organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-(4-Eth­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium iodide monohydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th, hkfun@usm.my

(Received 13 November 2007; accepted 20 November 2007; online 6 December 2007)

In the title compound, C16H18NO+·I·H2O, the cation is essentially planar, with a dihedral angle of 3.13 (16)° between the pyridinium and benzene rings. The mol­ecule adopts an E configuration with respect to the alkene double bond. In the crystal structure, the cations are packed in an anti-­parallel manner through ππ inter­actions between adjacent pyridinium and benzene rings along the a axis, with centroid-to-centroid distances of 3.615 (2) and 3.630 (2) Å. Water mol­ecules bind the iodide ions through O—H⋯I hydrogen bonds into layers. These layers link with the cations through weak C—H⋯O and C—H⋯I inter­actions.

Related literature

For values of bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Chantrapromma et al. (2005[Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.], 2006[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2006). Acta Cryst. E62, o4004-o4006.]); Chantrapromma, Jindawong & Fun (2007[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020-o2022.]); Chantra­promma, Jindawong, Fun & Patil (2007[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321-o2323.]); Chantrapromma, Jindawong, Fun, Patil & Karalai (2007[Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x27-x28.]); Jindawong et al. (2005[Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340-o1342.]); Zhang et al. (2000[Zhang, T.-Z., Ge, L.-Q., Zhang, D.-C., Zhang, Y.-Q. & Yu, K.-B. (2000). Jiegou Huaxue, 19, 6-10.]). For background to nonlinear optics, see, for example: Oudar & Chemla (1977[Oudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664-2668.]); Williams (1984[Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18NO+·I·H2O

  • Mr = 385.23

  • Triclinic, [P \overline 1]

  • a = 6.9261 (4) Å

  • b = 10.1857 (6) Å

  • c = 11.6303 (6) Å

  • α = 100.829 (2)°

  • β = 97.399 (2)°

  • γ = 92.892 (2)°

  • V = 796.81 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.528, Tmax = 0.797

  • 18790 measured reflections

  • 4635 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.14

  • 4635 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 2.16 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯I1 0.85 2.88 3.681 (3) 158
O1W—H2W1⋯I1i 0.85 2.88 3.690 (3) 159
C16—H16B⋯O1Wii 0.96 2.49 3.346 (5) 148
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The design of nonlinear optical (NLO) materials is of great interest due to the various applications of NLO materials. At molecular level, such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and they have to have polarizable electrons (conjugated π system) spread over a large distance (Oudar & Chemla, 1977). We have been previously synthesized pyridinium and quinolinium derivatives to study their non-linear optical properties (Chantrapromma et al., 2005, 2006; Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma, Jindawong, Fun, Patil & Karalai, 2007; Jindawong et al., 2005). The single-crystal x-ray structural study of the title compound was undertaken in order to establish the structure and conformation of the various groups. However, the title compound crystallized in the centrosymmetric P1 triclinic space group and therefore does not exhibit non-linear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of the pyridinium cation, iodide anion and one water molecule (Fig. 1). The water molecule forms an O1W—H1W1···I1 hydrogen bond to the iodide ion (Table 1). The cation is essentially planar and exist in E configuration with respect to the C6?C7 double bond [1.342 (5) Å]. The dihedral angle between the pyridinium and benzene rings is 3.13 (16)°. The ethenyl unit is also planar with respect to the two aromatic rings with the torsion angles C4—C5—C6—C7 = -1.1 (5)° and C6—C7—C8—C13 = 3.8 (6)°. The ethoxy substituent deviates only slightly from the benzene ring plane, with a C14—O1—C11—C10 torsion angle of 5.3 (5)°. Bond lengths and angles are in normal ranges (Allen et al., 1987) and the bond lengths and angles of the cation are comparable with those for closely related structures (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Zhang et al., 2000).

In the crystal structure, the cations are packed in an anti-parallel fashion through π···π interactions along the a axis with Cg1···Cg2 distances 3.615 (2) Å (symmetry code -x, 1 - y, 1 - z) and 3.630 (2) Å (symmetry code 1 - x,1 - y, 1 - z) where Cg1 is the centroid of the C1–C5/N1 pyridinium ring Cg2 is the centroid of the C8–C13 benzene ring. Water molecules bind to iodide ions by O—H···I hydrogen bonds forming layers. These layers are linked with the cations through weak C—H···O and C—H···I interactions, Table 1.

Related literature top

For values of bond lengths, see Allen et al. (1987). For related structures, see, for example: Chantrapromma et al. (2005, 2006); Chantrapromma, Jindawong & Fun (2007); Chantrapromma, Jindawong, Fun & Patil (2007); Chantrapromma, Jindawong, Fun, Patil & Karalai (2007); Jindawong et al. (2005); Zhang et al. (2000). For background to nonlinear optics, see, for example: Oudar & Chemla (1977); Williams (1984).

Experimental top

The title compound was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylpyridinium iodide (2.00 g, 8.51 mmol), 4-ethoxybenzaldehyde (1.28 g, 8.51 mmol) and piperidine (0.72 g, 8.51 mmol) in hot methanol (45 ml) and refluxing for 3 hrs under a nitrogen atmosphere. The solid which formed was filtered, washed with cold ethanol and dried. Yellow single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature over several days (Mp. 481–483 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.85 ° and C—H distances in the range 0.93–0.97 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.85 Å from I1 and the deepest hole is located at 0.63 Å from I1.

Structure description top

The design of nonlinear optical (NLO) materials is of great interest due to the various applications of NLO materials. At molecular level, such compounds are likely to exhibit large values of molecular hyperpolarizability (β) and they have to have polarizable electrons (conjugated π system) spread over a large distance (Oudar & Chemla, 1977). We have been previously synthesized pyridinium and quinolinium derivatives to study their non-linear optical properties (Chantrapromma et al., 2005, 2006; Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma, Jindawong, Fun, Patil & Karalai, 2007; Jindawong et al., 2005). The single-crystal x-ray structural study of the title compound was undertaken in order to establish the structure and conformation of the various groups. However, the title compound crystallized in the centrosymmetric P1 triclinic space group and therefore does not exhibit non-linear optical properties (Williams, 1984).

The asymmetric unit of the title compound consists of the pyridinium cation, iodide anion and one water molecule (Fig. 1). The water molecule forms an O1W—H1W1···I1 hydrogen bond to the iodide ion (Table 1). The cation is essentially planar and exist in E configuration with respect to the C6?C7 double bond [1.342 (5) Å]. The dihedral angle between the pyridinium and benzene rings is 3.13 (16)°. The ethenyl unit is also planar with respect to the two aromatic rings with the torsion angles C4—C5—C6—C7 = -1.1 (5)° and C6—C7—C8—C13 = 3.8 (6)°. The ethoxy substituent deviates only slightly from the benzene ring plane, with a C14—O1—C11—C10 torsion angle of 5.3 (5)°. Bond lengths and angles are in normal ranges (Allen et al., 1987) and the bond lengths and angles of the cation are comparable with those for closely related structures (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Zhang et al., 2000).

In the crystal structure, the cations are packed in an anti-parallel fashion through π···π interactions along the a axis with Cg1···Cg2 distances 3.615 (2) Å (symmetry code -x, 1 - y, 1 - z) and 3.630 (2) Å (symmetry code 1 - x,1 - y, 1 - z) where Cg1 is the centroid of the C1–C5/N1 pyridinium ring Cg2 is the centroid of the C8–C13 benzene ring. Water molecules bind to iodide ions by O—H···I hydrogen bonds forming layers. These layers are linked with the cations through weak C—H···O and C—H···I interactions, Table 1.

For values of bond lengths, see Allen et al. (1987). For related structures, see, for example: Chantrapromma et al. (2005, 2006); Chantrapromma, Jindawong & Fun (2007); Chantrapromma, Jindawong, Fun & Patil (2007); Chantrapromma, Jindawong, Fun, Patil & Karalai (2007); Jindawong et al. (2005); Zhang et al. (2000). For background to nonlinear optics, see, for example: Oudar & Chemla (1977); Williams (1984).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The O—H···I hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I). The O—H···I hydrogen bond and weak C—H···O and C—H···I interactions are drawn as dashed lines.
2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium iodide monohydrate top
Crystal data top
C16H18NO+·I·H2OZ = 2
Mr = 385.23F(000) = 384
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Melting point = 481–483 K
a = 6.9261 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1857 (6) ÅCell parameters from 4635 reflections
c = 11.6303 (6) Åθ = 1.8–30.0°
α = 100.829 (2)°µ = 2.01 mm1
β = 97.399 (2)°T = 100 K
γ = 92.892 (2)°Block, yellow
V = 796.81 (8) Å30.36 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4635 independent reflections
Radiation source: fine-focus sealed tube4333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.8°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.528, Tmax = 0.797l = 1616
18790 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.6362P]
where P = (Fo2 + 2Fc2)/3
4635 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 2.16 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C16H18NO+·I·H2Oγ = 92.892 (2)°
Mr = 385.23V = 796.81 (8) Å3
Triclinic, P1Z = 2
a = 6.9261 (4) ÅMo Kα radiation
b = 10.1857 (6) ŵ = 2.01 mm1
c = 11.6303 (6) ÅT = 100 K
α = 100.829 (2)°0.36 × 0.15 × 0.12 mm
β = 97.399 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4333 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.797Rint = 0.028
18790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.14Δρmax = 2.16 e Å3
4635 reflectionsΔρmin = 0.83 e Å3
184 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.46635 (3)0.14640 (2)0.24655 (2)0.02735 (8)
O10.1292 (4)0.6828 (2)0.0835 (2)0.0265 (5)
N10.3219 (4)0.2513 (3)0.6774 (2)0.0246 (5)
C10.3453 (5)0.2172 (4)0.7851 (3)0.0283 (7)
H1A0.36050.12810.79000.034*
C20.3471 (5)0.3101 (4)0.8871 (3)0.0287 (7)
H2A0.36210.28500.96040.034*
C30.3261 (5)0.4426 (4)0.8781 (3)0.0293 (7)
H3A0.32440.50750.94580.035*
C40.3077 (5)0.4781 (3)0.7687 (3)0.0270 (6)
H4A0.29930.56770.76320.032*
C50.3015 (5)0.3798 (3)0.6650 (3)0.0238 (6)
C60.2736 (5)0.4093 (3)0.5481 (3)0.0258 (6)
H6A0.27340.33950.48370.031*
C70.2478 (5)0.5331 (3)0.5277 (3)0.0261 (6)
H7A0.24810.60100.59350.031*
C80.2192 (5)0.5716 (3)0.4114 (3)0.0240 (6)
C90.2019 (5)0.7071 (3)0.4050 (3)0.0268 (6)
H9A0.21160.77030.47490.032*
C100.1712 (5)0.7494 (3)0.2986 (3)0.0269 (6)
H10A0.15920.83960.29690.032*
C110.1585 (5)0.6551 (3)0.1938 (3)0.0222 (6)
C120.1731 (5)0.5193 (3)0.1975 (3)0.0243 (6)
H12A0.16160.45600.12750.029*
C130.2042 (5)0.4792 (3)0.3044 (3)0.0246 (6)
H13A0.21560.38890.30570.029*
C140.1273 (5)0.8225 (3)0.0753 (3)0.0269 (6)
H14A0.25060.87050.11300.032*
H14B0.02330.86310.11450.032*
C150.0951 (6)0.8291 (4)0.0538 (3)0.0322 (7)
H15A0.11220.92070.06240.048*
H15B0.03510.79330.08750.048*
H15C0.18750.77750.09390.048*
C160.3131 (6)0.1419 (3)0.5723 (3)0.0306 (7)
H16A0.40840.16300.52410.046*
H16B0.18520.13260.52730.046*
H16D0.34010.05940.59750.046*
O1W0.9790 (4)0.0827 (4)0.3301 (3)0.0424 (7)
H1W10.87650.11470.30160.064*
H2W11.07450.11300.30100.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02420 (12)0.01775 (11)0.03903 (14)0.00238 (7)0.00703 (8)0.00088 (8)
O10.0389 (13)0.0160 (10)0.0252 (11)0.0005 (9)0.0091 (9)0.0027 (8)
N10.0246 (13)0.0208 (12)0.0261 (13)0.0056 (10)0.0014 (10)0.0005 (10)
C10.0253 (15)0.0303 (17)0.0294 (16)0.0034 (13)0.0053 (12)0.0052 (13)
C20.0282 (16)0.0319 (17)0.0259 (15)0.0016 (13)0.0069 (12)0.0037 (13)
C30.0275 (16)0.0299 (17)0.0289 (16)0.0004 (13)0.0080 (13)0.0005 (13)
C40.0228 (15)0.0164 (13)0.0381 (17)0.0012 (11)0.0019 (12)0.0019 (12)
C50.0202 (13)0.0215 (14)0.0286 (15)0.0041 (11)0.0014 (11)0.0025 (12)
C60.0291 (16)0.0233 (15)0.0249 (14)0.0042 (12)0.0036 (12)0.0042 (12)
C70.0277 (15)0.0236 (15)0.0266 (15)0.0001 (12)0.0021 (12)0.0054 (12)
C80.0223 (14)0.0207 (14)0.0268 (15)0.0037 (11)0.0014 (11)0.0015 (11)
C90.0326 (17)0.0175 (14)0.0267 (15)0.0008 (12)0.0012 (12)0.0027 (11)
C100.0360 (17)0.0137 (13)0.0294 (15)0.0009 (12)0.0062 (13)0.0002 (11)
C110.0234 (14)0.0175 (13)0.0261 (14)0.0002 (11)0.0075 (11)0.0028 (11)
C120.0280 (15)0.0161 (13)0.0274 (14)0.0022 (11)0.0092 (12)0.0030 (11)
C130.0245 (15)0.0172 (13)0.0311 (15)0.0053 (11)0.0030 (12)0.0021 (11)
C140.0357 (17)0.0156 (13)0.0297 (15)0.0001 (12)0.0073 (13)0.0037 (11)
C150.048 (2)0.0227 (16)0.0302 (16)0.0060 (14)0.0148 (15)0.0080 (13)
C160.042 (2)0.0209 (15)0.0265 (15)0.0068 (14)0.0019 (14)0.0004 (12)
O1W0.0321 (14)0.060 (2)0.0382 (15)0.0036 (13)0.0045 (11)0.0178 (14)
Geometric parameters (Å, º) top
O1—C111.357 (4)C9—C101.381 (5)
O1—C141.445 (4)C9—H9A0.9300
N1—C11.353 (4)C10—C111.393 (4)
N1—C51.357 (4)C10—H10A0.9300
N1—C161.483 (4)C11—C121.400 (4)
C1—C21.370 (5)C12—C131.374 (5)
C1—H1A0.9300C12—H12A0.9300
C2—C31.387 (5)C13—H13A0.9300
C2—H2A0.9300C14—C151.504 (5)
C3—C41.380 (5)C14—H14A0.9700
C3—H3A0.9300C14—H14B0.9700
C4—C51.410 (5)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.438 (5)C15—H15C0.9600
C6—C71.342 (5)C16—H16A0.9600
C6—H6A0.9300C16—H16B0.9600
C7—C81.470 (5)C16—H16D0.9600
C7—H7A0.9300O1W—H1W10.8501
C8—C131.401 (5)O1W—H2W10.8500
C8—C91.406 (4)
C11—O1—C14116.9 (3)C9—C10—C11119.0 (3)
C1—N1—C5121.6 (3)C9—C10—H10A120.5
C1—N1—C16117.5 (3)C11—C10—H10A120.5
C5—N1—C16120.8 (3)O1—C11—C10125.1 (3)
N1—C1—C2121.9 (3)O1—C11—C12114.9 (3)
N1—C1—H1A119.1C10—C11—C12120.0 (3)
C2—C1—H1A119.1C13—C12—C11120.1 (3)
C1—C2—C3118.2 (3)C13—C12—H12A119.9
C1—C2—H2A120.9C11—C12—H12A119.9
C3—C2—H2A120.9C12—C13—C8121.4 (3)
C4—C3—C2119.9 (3)C12—C13—H13A119.3
C4—C3—H3A120.0C8—C13—H13A119.3
C2—C3—H3A120.0O1—C14—C15107.6 (3)
C3—C4—C5120.5 (3)O1—C14—H14A110.2
C3—C4—H4A119.7C15—C14—H14A110.2
C5—C4—H4A119.7O1—C14—H14B110.2
N1—C5—C4117.7 (3)C15—C14—H14B110.2
N1—C5—C6119.0 (3)H14A—C14—H14B108.5
C4—C5—C6123.3 (3)C14—C15—H15A109.5
C7—C6—C5122.9 (3)C14—C15—H15B109.5
C7—C6—H6A118.5H15A—C15—H15B109.5
C5—C6—H6A118.5C14—C15—H15C109.5
C6—C7—C8126.3 (3)H15A—C15—H15C109.5
C6—C7—H7A116.9H15B—C15—H15C109.5
C8—C7—H7A116.9N1—C16—H16A109.5
C13—C8—C9117.3 (3)N1—C16—H16B109.5
C13—C8—C7123.3 (3)H16A—C16—H16B109.5
C9—C8—C7119.4 (3)N1—C16—H16D109.5
C10—C9—C8122.3 (3)H16A—C16—H16D109.5
C10—C9—H9A118.9H16B—C16—H16D109.5
C8—C9—H9A118.9H1W1—O1W—H2W1107.7
C5—N1—C1—C20.8 (5)C6—C7—C8—C9177.4 (4)
C16—N1—C1—C2177.3 (3)C13—C8—C9—C100.1 (5)
N1—C1—C2—C30.6 (5)C7—C8—C9—C10178.8 (3)
C1—C2—C3—C41.2 (5)C8—C9—C10—C110.6 (5)
C2—C3—C4—C52.8 (5)C14—O1—C11—C105.3 (5)
C1—N1—C5—C40.8 (5)C14—O1—C11—C12175.7 (3)
C16—N1—C5—C4178.8 (3)C9—C10—C11—O1179.8 (3)
C1—N1—C5—C6178.9 (3)C9—C10—C11—C121.2 (5)
C16—N1—C5—C60.8 (5)O1—C11—C12—C13179.5 (3)
C3—C4—C5—N12.5 (5)C10—C11—C12—C131.5 (5)
C3—C4—C5—C6177.1 (3)C11—C12—C13—C81.0 (5)
N1—C5—C6—C7178.5 (3)C9—C8—C13—C120.3 (5)
C4—C5—C6—C71.1 (5)C7—C8—C13—C12178.5 (3)
C5—C6—C7—C8179.8 (3)C11—O1—C14—C15179.4 (3)
C6—C7—C8—C133.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···I10.852.883.681 (3)158
O1W—H2W1···I1i0.852.883.690 (3)159
C16—H16B···O1Wii0.962.493.346 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H18NO+·I·H2O
Mr385.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9261 (4), 10.1857 (6), 11.6303 (6)
α, β, γ (°)100.829 (2), 97.399 (2), 92.892 (2)
V3)796.81 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.36 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.528, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
18790, 4635, 4333
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.14
No. of reflections4635
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.16, 0.83

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···I10.852.87853.681 (3)158
O1W—H2W1···I1i0.852.88323.690 (3)159
C16—H16B···O1Wii0.962.49063.346 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank Prince of Songkla University for financial support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) No. 304/PFIZIK/653003/A118.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2006). Acta Cryst. E62, o4004–o4006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020–o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096–o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321–o2323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x27–x28.  CSD CrossRef CAS Google Scholar
First citationJindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340–o1342.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOudar, J.-L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664–2668.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.  CrossRef Web of Science Google Scholar
First citationZhang, T.-Z., Ge, L.-Q., Zhang, D.-C., Zhang, Y.-Q. & Yu, K.-B. (2000). Jiegou Huaxue, 19, 6–10.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds