organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­methyl­amonium) bis­­(2,4,5-carb­oxy­benzoate)–benzene-1,2,4,5-tetra­carboxylic acid (1/1)

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: filipe.paz@ua.pt

(Received 13 November 2007; accepted 22 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, 2C4H12N+·2C10H5O8·C10H6O8, consists of a tetra­methyl­amonium cation, an anion derived from the singly deprotonated pyromellitic acid anion, 2,4,5-carboxy­benzoate (H3bta), and one-half of a benzene-1,2,4,5-tetra­carboxylic acid (H4bta) mol­ecule, which has the centroid of the aromatic ring positioned at a crystallographic centre of inversion. The H4bta and H3bta residues are involved in an extensive inter­molecular O—H⋯O hydrogen-bonding network, which leads to a three-dimensional supra­molecular structure containing one-dimensional channels running parallel to the [001] crystallographic direction. These channels house the tetra­methyl­amonium cations.

Related literature

For general background on supra­molecular assemblies of organic mol­ecules mediated by hydrogen bonds, see: Dale et al. (2004[Dale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207-214.]); Fabelo et al. (2005[Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163-1167.]); Ruiz-Pérez et al. (2004[Ruiz-Pérez, C., Loreno-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gili, P. & Julve, M. (2004). Cryst. Growth Des. 4, 57-61.]); Steed & Atwood (2000[Steed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: John Wiley & Sons Ltd.]). For literature relevant to this communication and published by our group, see: Cunha-Silva et al. (2007[Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527-3538.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]); Shi et al. (2007[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi:10.1021/ja074119k. In the press.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N+·2C10H5O8·C10H6O8

  • Mr = 908.72

  • Monoclinic, P 21 /c

  • a = 9.4282 (4) Å

  • b = 18.7286 (8) Å

  • c = 11.3175 (5) Å

  • β = 107.053 (2)°

  • V = 1910.55 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 (2) K

  • 0.14 × 0.12 × 0.12 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 19608 measured reflections

  • 3736 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.00

  • 3736 reflections

  • 308 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.959 (10) 1.637 (11) 2.5885 (18) 171 (2)
O4—H4⋯O11ii 0.941 (10) 1.806 (12) 2.7166 (19) 162 (2)
O7—H7⋯O6 0.962 (10) 1.483 (10) 2.4334 (19) 169 (2)
O10—H10⋯O5iii 0.938 (10) 1.764 (11) 2.6890 (18) 168 (2)
O12—H12⋯O8iv 0.957 (10) 1.600 (11) 2.5308 (19) 163 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x-1, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.1-RC13. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal Engineers aim to design functional materials with overall properties which are uniquely directed by the physical and chemical properties of the employed building blocks. In this context, an important strategy used to control the self-assembly processes is based on the use of reliable intermolecular interactions, such as strong and highly directional hydrogen bonds (Steed & Atwood, 2000). Pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H4bta) has been widely used in the isolation of novel organic crystals, as revealed by a systematic search of the Cambridge Structural Database (Version 5.28, 3 updates - August 2007; Allen, 2002). Indeed, the four symmetrically located carboxylic acid groups confer on this organic molecule predictable and interesting supramolecular properties (Ruiz-Pérez et al., 2004; Fabelo et al., 2005; Dale et al., 2004). As part of our on-going research in the field of Crystal Engineering (Cunha-Silva et al., 2007; Shi et al., 2007), in particular in the use of organic ligands based on carboxylic acid groups (Paz & Klinowski, 2003; Paz et al., 2002), we have recently isolated the title compound, [NMe4]+2 (H3bta)-2.(H4bta), as a secondary product.

The asymmetric unit of I comprises one [NMe4]+ cation, one H3bta- anion and half of a H4bta molecule which has the centroid of the aromatic ring (Cg) positioned at a crystallographic centre of inversion (Figure 1). H3bta- anions (moiety type A) and H4bta molecules (moiety type B) close pack along the [001] direction of the unit cell in a AABAAB alternate fashion, mediated by a series of weak π···π offset stacking interactions having Cg···Cg distances of 3.762 (2) Å (for A···A), 3.927 (2) Å (for A···B) and 3.910 (2) Å (for B···A). However, the crystal packing of I is essentially mediated by the extensive hydrogen bonding network composed of strong and highly directional O—H···O hydrogen bonds involving the two crystallographic independent residues of pyromellitic acid (Table 1). Indeed, while each H4bta molecule interacts with six neighbouring H3bta- anions, each H3bta- is instead connected to three H4bta plus another two symmetry-related H3bta-. The resulting complicated hydrogen bond connectivity leads to the formation of supramolecular R55(31) rings (Bernstein et al., 1995), which are further interconnected into helices running parallel to the [001] direction of the unit cell (Figure 2 and Table 1). This supramolecular arrangement distributes the H3bta- and H4bta chemical moieties in such a way that the anionic framework contains a one-dimensional channels (also running parallel to the [001] direction) which houses the charge-balancing [NMe4]+ cations (Figure 3). Besides the electrostatic interactions, these cationic moieties are further stabilized inside the channels by a series of weak C—H···O interactions, with C···O distances ranging from 3.161 (3) to 3.663 (3) Å (not shown).

Related literature top

For general background on supramolecular assemblies of organic molecules mediated by hydrogen bonds, see: Dale et al. (2004); Fabelo et al. (2005); Ruiz-Pérez et al. (2004); Steed & Atwood (2000). For literature relevant to this communication and published by our group, see: Cunha-Silva et al. (2007); Paz & Klinowski (2003); Paz et al. (2002); Shi et al. (2007). For the Cambridge Structural Database, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995)

Experimental top

2,6-Dihydroxybenzoic acid (0.308 g, 2 mmol) and benzene-1,2,4,5-tetracarboxylic acid (0.510 g, 2 mmol) were mixed in distilled water (ca 20 ml). Tetramethylamonium hydroxide (solution of 25%; 2 mmol) and manganese chloride tetrahydrate (0.101 g, 0.5 mmol) were added, and the resulting mixture was refluxed for 5 h. The solvent from the final pale yellow solution was allowed to slowly evaporate, at ambient temperature, over a period of 10 months. Large single-crystals of the title compound, suitable for X-ray diffraction, were directly harvested from the crystallization vial.

Refinement top

H atoms associated with the carboxylic acid groups were markedly visible from difference Fourier maps and were included in the final structural model with the O—H distances restrained to 0.95 (1) Å, and assuming an isotropic displacement behaviour with Uiso fixed at 1.5 times Ueq of the parent O atom. All remaining H atoms were located at idealized positions and refined with Uiso=1.2×Ueq(C).

Structure description top

Crystal Engineers aim to design functional materials with overall properties which are uniquely directed by the physical and chemical properties of the employed building blocks. In this context, an important strategy used to control the self-assembly processes is based on the use of reliable intermolecular interactions, such as strong and highly directional hydrogen bonds (Steed & Atwood, 2000). Pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H4bta) has been widely used in the isolation of novel organic crystals, as revealed by a systematic search of the Cambridge Structural Database (Version 5.28, 3 updates - August 2007; Allen, 2002). Indeed, the four symmetrically located carboxylic acid groups confer on this organic molecule predictable and interesting supramolecular properties (Ruiz-Pérez et al., 2004; Fabelo et al., 2005; Dale et al., 2004). As part of our on-going research in the field of Crystal Engineering (Cunha-Silva et al., 2007; Shi et al., 2007), in particular in the use of organic ligands based on carboxylic acid groups (Paz & Klinowski, 2003; Paz et al., 2002), we have recently isolated the title compound, [NMe4]+2 (H3bta)-2.(H4bta), as a secondary product.

The asymmetric unit of I comprises one [NMe4]+ cation, one H3bta- anion and half of a H4bta molecule which has the centroid of the aromatic ring (Cg) positioned at a crystallographic centre of inversion (Figure 1). H3bta- anions (moiety type A) and H4bta molecules (moiety type B) close pack along the [001] direction of the unit cell in a AABAAB alternate fashion, mediated by a series of weak π···π offset stacking interactions having Cg···Cg distances of 3.762 (2) Å (for A···A), 3.927 (2) Å (for A···B) and 3.910 (2) Å (for B···A). However, the crystal packing of I is essentially mediated by the extensive hydrogen bonding network composed of strong and highly directional O—H···O hydrogen bonds involving the two crystallographic independent residues of pyromellitic acid (Table 1). Indeed, while each H4bta molecule interacts with six neighbouring H3bta- anions, each H3bta- is instead connected to three H4bta plus another two symmetry-related H3bta-. The resulting complicated hydrogen bond connectivity leads to the formation of supramolecular R55(31) rings (Bernstein et al., 1995), which are further interconnected into helices running parallel to the [001] direction of the unit cell (Figure 2 and Table 1). This supramolecular arrangement distributes the H3bta- and H4bta chemical moieties in such a way that the anionic framework contains a one-dimensional channels (also running parallel to the [001] direction) which houses the charge-balancing [NMe4]+ cations (Figure 3). Besides the electrostatic interactions, these cationic moieties are further stabilized inside the channels by a series of weak C—H···O interactions, with C···O distances ranging from 3.161 (3) to 3.663 (3) Å (not shown).

For general background on supramolecular assemblies of organic molecules mediated by hydrogen bonds, see: Dale et al. (2004); Fabelo et al. (2005); Ruiz-Pérez et al. (2004); Steed & Atwood (2000). For literature relevant to this communication and published by our group, see: Cunha-Silva et al. (2007); Paz & Klinowski (2003); Paz et al. (2002); Shi et al. (2007). For the Cambridge Structural Database, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995)

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Bruker 2001).

Figures top
[Figure 1] Fig. 1. Chemical moieties composing the asymmetric unit of I (black-filled bonds), showing the labelling scheme for all atoms. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are shown as small spheres with arbitrary radii. Symmetry transformation used to generate equivalent atoms:(i) -x, -y, -z.
[Figure 2] Fig. 2. Schematic representation of the O—H···O connections between adjacent H3bta- and H4bta residues leading to (a)R55(31) rings which are further interconnected along the [001] direction of the unit cell into (b) helical chains surrounding the channels present in the crystal structure. For geometrical details on the represented hydrogen bonds (dashed green lines) see Table 1. Symmetry transformations used to generate equivalent atoms: (i) 1 + x, y, 1 + z; (ii) 1 + x, 1/2 - y, 1/2 + z; (iii) -x, 1/2 + y, 1/2 - z.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed in perspective along the (a) [001] and (b) [100] directions of the unit cell. O—H···O hydrogen bonds are represented as dashed green lines and the [NMe4]+ cations in space-filling mode.
Bis(tetramethylamonium) bis(2,4,5-carboxybenzoate)–benzene-1,2,4,5-tetracarboxylic acid solvate (1/1) top
Crystal data top
2C4H12N+·2C10H5O8·C10H6O8F(000) = 948
Mr = 908.72Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2577 reflections
a = 9.4282 (4) Åθ = 2.9–23.2°
b = 18.7286 (8) ŵ = 0.13 mm1
c = 11.3175 (5) ÅT = 150 K
β = 107.053 (2)°Block, colourless
V = 1910.55 (14) Å30.14 × 0.12 × 0.12 mm
Z = 2
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
3736 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω/φ scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 119
Tmin = 0.982, Tmax = 0.984k = 2223
19608 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
3736 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = 0.31 e Å3
Crystal data top
2C4H12N+·2C10H5O8·C10H6O8V = 1910.55 (14) Å3
Mr = 908.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4282 (4) ŵ = 0.13 mm1
b = 18.7286 (8) ÅT = 150 K
c = 11.3175 (5) Å0.14 × 0.12 × 0.12 mm
β = 107.053 (2)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
3736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2523 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.061
19608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0415 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
3736 reflectionsΔρmin = 0.31 e Å3
308 parameters
Special details top

Experimental. See dedicated section in the main paper

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23459 (15)0.18900 (7)0.41351 (13)0.0243 (4)
O20.03177 (16)0.19106 (7)0.25030 (14)0.0306 (4)
H20.059 (2)0.2395 (6)0.241 (2)0.046*
O30.45044 (15)0.07193 (7)0.43306 (13)0.0222 (4)
O40.38326 (15)0.05971 (7)0.60719 (13)0.0228 (3)
H40.4840 (12)0.0655 (11)0.6516 (18)0.034*
O50.07842 (15)0.17226 (7)0.47794 (13)0.0233 (4)
O60.07866 (16)0.17604 (7)0.28878 (13)0.0261 (4)
O70.27358 (15)0.09642 (7)0.17213 (13)0.0201 (3)
H70.1913 (17)0.1273 (9)0.2101 (18)0.030*
O80.32512 (15)0.01671 (7)0.19026 (13)0.0226 (3)
O90.22586 (15)0.16081 (7)0.01694 (14)0.0246 (4)
O100.00003 (15)0.19454 (7)0.02169 (13)0.0226 (4)
H100.038 (2)0.2382 (7)0.004 (2)0.034*
O110.34327 (15)0.06460 (7)0.22544 (13)0.0223 (3)
O120.39830 (15)0.00769 (8)0.08721 (14)0.0270 (4)
H120.5011 (12)0.0024 (12)0.1315 (18)0.041*
C10.0979 (2)0.08162 (9)0.34901 (17)0.0127 (4)
C20.2037 (2)0.03525 (10)0.42177 (17)0.0129 (4)
C30.1658 (2)0.03604 (10)0.43179 (17)0.0136 (4)
H30.23610.06690.48510.016*
C40.0279 (2)0.06330 (9)0.36590 (17)0.0134 (4)
C50.0786 (2)0.01648 (10)0.29062 (17)0.0137 (4)
C60.0402 (2)0.05506 (10)0.28629 (17)0.0137 (4)
H60.11230.08700.23790.016*
C70.1305 (2)0.15936 (10)0.34274 (18)0.0158 (5)
C80.3601 (2)0.05876 (10)0.48645 (19)0.0160 (5)
C90.0077 (2)0.14282 (10)0.38080 (19)0.0161 (4)
C100.2354 (2)0.03281 (10)0.21461 (18)0.0157 (4)
C110.1018 (2)0.14644 (10)0.01977 (17)0.0142 (4)
C120.0487 (2)0.07093 (10)0.01737 (17)0.0123 (4)
C130.0993 (2)0.05489 (10)0.04131 (17)0.0132 (4)
H130.16800.09280.06910.016*
C140.1490 (2)0.01526 (10)0.06025 (17)0.0123 (4)
C150.3083 (2)0.02798 (10)0.13252 (18)0.0141 (4)
N10.46132 (18)0.23095 (8)0.82066 (15)0.0209 (4)
C160.5398 (3)0.17774 (12)0.9150 (2)0.0412 (7)
H16A0.61080.20240.98370.062*
H16B0.59290.14380.87750.062*
H16C0.46750.15200.94590.062*
C170.5693 (3)0.27012 (13)0.7714 (2)0.0380 (6)
H17A0.51700.30700.71350.057*
H17B0.61690.23660.72840.057*
H17C0.64490.29250.83980.057*
C180.3829 (3)0.28289 (12)0.8791 (2)0.0363 (6)
H18A0.33210.31850.81780.054*
H18B0.45510.30680.94800.054*
H18C0.31010.25760.91000.054*
C190.3527 (3)0.19388 (13)0.7173 (2)0.0407 (7)
H19A0.27680.17100.74800.061*
H19B0.40390.15760.68270.061*
H19C0.30540.22860.65310.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (8)0.0142 (8)0.0316 (9)0.0039 (6)0.0034 (7)0.0003 (7)
O20.0315 (9)0.0129 (8)0.0342 (9)0.0053 (7)0.0112 (7)0.0103 (7)
O30.0153 (8)0.0235 (8)0.0284 (9)0.0023 (6)0.0075 (7)0.0020 (7)
O40.0156 (8)0.0316 (9)0.0170 (8)0.0017 (7)0.0018 (6)0.0010 (7)
O50.0261 (9)0.0126 (7)0.0266 (8)0.0005 (6)0.0007 (7)0.0038 (6)
O60.0302 (9)0.0113 (7)0.0286 (9)0.0004 (7)0.0044 (7)0.0043 (6)
O70.0165 (8)0.0153 (8)0.0230 (8)0.0021 (6)0.0026 (6)0.0015 (6)
O80.0126 (8)0.0185 (8)0.0333 (9)0.0013 (7)0.0016 (7)0.0031 (7)
O90.0148 (8)0.0176 (8)0.0406 (9)0.0036 (6)0.0067 (7)0.0040 (7)
O100.0218 (8)0.0110 (8)0.0369 (9)0.0001 (6)0.0116 (7)0.0006 (7)
O110.0166 (8)0.0250 (8)0.0204 (8)0.0002 (6)0.0022 (6)0.0061 (7)
O120.0100 (7)0.0323 (9)0.0360 (9)0.0011 (7)0.0024 (7)0.0143 (7)
C10.0145 (11)0.0107 (10)0.0143 (10)0.0014 (8)0.0065 (9)0.0008 (8)
C20.0133 (10)0.0132 (10)0.0123 (10)0.0014 (8)0.0042 (9)0.0031 (8)
C30.0135 (11)0.0121 (10)0.0145 (10)0.0021 (8)0.0030 (9)0.0011 (8)
C40.0169 (11)0.0121 (10)0.0126 (10)0.0012 (9)0.0064 (9)0.0004 (8)
C50.0130 (10)0.0132 (10)0.0161 (10)0.0005 (8)0.0061 (9)0.0005 (8)
C60.0150 (11)0.0124 (10)0.0139 (10)0.0030 (8)0.0044 (9)0.0014 (8)
C70.0160 (11)0.0141 (11)0.0165 (11)0.0006 (9)0.0036 (9)0.0016 (9)
C80.0180 (11)0.0073 (10)0.0215 (12)0.0026 (9)0.0038 (9)0.0008 (9)
C90.0140 (11)0.0128 (10)0.0227 (11)0.0015 (9)0.0071 (10)0.0013 (9)
C100.0146 (11)0.0160 (11)0.0161 (11)0.0020 (9)0.0038 (9)0.0022 (9)
C110.0134 (11)0.0142 (10)0.0122 (10)0.0012 (9)0.0008 (8)0.0023 (8)
C120.0127 (10)0.0126 (10)0.0129 (10)0.0013 (8)0.0056 (8)0.0016 (8)
C130.0126 (10)0.0115 (10)0.0153 (10)0.0037 (8)0.0037 (8)0.0030 (8)
C140.0102 (10)0.0137 (10)0.0134 (10)0.0010 (8)0.0041 (8)0.0001 (8)
C150.0121 (10)0.0090 (10)0.0199 (12)0.0011 (8)0.0028 (9)0.0045 (9)
N10.0201 (10)0.0169 (9)0.0256 (10)0.0021 (8)0.0064 (8)0.0002 (8)
C160.0388 (15)0.0307 (14)0.0453 (16)0.0095 (12)0.0015 (13)0.0120 (12)
C170.0345 (14)0.0419 (15)0.0453 (16)0.0130 (12)0.0239 (13)0.0084 (12)
C180.0479 (16)0.0242 (13)0.0494 (17)0.0059 (11)0.0342 (14)0.0049 (11)
C190.0358 (15)0.0397 (15)0.0369 (15)0.0158 (12)0.0043 (12)0.0037 (12)
Geometric parameters (Å, º) top
O1—C71.205 (2)C5—C61.392 (3)
O2—C71.320 (2)C5—C101.507 (3)
O2—H20.959 (10)C6—H60.9500
O3—C81.205 (2)C11—C121.498 (3)
O4—C81.319 (2)C12—C131.391 (3)
O4—H40.941 (10)C12—C14i1.395 (3)
O5—C91.236 (2)C13—C141.390 (3)
O6—C91.280 (2)C13—H130.9500
O7—C101.296 (2)C14—C12i1.395 (3)
O7—H70.962 (10)C14—C151.503 (3)
O8—C101.231 (2)N1—C191.482 (3)
O9—C111.210 (2)N1—C181.489 (3)
O10—C111.321 (2)N1—C161.489 (3)
O10—H100.938 (10)N1—C171.489 (3)
O11—C151.217 (2)C16—H16A0.9800
O12—C151.298 (2)C16—H16B0.9800
O12—H120.957 (10)C16—H16C0.9800
C1—C61.380 (3)C17—H17A0.9800
C1—C21.395 (3)C17—H17B0.9800
C1—C71.494 (3)C17—H17C0.9800
C2—C31.395 (3)C18—H18A0.9800
C2—C81.507 (3)C18—H18B0.9800
C3—C41.392 (3)C18—H18C0.9800
C3—H30.9500C19—H19A0.9800
C4—C51.415 (3)C19—H19B0.9800
C4—C91.517 (3)C19—H19C0.9800
C7—O2—H2111.2 (15)C14i—C12—C11120.69 (16)
C8—O4—H4112.9 (13)C12—C13—C14121.57 (17)
C10—O7—H7106.7 (12)C12—C13—H13119.2
C11—O10—H10105.5 (13)C14—C13—H13119.2
C15—O12—H12114.8 (13)C13—C14—C12i119.26 (17)
C6—C1—C2118.85 (17)C13—C14—C15118.14 (16)
C6—C1—C7120.19 (17)C12i—C14—C15122.53 (16)
C2—C1—C7120.92 (17)O11—C15—O12126.05 (18)
C1—C2—C3119.21 (17)O11—C15—C14122.25 (17)
C1—C2—C8122.22 (16)O12—C15—C14111.59 (16)
C3—C2—C8118.52 (17)C19—N1—C18109.77 (18)
C4—C3—C2121.91 (17)C19—N1—C16109.59 (17)
C4—C3—H3119.0C18—N1—C16109.03 (17)
C2—C3—H3119.0C19—N1—C17108.99 (17)
C3—C4—C5118.80 (17)C18—N1—C17109.11 (17)
C3—C4—C9115.37 (17)C16—N1—C17110.34 (18)
C5—C4—C9125.82 (17)N1—C16—H16A109.5
C6—C5—C4118.12 (17)N1—C16—H16B109.5
C6—C5—C10113.39 (17)H16A—C16—H16B109.5
C4—C5—C10128.46 (17)N1—C16—H16C109.5
C1—C6—C5123.02 (18)H16A—C16—H16C109.5
C1—C6—H6118.5H16B—C16—H16C109.5
C5—C6—H6118.5N1—C17—H17A109.5
O1—C7—O2124.56 (18)N1—C17—H17B109.5
O1—C7—C1123.77 (18)H17A—C17—H17B109.5
O2—C7—C1111.67 (17)N1—C17—H17C109.5
O3—C8—O4126.17 (19)H17A—C17—H17C109.5
O3—C8—C2123.43 (18)H17B—C17—H17C109.5
O4—C8—C2110.35 (16)N1—C18—H18A109.5
O5—C9—O6123.75 (17)N1—C18—H18B109.5
O5—C9—C4118.97 (17)H18A—C18—H18B109.5
O6—C9—C4117.23 (17)N1—C18—H18C109.5
O8—C10—O7120.75 (18)H18A—C18—H18C109.5
O8—C10—C5118.01 (17)H18B—C18—H18C109.5
O7—C10—C5121.19 (17)N1—C19—H19A109.5
O9—C11—O10124.15 (18)N1—C19—H19B109.5
O9—C11—C12122.01 (17)H19A—C19—H19B109.5
O10—C11—C12113.81 (16)N1—C19—H19C109.5
C13—C12—C14i119.16 (16)H19A—C19—H19C109.5
C13—C12—C11119.71 (16)H19B—C19—H19C109.5
C6—C1—C2—C31.7 (3)C1—C2—C8—O4111.46 (19)
C7—C1—C2—C3175.72 (17)C3—C2—C8—O470.9 (2)
C6—C1—C2—C8175.85 (17)C3—C4—C9—O528.3 (3)
C7—C1—C2—C86.7 (3)C5—C4—C9—O5152.83 (19)
C1—C2—C3—C43.6 (3)C3—C4—C9—O6149.16 (18)
C8—C2—C3—C4174.08 (17)C5—C4—C9—O629.7 (3)
C2—C3—C4—C52.6 (3)C6—C5—C10—O822.3 (3)
C2—C3—C4—C9176.26 (17)C4—C5—C10—O8155.63 (19)
C3—C4—C5—C60.1 (3)C6—C5—C10—O7155.23 (17)
C9—C4—C5—C6178.88 (17)C4—C5—C10—O726.9 (3)
C3—C4—C5—C10177.89 (18)O9—C11—C12—C13146.62 (19)
C9—C4—C5—C103.3 (3)O10—C11—C12—C1331.6 (2)
C2—C1—C6—C51.0 (3)O9—C11—C12—C14i25.7 (3)
C7—C1—C6—C5178.48 (17)O10—C11—C12—C14i156.07 (17)
C4—C5—C6—C11.9 (3)C14i—C12—C13—C141.2 (3)
C10—C5—C6—C1179.95 (17)C11—C12—C13—C14171.26 (17)
C6—C1—C7—O1163.87 (19)C12—C13—C14—C12i1.2 (3)
C2—C1—C7—O113.5 (3)C12—C13—C14—C15175.65 (17)
C6—C1—C7—O216.4 (3)C13—C14—C15—O11123.1 (2)
C2—C1—C7—O2166.19 (17)C12i—C14—C15—O1153.6 (3)
C1—C2—C8—O371.0 (3)C13—C14—C15—O1253.2 (2)
C3—C2—C8—O3106.6 (2)C12i—C14—C15—O12130.02 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6ii0.96 (1)1.64 (1)2.5885 (18)171 (2)
O4—H4···O11iii0.94 (1)1.81 (1)2.7166 (19)162 (2)
O7—H7···O60.96 (1)1.48 (1)2.4334 (19)169 (2)
O10—H10···O5iv0.94 (1)1.76 (1)2.6890 (18)168 (2)
O12—H12···O8v0.96 (1)1.60 (1)2.5308 (19)163 (2)
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula2C4H12N+·2C10H5O8·C10H6O8
Mr908.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.4282 (4), 18.7286 (8), 11.3175 (5)
β (°) 107.053 (2)
V3)1910.55 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.14 × 0.12 × 0.12
Data collection
DiffractometerBruker X8 KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19608, 3736, 2523
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.00
No. of reflections3736
No. of parameters308
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Bruker 2001), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.959 (10)1.637 (11)2.5885 (18)171 (2)
O4—H4···O11ii0.941 (10)1.806 (12)2.7166 (19)162 (2)
O7—H7···O60.962 (10)1.483 (10)2.4334 (19)169 (2)
O10—H10···O5iii0.938 (10)1.764 (11)2.6890 (18)168 (2)
O12—H12···O8iv0.957 (10)1.600 (11)2.5308 (19)163 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x1, y, z.
 

Acknowledgements

We are grateful to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support (POCI-PPCDT/QUI/58377/2004, supported by FEDER) and for the postdoctoral and PhD research grants Nos. SFRH/BPD/14410/2003 (to LCS) and SFRH/BD/17968/2004 (to PIG.).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Version 2.1-RC13. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527–3538.  Web of Science CSD CrossRef CAS Google Scholar
First citationDale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163–1167.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuiz-Pérez, C., Loreno-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gili, P. & Julve, M. (2004). Cryst. Growth Des. 4, 57–61.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi:10.1021/ja074119k. In the press.  Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: John Wiley & Sons Ltd.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds