0.285055 (19) | 0.022152 (8) | 0.02908 (10) | |
Cl4 | 0.51179 (2) | 0.46485 (3) | −0.109913 (8) | 0.03058 (10) | |
N1 | 0.07248 (18) | 0.49394 (9) | 0.10015 (5) | 0.0386 (2) | |
H1A | 0.0198 | 0.5472 | 0.0645 | 0.058* | |
H1B | 0.0736 | 0.3727 | 0.0945 | 0.058* | |
H1C | 0.1769 | 0.5355 | 0.1080 | 0.058* | |
C2 | −0.01184 (11) | 0.53613 (14) | 0.15356 (5) | 0.03569 (19) | |
H2A | −0.1260 | 0.4924 | 0.1441 | 0.043* | |
H2B | −0.0157 | 0.6686 | 0.1583 | 0.043* | |
C3 | 0.06862 (13) | 0.45279 (14) | 0.21793 (4) | 0.0467 (2) | |
H3A | −0.0062 | 0.4706 | 0.2498 | 0.056* | |
H3B | 0.0809 | 0.3215 | 0.2121 | 0.056* | |
C4 | 0.23397 (14) | 0.5307 (2) | 0.24383 (5) | 0.0461 (3) | |
H4A | 0.2259 | 0.6637 | 0.2437 | 0.055* | |
H4B | 0.3137 | 0.4964 | 0.2154 | 0.055* | |
C5 | 0.29934 (12) | 0.46619 (13) | 0.31257 (4) | 0.04003 (19) | |
H5A | 0.2217 | 0.5039 | 0.3415 | 0.048* | |
H5B | 0.3047 | 0.3330 | 0.3132 | 0.048* | |
C6 | 0.46483 (13) | 0.54043 (14) | 0.33643 (4) | 0.0408 (2) | |
H6A | 0.4639 | 0.6727 | 0.3306 | 0.049* | |
H6B | 0.5461 | 0.4890 | 0.3115 | 0.049* | |
N7 | 0.51365 (16) | 0.49611 (10) | 0.40599 (6) | 0.0420 (2) | |
H7A | 0.6148 | 0.5415 | 0.4195 | 0.063* | |
H7B | 0.5151 | 0.3747 | 0.4112 | 0.063* | |
H7C | 0.4403 | 0.5456 | 0.4289 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.01015 (15) | 0.01755 (17) | 0.03049 (14) | −0.00113 (1) | 0.00208 (12) | −0.00208 (2) |
Cl1 | 0.02387 (16) | 0.04333 (16) | 0.02952 (15) | −0.00249 (6) | 0.00153 (11) | 0.00146 (5) |
Cl2 | 0.01297 (15) | 0.02395 (15) | 0.04395 (15) | −0.00589 (4) | 0.00088 (10) | 0.00250 (5) |
Pd2 | 0.01077 (15) | 0.01766 (17) | 0.03179 (14) | 0.00019 (1) | 0.00401 (12) | −0.00195 (2) |
Cl3 | 0.01415 (15) | 0.02303 (15) | 0.04964 (15) | 0.00526 (5) | 0.00317 (10) | −0.00050 (5) |
Cl4 | 0.02803 (16) | 0.03239 (15) | 0.03202 (15) | −0.00018 (7) | 0.00674 (10) | 0.00025 (5) |
N1 | 0.0377 (5) | 0.0413 (5) | 0.0359 (4) | −0.0059 (2) | 0.0023 (4) | −0.0095 (2) |
C2 | 0.0383 (5) | 0.0295 (3) | 0.0379 (4) | 0.0061 (3) | 0.0008 (3) | −0.0068 (3) |
C3 | 0.0466 (5) | 0.0525 (5) | 0.0396 (4) | −0.0105 (4) | 0.0016 (3) | 0.0077 (4) |
C4 | 0.0370 (5) | 0.0562 (5) | 0.0433 (5) | −0.0005 (4) | −0.0005 (4) | 0.0053 (4) |
C5 | 0.0324 (5) | 0.0496 (4) | 0.0390 (4) | −0.0051 (3) | 0.0082 (3) | 0.0042 (3) |
C6 | 0.0456 (5) | 0.0268 (3) | 0.0465 (4) | −0.0104 (4) | −0.0055 (4) | 0.0088 (3) |
N7 | 0.0300 (5) | 0.0518 (5) | 0.0443 (5) | −0.0080 (2) | 0.0057 (5) | 0.0125 (3) |
Pd1—Cl2 | 2.3129 (4) | C3—C4 | 1.4814 (13) |
Pd1—Cl2i | 2.3129 (4) | C3—H3A | 0.9700 |
Pd1—Cl1 | 2.3183 (6) | C3—H3B | 0.9700 |
Pd1—Cl1i | 2.3183 (6) | C4—C5 | 1.5279 (16) |
Pd2—Cl3ii | 2.3160 (4) | C4—H4A | 0.9700 |
Pd2—Cl3 | 2.3160 (4) | C4—H4B | 0.9700 |
Pd2—Cl4 | 2.3207 (6) | C5—C6 | 1.4629 (13) |
Pd2—Cl4ii | 2.3207 (6) | C5—H5A | 0.9700 |
N1—C2 | 1.4205 (14) | C5—H5B | 0.9700 |
N1—H1A | 0.8900 | C6—N7 | 1.4822 (14) |
N1—H1B | 0.8900 | C6—H6A | 0.9700 |
N1—H1C | 0.8900 | C6—H6B | 0.9700 |
C2—C3 | 1.5298 (13) | N7—H7A | 0.8900 |
C2—H2A | 0.9700 | N7—H7B | 0.8900 |
C2—H2B | 0.9700 | N7—H7C | 0.8900 |
Pd1···Cl3iii | 3.2044 (9) | Pd2···Cl2i | 3.1788 (9) |
Pd1···Cl3iv | 3.2044 (9) | Pd2···Cl2v | 3.1789 (9) |
Cl2—Pd1—Cl2i | 180.0 | C4—C3—H3B | 108.6 |
Cl2—Pd1—Cl1 | 91.031 (9) | C2—C3—H3B | 108.6 |
Cl2i—Pd1—Cl1 | 88.970 (10) | H3A—C3—H3B | 107.6 |
Cl2—Pd1—Cl1i | 88.969 (10) | C3—C4—C5 | 113.37 (10) |
Cl2i—Pd1—Cl1i | 91.030 (10) | C3—C4—H4A | 108.9 |
Cl1—Pd1—Cl1i | 180.000 (3) | C5—C4—H4A | 108.9 |
Cl3ii—Pd2—Cl3 | 180.0 | C3—C4—H4B | 108.9 |
Cl3ii—Pd2—Cl4 | 90.681 (8) | C5—C4—H4B | 108.9 |
Cl3—Pd2—Cl4 | 89.317 (8) | H4A—C4—H4B | 107.7 |
Cl3ii—Pd2—Cl4ii | 89.320 (9) | C6—C5—C4 | 112.44 (8) |
Cl3—Pd2—Cl4ii | 90.682 (8) | C6—C5—H5A | 109.1 |
Cl4—Pd2—Cl4ii | 180.0 | C4—C5—H5A | 109.1 |
C2—N1—H1A | 109.5 | C6—C5—H5B | 109.1 |
C2—N1—H1B | 109.5 | C4—C5—H5B | 109.1 |
H1A—N1—H1B | 109.5 | H5A—C5—H5B | 107.8 |
C2—N1—H1C | 109.5 | C5—C6—N7 | 110.74 (8) |
H1A—N1—H1C | 109.5 | C5—C6—H6A | 109.5 |
H1B—N1—H1C | 109.5 | N7—C6—H6A | 109.5 |
N1—C2—C3 | 114.20 (9) | C5—C6—H6B | 109.5 |
N1—C2—H2A | 108.7 | N7—C6—H6B | 109.5 |
C3—C2—H2A | 108.7 | H6A—C6—H6B | 108.1 |
N1—C2—H2B | 108.7 | C6—N7—H7A | 109.5 |
C3—C2—H2B | 108.7 | C6—N7—H7B | 109.5 |
H2A—C2—H2B | 107.6 | H7A—N7—H7B | 109.5 |
C4—C3—C2 | 114.57 (9) | C6—N7—H7C | 109.5 |
C4—C3—H3A | 108.6 | H7A—N7—H7C | 109.5 |
C2—C3—H3A | 108.6 | H7B—N7—H7C | 109.5 |
N1—C2—C3—C4 | 67.86 (12) | C3—C4—C5—C6 | 178.30 (9) |
C2—C3—C4—C5 | 171.37 (9) | C4—C5—C6—N7 | 172.18 (9) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z; (iv) x−1, y, z; (v) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl2i | 0.89 | 2.88 | 3.4171 (11) | 120 |
N1—H1C···Cl4ii | 0.89 | 2.51 | 3.3539 (17) | 158 |
N1—H1A···Cl2vi | 0.89 | 2.53 | 3.3107 (13) | 147 |
N1—H1B···Cl1 | 0.89 | 2.60 | 3.4680 (12) | 165 |
N7—H7A···Cl1vii | 0.89 | 2.53 | 3.2512 (15) | 138 |
N7—H7B···Cl4viii | 0.89 | 2.51 | 3.3702 (12) | 163 |
N7—H7C···Cl3vii | 0.89 | 2.44 | 3.2821 (13) | 158 |
N7—H7A···Cl2ix | 0.89 | 2.70 | 3.4614 (13) | 145 |
N7—H7B···Cl3viii | 0.89 | 2.86 | 3.3907 (11) | 120 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (vi) x, y+1, z; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+1/2, z+1/2; (ix) x+1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H16N2)[PdCl4] |
Mr | 352.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 8.091 (2), 7.276 (2), 20.843 (5) |
β (°) | 98.279 (2) |
V (Å3) | 1214.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.37 |
Crystal size (mm) | 0.19 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | Integration (Blessing; 1989) |
Tmin, Tmax | 0.662, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2816, 2783, 2771 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.089, 0.99 |
No. of reflections | 2783 |
No. of parameters | 112 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.69 |
Computer programs: CAD-4-PC Software (Enraf–Nonius, 1992), modified version of NRC-2/NRC2A (Ahmed et al., 1973), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2003) and Materials Studio (Accelrys, 2002), UdMX (Maris, 2004) and publCIF (Westrip, 2007).
Pd1—Cl2 | 2.3129 (4) | C2—C3 | 1.5298 (13) |
Pd1—Cl1 | 2.3183 (6) | C3—C4 | 1.4814 (13) |
Pd2—Cl3 | 2.3160 (4) | C4—C5 | 1.5279 (16) |
Pd2—Cl4 | 2.3207 (6) | C5—C6 | 1.4629 (13) |
N1—C2 | 1.4205 (14) | C6—N7 | 1.4822 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Cl2i | 0.89 | 2.88 | 3.4171 (11) | 120.1 |
N1—H1C···Cl4ii | 0.89 | 2.51 | 3.3539 (17) | 157.7 |
N1—H1A···Cl2iii | 0.89 | 2.53 | 3.3107 (13) | 146.9 |
N1—H1B···Cl1 | 0.89 | 2.60 | 3.4680 (12) | 165.2 |
N7—H7A···Cl1iv | 0.89 | 2.53 | 3.2512 (15) | 138.2 |
N7—H7B···Cl4v | 0.89 | 2.51 | 3.3702 (12) | 163.0 |
N7—H7C···Cl3iv | 0.89 | 2.44 | 3.2821 (13) | 158.2 |
N7—H7A···Cl2vi | 0.89 | 2.70 | 3.4614 (13) | 144.5 |
N7—H7B···Cl3v | 0.89 | 2.86 | 3.3907 (11) | 120.0 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1/2; (v) x, −y+1/2, z+1/2; (vi) x+1, −y+1/2, z+1/2. |
Acknowledgements
Dr Jean Michel Leger is acknowledged for assistance during a preliminary investigation.
References
Accelrys (2002). Materials Studio. Version 2.2. Accelrys Inc., San Diego, California, USA. Google Scholar
Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). J. Appl. Cryst. 6, 309–346. CrossRef IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berg, R. W. & Søtofte, I. (1976). Acta Chem. Scand. A, 30, 843–844. CrossRef Web of Science Google Scholar
Blessing, R. H. (1989). J. Appl. Cryst. 22, 396–397. CrossRef Web of Science IUCr Journals Google Scholar
Dowty, E. (2003). ATOMS. Version 6.1. Shape Software, Kingsport, Tennessee, USA. http://www.shapesoftware.com Google Scholar
Enraf–Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Garland, J. K., Emerson, K. & Pressprich, M. R. (1990). Acta Cryst. C46, 1603–1609. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Maris, T. (2004). UdMX Version 6.0. University of Montréal, Canada. Google Scholar
Maris, T., Bravic, G., Chanh, N. B., Leger, J. M., Bissey, J. C., Villesuzanne, A., Zouari, Z. & Daoud, A. (1996). J. Phys. Chem. Solids, 57, 1963–1975. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Westrip, S. P. (2007). publCIF. In preparation. Google Scholar
Willett, R. D. & Willett, J. J. (1977). Acta Cryst. B33, 1639–1641. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Extensive studies have been carried out on the crystal structures, phase transitions and physical properties of two-dimensional perovskite-like compounds of the families (CnH2n+1NH3)2MX4 and [NH3-(CH2)n-NH3]MX4, where X represents a halogen atom and M is a divalent metal. A few tetrachloropalladate compounds of these families have been structurally characterized: (C3H7NH3)2 [PdC14] (Willett & Willett, 1977), [NH3-(CH2)2-NH3][PdC14] (Berg & Søtofte, 1976) and [NH3-(CH2)4-NH3][PdC14] (Maris et al., 1996). We report here the crystal structure, determined at room temperature, of the title palladium-chloride compound [NH3-(CH2)5-NH3][PdCl4] (I).
The asymmetric unit of (I) contains one cation in general position and two distinct half [PdCl4]2- units (Fig. 1). The Pd atoms lie on inversion centers and display a square-planar coordination environment with four Cl- ligands. The Pd—Cl distances range from 2.3129 (4) to 2.3207 (6) Å (Table 1). The [PdCl4] moieties pack via longer Pd—Cl contacts (3.0244 (9) and 3.1788 (9) Å) to form puckered two-dimensional layers in the (a,b) plane. The cations are located between these layers and the whole crystallographic organization can be described as a succession of organic and inorganic layers. The diammonium chain adopts a left-handed conformation at one end with a terminal C—C—C—N torsion angles of 67.86 (12)°. The whole chain makes an angle of 83.55 (3)° with the palladium layer.
The link between the two moieties and the crystal packing is achieved by several hydrogen bonds involving the H atoms of the ammonium groups and the Cl atoms. The three shortest hydrogen bonds (Fig. 2) show a pattern similar to the hydrogen bond scheme found in the tetrachloro and tetrabromocuprate(II) analogues. (Garland et al. 1990). Additional contacts (Table 2) with longer hydrogen chlorine distances and more acute N—H···Cl angles are also present.