organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(piperidin-1-ylcarbon­yl)benzene

aNanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane 4111, Australia, bCSIRO Materials and Science Engineering, 37 Graham Road, Highett, Victoria 3190, Australia, and cSchool of Science, Griffith University, Nathan, Brisbane 4111, Australia
*Correspondence e-mail: p.healy@griffith.edu.au

(Received 14 November 2007; accepted 23 November 2007; online 6 December 2007)

The title compound, C18H20N2O2, has been synthesized by the reaction of terephthaloyl chloride and 1,2,3,6-tetra­hydro­pyridine. This compound crystallizes as discrete mol­ecular species disposed about a crystallographic centre of symmetry, such that half the mol­ecule constitutes the asymmetric unit. The structure shows an envelope conformation for the dehydro­piperidine ring with the amide carbonyl twisted out of the benzene ring plane by 57.3 (2)°.

Related literature

For background literature, see: Pang et al. (2006[Pang, K., Kotek, R. & Tonelli, A. (2006). Prog. Polym. Sci. 31, 1009-1037.]). For related structures, see: Jones et al. (2002[Jones, P. G., Ossowski, J. & Kus, P. (2002). Z. Naturforsch. Teil B, 57, 914-921.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O2

  • Mr = 296.36

  • Monoclinic, P 21 /n

  • a = 9.1255 (19) Å

  • b = 10.060 (3) Å

  • c = 8.6941 (16) Å

  • β = 106.991 (14)°

  • V = 763.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: none

  • 1985 measured reflections

  • 1753 independent reflections

  • 1122 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 150 reflections intensity decay: 0.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.01

  • 1753 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.9500 2.5100 3.290 (2) 140.00
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: MSC/AFC7 Diffractometer Control (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control. Version 1.02. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC7 Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation. (2001). TEXSAN. Version 1.06. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN, SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: TEXSAN, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Derivatives of terephthalic acid are widely used in a range of polymer applications (Pang et al., 2006). As part of our work on the synthesis of these compounds for use in new coating technologies, we have synthesized and determined the solid state structure of the title compound (I). This compound crystallizes as discrete molecular species (Fig. 1) disposed about a crystallographic centre of symmetry such that half the molecule consitutes the asymmetric unit of the crystal lattice. The bond lengths and bond angles in (I) are in accord with values for similar structures reported in the literature (Jones et al., 2002). The tertiary nitrogen lies in the C1—C3—C7 plane with the sum of the C—N—C angles 359.3°. The amide plane is twisted out of the plane of the central phenyl ring as reflected in the O1—C1—C8—C10 torsion angle of -57.6 (2)°. C7 approaches coplanarity with amide plane with C7—N1—C1—O1 - 4.3 (2)°. C3 bends out of this plane with C3—N1—C1—C8 = -16.4 (2)° to give an envelope conformation to the dehydropiperidine ring. A weak intermolecular C—H···O interaction is observed between C9—H9 and the carbonyl oxygen (Table 1).

Related literature top

For background literature, see: Pang et al. (2006). For related structures, see: Jones et al. (2002).

Experimental top

1,2,3,6-tetrahydropyridine (494.4 ml, 5.418 mm0l) was added to a solution of terephthaloyl chloride (500 mg, 2.46 mmol) in toluene (50 ml) under an N2 atmosphere with stirring. The reaction mixture was stirred and heated under reflux for 24 hr. On cooling to room temperature the mixture was washed with aqueous acid (2M HCl) and then aqueous base (2M NaOH) followed by two water washes with the organic layer collected and dried (MgSO4). Removal of the solvent under vacuum resulted in isolation of a solid white product. Recrystallization from ethanol resulted in the formation of small white crystals (Yield 601 mg, 82.4%).

Refinement top

H atoms attached to carbon were constrained as riding atoms, with C–H set to 0.95 Å. Uiso(H) values were set to 1.2Ueq of the parent atom.

Structure description top

Derivatives of terephthalic acid are widely used in a range of polymer applications (Pang et al., 2006). As part of our work on the synthesis of these compounds for use in new coating technologies, we have synthesized and determined the solid state structure of the title compound (I). This compound crystallizes as discrete molecular species (Fig. 1) disposed about a crystallographic centre of symmetry such that half the molecule consitutes the asymmetric unit of the crystal lattice. The bond lengths and bond angles in (I) are in accord with values for similar structures reported in the literature (Jones et al., 2002). The tertiary nitrogen lies in the C1—C3—C7 plane with the sum of the C—N—C angles 359.3°. The amide plane is twisted out of the plane of the central phenyl ring as reflected in the O1—C1—C8—C10 torsion angle of -57.6 (2)°. C7 approaches coplanarity with amide plane with C7—N1—C1—O1 - 4.3 (2)°. C3 bends out of this plane with C3—N1—C1—C8 = -16.4 (2)° to give an envelope conformation to the dehydropiperidine ring. A weak intermolecular C—H···O interaction is observed between C9—H9 and the carbonyl oxygen (Table 1).

For background literature, see: Pang et al. (2006). For related structures, see: Jones et al. (2002).

Computing details top

Data collection: MSC/AFC7 Diffractometer Control (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN; SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN; PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Primed atoms were generated by symmetry (-x, -y, 1 - z).
1,4-Bis(piperidin-1-ylcarbonyl)benzene top
Crystal data top
C18H20N2O2F(000) = 316
Mr = 296.36Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.1255 (19) Åθ = 12.6–16.9°
b = 10.060 (3) ŵ = 0.09 mm1
c = 8.6941 (16) ÅT = 295 K
β = 106.991 (14)°Plate, colourless
V = 763.3 (3) Å30.35 × 0.30 × 0.15 mm
Z = 2
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.022
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 2.9°
Graphite monochromatorh = 511
ω–2θ scansk = 013
1985 measured reflectionsl = 1110
1753 independent reflections3 standard reflections every 150 reflections
1122 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1363P]
where P = (Fo2 + 2Fc2)/3
1753 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H20N2O2V = 763.3 (3) Å3
Mr = 296.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1255 (19) ŵ = 0.09 mm1
b = 10.060 (3) ÅT = 295 K
c = 8.6941 (16) Å0.35 × 0.30 × 0.15 mm
β = 106.991 (14)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.022
1985 measured reflections3 standard reflections every 150 reflections
1753 independent reflections intensity decay: 0.9%
1122 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
1753 reflectionsΔρmin = 0.22 e Å3
100 parameters
Special details top

Experimental. The scan width was (1.63 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34253 (15)0.20263 (14)0.59031 (15)0.0576 (5)
N10.33853 (15)0.09638 (14)0.36082 (16)0.0378 (4)
C10.28168 (18)0.12259 (16)0.48421 (18)0.0360 (5)
C30.2956 (2)0.01623 (17)0.2505 (2)0.0417 (5)
C40.2517 (3)0.0308 (2)0.0776 (2)0.0584 (7)
C50.3692 (3)0.1256 (2)0.0550 (2)0.0660 (8)
C60.4691 (3)0.1846 (2)0.1752 (3)0.0575 (7)
C70.4706 (2)0.17209 (18)0.3463 (2)0.0448 (6)
C80.13664 (17)0.05471 (15)0.48833 (17)0.0327 (4)
C90.00064 (18)0.07421 (17)0.36538 (17)0.0369 (5)
C100.13454 (17)0.01931 (17)0.37753 (17)0.0364 (4)
H3A0.380000.075600.268800.0500*
H3B0.211000.061000.269600.0500*
H4A0.245400.043400.008500.0700*
H4B0.155000.074000.052300.0700*
H50.371800.144100.051300.0790*
H60.545200.238600.151700.0690*
H7A0.468100.258400.389800.0540*
H7B0.561900.128000.404900.0540*
H90.000800.125100.273400.0440*
H100.228100.033300.292000.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0557 (8)0.0690 (9)0.0491 (7)0.0176 (7)0.0168 (6)0.0240 (7)
N10.0370 (7)0.0413 (8)0.0384 (7)0.0063 (6)0.0161 (6)0.0035 (6)
C10.0360 (8)0.0389 (9)0.0324 (8)0.0014 (7)0.0089 (6)0.0019 (7)
C30.0473 (10)0.0410 (9)0.0425 (9)0.0050 (8)0.0219 (8)0.0055 (8)
C40.0721 (14)0.0630 (13)0.0404 (10)0.0048 (11)0.0168 (9)0.0049 (9)
C50.0999 (18)0.0626 (13)0.0434 (11)0.0070 (13)0.0331 (11)0.0084 (10)
C60.0686 (14)0.0517 (11)0.0640 (12)0.0070 (10)0.0378 (11)0.0114 (10)
C70.0379 (9)0.0466 (10)0.0517 (10)0.0053 (7)0.0159 (8)0.0057 (8)
C80.0322 (8)0.0387 (8)0.0284 (7)0.0041 (6)0.0109 (6)0.0027 (6)
C90.0394 (9)0.0463 (9)0.0258 (7)0.0052 (7)0.0109 (6)0.0039 (7)
C100.0314 (7)0.0481 (9)0.0288 (7)0.0059 (7)0.0072 (6)0.0007 (7)
Geometric parameters (Å, º) top
O1—C11.228 (2)C9—C101.384 (2)
N1—C11.347 (2)C3—H3A0.9500
N1—C31.462 (2)C3—H3B0.9500
N1—C71.462 (2)C4—H4A0.9500
C1—C81.499 (2)C4—H4B0.9500
C3—C41.514 (2)C5—H50.9500
C4—C51.490 (4)C6—H60.9500
C5—C61.311 (3)C7—H7A0.9500
C6—C71.489 (3)C7—H7B0.9500
C8—C91.395 (2)C9—H90.9500
C8—C10i1.389 (2)C10—H100.9600
O1···C9ii3.290 (2)H3B···C82.4900
O1···H7A2.4200H3B···C92.6800
O1···H3Aiii2.7800H3B···H7Aix2.5600
O1···H10i2.9000H4A···O1ix2.7400
O1···H4Aiv2.7400H4A···H10x2.5700
O1···H9ii2.5100H4B···H7Av2.5200
C3···C93.262 (3)H6···C10iv2.9700
C9···C33.262 (3)H6···C8xi2.7800
C9···O1v3.290 (2)H6···C9xi3.0500
C1···H7Biii2.9200H7A···O12.4200
C6···H3A2.9300H7A···H3Biv2.5600
C6···H10vi3.0600H7A···H4Bii2.5200
C8···H3B2.4900H7B···C10vi3.0500
C8···H6vii2.7800H7B···H10vi2.5800
C9···H3B2.6800H7B···C1iii2.9200
C9···H6vii3.0500H9···O1v2.5100
C10···H7Bviii3.0500H10···C6viii3.0600
C10···H6ix2.9700H10···H7Bviii2.5800
H3A···C62.9300H10···O1i2.9000
H3A···O1iii2.7800H10···H4Ax2.5700
C1—N1—C3125.62 (14)H3A—C3—H3B109.00
C1—N1—C7119.07 (14)C3—C4—H4A109.00
C3—N1—C7114.63 (14)C3—C4—H4B109.00
O1—C1—N1122.12 (16)C5—C4—H4A109.00
O1—C1—C8119.30 (15)C5—C4—H4B109.00
N1—C1—C8118.56 (14)H4A—C4—H4B109.00
N1—C3—C4110.59 (14)C4—C5—H5119.00
C3—C4—C5109.82 (17)C6—C5—H5119.00
C4—C5—C6122.97 (19)C5—C6—H6118.00
C5—C6—C7124.0 (2)C7—C6—H6118.00
N1—C7—C6111.29 (16)N1—C7—H7A109.00
C1—C8—C9120.77 (14)N1—C7—H7B109.00
C1—C8—C10i119.56 (14)C6—C7—H7A109.00
C9—C8—C10i119.44 (15)C6—C7—H7B109.00
C8—C9—C10119.92 (14)H7A—C7—H7B109.00
C8i—C10—C9120.64 (14)C8—C9—H9120.00
N1—C3—H3A109.00C10—C9—H9120.00
N1—C3—H3B109.00C9—C10—H10119.00
C4—C3—H3A109.00C8i—C10—H10120.00
C4—C3—H3B109.00
C3—N1—C1—O1165.61 (16)N1—C1—C8—C10i124.35 (17)
C3—N1—C1—C816.4 (2)N1—C3—C4—C547.6 (2)
C7—N1—C1—O14.3 (2)C3—C4—C5—C616.9 (3)
C7—N1—C1—C8173.66 (14)C4—C5—C6—C74.6 (4)
C1—N1—C3—C4128.43 (19)C5—C6—C7—N15.4 (3)
C7—N1—C3—C461.2 (2)C1—C8—C9—C10174.84 (15)
C1—N1—C7—C6150.58 (16)C10i—C8—C9—C100.4 (2)
C3—N1—C7—C638.4 (2)C1—C8—C10i—C9i174.91 (15)
O1—C1—C8—C9116.88 (18)C9—C8—C10i—C9i0.4 (2)
O1—C1—C8—C10i57.6 (2)C8—C9—C10—C8i0.4 (2)
N1—C1—C8—C961.2 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y1/2, z+1/2; (x) x, y, z; (xi) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1v0.95002.51003.290 (2)140.00
Symmetry code: (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O2
Mr296.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.1255 (19), 10.060 (3), 8.6941 (16)
β (°) 106.991 (14)
V3)763.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerRigaku AFC7R
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1985, 1753, 1122
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.01
No. of reflections1753
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: MSC/AFC7 Diffractometer Control (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control, TEXSAN (Molecular Structure Corporation, 2001), TEXSAN; SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), TEXSAN; PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.95002.51003.290 (2)140.00
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support of this work by the Nanoscale Science and Technology Centre, CSIRO Materials Science and Engineering Division, and Griffith University. The award of a PhD scholarship (to LA) from the CRC for Wood Innovation is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Ossowski, J. & Kus, P. (2002). Z. Naturforsch. Teil B, 57, 914–921.  CAS Google Scholar
First citationMolecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control. Version 1.02. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation. (2001). TEXSAN. Version 1.06. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPang, K., Kotek, R. & Tonelli, A. (2006). Prog. Polym. Sci. 31, 1009–1037.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds