metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[cobalt(II)-bis­­(μ-3,7-di­chloro­quinoline-8-carboxyl­ato-κ3N,O:O′)]

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China, and bSchool of Materials Science and Engineering, Chongqing University, Chongqing 400044, People's Republic of China
*Correspondence e-mail: gongyun7211@yahoo.com.cn

(Received 9 December 2007; accepted 13 December 2007; online 21 December 2007)

In the crystal structure of the title compound, [Co(C10H4Cl2NO2)2]n, the CoII cation lies on a twofold rotation axis. Each cation is N,O-chelated by the carboxyl­ate anions of two 3,7-dichloro­quinoline-8-carboxyl­ate ligands. The second carboxyl­ate O atom of each ligand coordinates to the CoII cation of an adjacent mol­ecule, linking the cations into a linear chain. Strong inter­chain ππ stacking inter­actions are observed in the crystal structure (perpendicular distance 3.42 Å, centroid-to-centroid distance 3.874 Å)

Related literature

For the use of 3,7-dichloro-8-quinoline­carboxylic acid as a herbicide, see: Nuria et al. (1997[Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171-175.]); Pornprom et al. (2006[Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109-1115.]); Sunohara & Matsumoto (2004[Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597-606.]); Tresch & Grossmann (2002[Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73-78.]). For related vanadium and cadmium complexes, see Chen et al. (2001[Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35-37.]); Yang et al. (2005[Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120-121.]). For related literature, see: Turel et al. (2004[Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239-401.]); Zhang et al. (2007[Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H4Cl2NO2)2]

  • Mr = 541.01

  • Orthorhombic, P c c n

  • a = 13.5109 (14) Å

  • b = 15.964 (2) Å

  • c = 9.2157 (16) Å

  • V = 1987.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 298 (2) K

  • 0.49 × 0.33 × 0.31 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.57, Tmax = 0.64

  • 9558 measured reflections

  • 1752 independent reflections

  • 1404 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.11

  • 1752 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.093 (2)
Co1—O2i 2.057 (2)
Co1—N1 2.197 (2)
O2i—Co1—O2ii 103.60 (12)
O2i—Co1—O1 170.96 (9)
O2ii—Co1—O1 85.43 (8)
O1—Co1—O1iii 85.55 (12)
O2i—Co1—N1 90.97 (9)
O2ii—Co1—N1 87.24 (9)
O1—Co1—N1 89.82 (9)
O1iii—Co1—N1 92.31 (9)
N1iii—Co1—N1 177.10 (14)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang et al., 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the CoII cation located on a twofold rotation axis. The CoII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom via a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face ππ stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2i–C7i benzene rings [symmetry code: (i) 2 - x, 1 - y, - z].

Related literature top

For the use of 3,7-dichloro-8-quinolinecarboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related vanadium and cadmium complexes, see Chen et al. (2001); Yang et al. (2005).

For related literature, see: Turel et al. (2004); Zhang et al. (2007).

Experimental top

A mixture of quinclorac (0.5 mmol, 0.121 g), CoCl2.6H2O (1 mmol, 0.238 g), Na2MoO4.2H2O (0.5 mmol, 0.121 g) and H2O (10 ml) was treated with aqueous HCl to a pH of 5. The mixture was placed in a Teflon-lined autoclave; this was heated at 403 K for three days. Red crystals were collected and washed with water. C H & N elemental analysis. Calculated for C20H8Cl4N2O4Co: C 44.36, H 1.48, N 5.18%; found: C 44.48, H 1.69, N 5.31%. Selected FT—IR (KBr, cm-1): 3301(w), 1581(s), 1553(m), 1482(m), 1402(m), 1383(s), 1232(m), 1139 (m), 1101(s), 761(m), 553(m), 449(m).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang et al., 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the CoII cation located on a twofold rotation axis. The CoII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom via a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face ππ stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2i–C7i benzene rings [symmetry code: (i) 2 - x, 1 - y, - z].

For the use of 3,7-dichloro-8-quinolinecarboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related vanadium and cadmium complexes, see Chen et al. (2001); Yang et al. (2005).

For related literature, see: Turel et al. (2004); Zhang et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [Symmetry code: (i) x,-y + 1/2,z + 1/2.]
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by interchain ππ stacking interactions.
catena-Poly[cobalt(II)-bis(µ-3,7-dichloroquinoline-8-carboxylato- κ3N,O:O')] ? top
Crystal data top
[Co(C10H4Cl2NO2)2]F(000) = 1076
Mr = 541.01Dx = 1.808 Mg m3
Dm = 1.800 Mg m3
Dm measured by not measured
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 9558 reflections
a = 13.5109 (14) Åθ = 2.0–25.0°
b = 15.964 (2) ŵ = 1.43 mm1
c = 9.2157 (16) ÅT = 298 K
V = 1987.7 (5) Å3Block, red
Z = 40.49 × 0.33 × 0.31 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1752 independent reflections
Radiation source: fine-focus sealed tube1404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1613
Tmin = 0.57, Tmax = 0.64k = 1818
9558 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0291P)2 + 3.6236P]
where P = (Fo2 + 2Fc2)/3
1752 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Co(C10H4Cl2NO2)2]V = 1987.7 (5) Å3
Mr = 541.01Z = 4
Orthorhombic, PccnMo Kα radiation
a = 13.5109 (14) ŵ = 1.43 mm1
b = 15.964 (2) ÅT = 298 K
c = 9.2157 (16) Å0.49 × 0.33 × 0.31 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1404 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.64Rint = 0.039
9558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.11Δρmax = 0.67 e Å3
1752 reflectionsΔρmin = 0.76 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75000.75000.25905 (6)0.02337 (17)
Cl10.77826 (7)0.45967 (6)0.08682 (10)0.0438 (3)
Cl21.11100 (8)0.71113 (7)0.54570 (14)0.0641 (4)
N10.89374 (19)0.68581 (16)0.2651 (3)0.0271 (6)
O10.70392 (16)0.66997 (13)0.0924 (2)0.0296 (5)
O20.80139 (16)0.65857 (13)0.1029 (2)0.0287 (5)
C10.7764 (2)0.64027 (19)0.0240 (3)0.0253 (7)
C20.8430 (2)0.57762 (19)0.0989 (3)0.0254 (7)
C30.8519 (2)0.4963 (2)0.0541 (4)0.0305 (7)
C40.9198 (3)0.4403 (2)0.1170 (4)0.0406 (9)
H40.92140.38460.08710.049*
C50.9831 (3)0.4674 (2)0.2212 (4)0.0405 (9)
H51.03000.43090.25940.049*
C60.9783 (2)0.5510 (2)0.2723 (4)0.0325 (8)
C70.9051 (2)0.60506 (19)0.2140 (3)0.0273 (7)
C80.9570 (2)0.7133 (2)0.3621 (4)0.0325 (8)
H80.95030.76810.39490.039*
C91.0338 (2)0.6646 (2)0.4188 (4)0.0378 (8)
C101.0438 (3)0.5835 (2)0.3773 (4)0.0397 (9)
H101.09290.54990.41750.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0269 (3)0.0247 (3)0.0185 (3)0.0027 (3)0.0000.000
Cl10.0472 (5)0.0369 (5)0.0472 (6)0.0042 (4)0.0028 (4)0.0106 (4)
Cl20.0561 (6)0.0563 (7)0.0799 (8)0.0064 (5)0.0383 (6)0.0098 (6)
N10.0271 (14)0.0274 (14)0.0268 (15)0.0037 (11)0.0010 (11)0.0010 (11)
O10.0316 (12)0.0338 (12)0.0233 (12)0.0062 (10)0.0014 (10)0.0035 (10)
O20.0344 (12)0.0307 (12)0.0211 (12)0.0016 (10)0.0015 (9)0.0020 (10)
C10.0322 (17)0.0217 (15)0.0220 (16)0.0028 (12)0.0030 (13)0.0000 (12)
C20.0258 (16)0.0285 (16)0.0218 (16)0.0024 (13)0.0053 (13)0.0052 (13)
C30.0331 (17)0.0261 (17)0.0323 (18)0.0021 (14)0.0046 (14)0.0002 (14)
C40.051 (2)0.0242 (18)0.047 (2)0.0059 (16)0.0032 (19)0.0001 (16)
C50.042 (2)0.0340 (19)0.045 (2)0.0122 (16)0.0004 (17)0.0073 (17)
C60.0332 (18)0.0330 (18)0.0311 (19)0.0051 (14)0.0012 (14)0.0049 (15)
C70.0266 (16)0.0289 (17)0.0264 (17)0.0044 (13)0.0070 (13)0.0044 (14)
C80.0292 (17)0.0315 (18)0.037 (2)0.0018 (14)0.0010 (15)0.0008 (15)
C90.0306 (18)0.042 (2)0.041 (2)0.0018 (15)0.0088 (16)0.0023 (17)
C100.0337 (19)0.045 (2)0.040 (2)0.0106 (16)0.0065 (16)0.0053 (18)
Geometric parameters (Å, º) top
Co1—O12.093 (2)C2—C31.368 (4)
Co1—O1i2.093 (2)C2—C71.422 (4)
Co1—O2ii2.057 (2)C3—C41.406 (5)
Co1—O2iii2.057 (2)C4—C51.357 (5)
Co1—N1i2.197 (2)C4—H40.9300
Co1—N12.197 (2)C5—C61.416 (5)
Cl1—C31.738 (3)C5—H50.9300
Cl2—C91.734 (4)C6—C101.410 (5)
N1—C81.312 (4)C6—C71.419 (4)
N1—C71.381 (4)C8—C91.398 (5)
O1—C11.257 (4)C8—H80.9300
O2—C11.252 (4)C9—C101.358 (5)
O2—Co1iv2.057 (2)C10—H100.9300
C1—C21.512 (4)
O2ii—Co1—O2iii103.60 (12)C7—C2—C1119.2 (3)
O2ii—Co1—O1170.96 (9)C2—C3—C4122.5 (3)
O2iii—Co1—O185.43 (8)C2—C3—Cl1119.6 (3)
O2ii—Co1—O1i85.43 (8)C4—C3—Cl1117.9 (3)
O2iii—Co1—O1i170.96 (8)C5—C4—C3120.0 (3)
O1—Co1—O1i85.55 (12)C5—C4—H4120.0
O2ii—Co1—N1i87.24 (9)C3—C4—H4120.0
O2iii—Co1—N1i90.97 (9)C4—C5—C6120.5 (3)
O1—Co1—N1i92.31 (9)C4—C5—H5119.8
O1i—Co1—N1i89.82 (9)C6—C5—H5119.8
O2ii—Co1—N190.97 (9)C10—C6—C5123.1 (3)
O2iii—Co1—N187.24 (9)C10—C6—C7118.3 (3)
O1—Co1—N189.82 (9)C5—C6—C7118.6 (3)
O1i—Co1—N192.31 (9)N1—C7—C6121.1 (3)
N1i—Co1—N1177.10 (14)N1—C7—C2118.5 (3)
C8—N1—C7118.2 (3)C6—C7—C2120.5 (3)
C8—N1—Co1115.9 (2)N1—C8—C9123.5 (3)
C7—N1—Co1121.7 (2)N1—C8—H8118.2
C1—O1—Co1111.49 (19)C9—C8—H8118.2
C1—O2—Co1iv130.7 (2)C10—C9—C8119.9 (3)
O2—C1—O1126.2 (3)C10—C9—Cl2122.6 (3)
O2—C1—C2114.9 (3)C8—C9—Cl2117.4 (3)
O1—C1—C2119.0 (3)C9—C10—C6118.8 (3)
C3—C2—C7117.8 (3)C9—C10—H10120.6
C3—C2—C1122.9 (3)C6—C10—H10120.6
O2ii—Co1—N1—C89.9 (2)Cl1—C3—C4—C5176.0 (3)
O2iii—Co1—N1—C893.6 (2)C3—C4—C5—C63.0 (5)
O1—Co1—N1—C8179.1 (2)C4—C5—C6—C10178.1 (4)
O1i—Co1—N1—C895.4 (2)C4—C5—C6—C71.0 (5)
O2ii—Co1—N1—C7166.4 (2)C8—N1—C7—C64.7 (4)
O2iii—Co1—N1—C762.8 (2)Co1—N1—C7—C6151.2 (2)
O1—Co1—N1—C722.7 (2)C8—N1—C7—C2174.0 (3)
O1i—Co1—N1—C7108.2 (2)Co1—N1—C7—C230.1 (4)
O1i—Co1—O1—C168.44 (19)C10—C6—C7—N14.1 (5)
N1i—Co1—O1—C1158.1 (2)C5—C6—C7—N1176.6 (3)
N1—Co1—O1—C123.9 (2)C10—C6—C7—C2174.5 (3)
Co1iv—O2—C1—O18.1 (5)C5—C6—C7—C24.8 (5)
Co1iv—O2—C1—C2170.54 (19)C3—C2—C7—N1177.0 (3)
Co1—O1—C1—O2109.2 (3)C1—C2—C7—N17.7 (4)
Co1—O1—C1—C269.4 (3)C3—C2—C7—C64.4 (4)
O2—C1—C2—C365.8 (4)C1—C2—C7—C6170.9 (3)
O1—C1—C2—C3115.4 (3)C7—N1—C8—C91.4 (5)
O2—C1—C2—C7109.2 (3)Co1—N1—C8—C9155.8 (3)
O1—C1—C2—C769.6 (4)N1—C8—C9—C102.3 (6)
C7—C2—C3—C40.3 (5)N1—C8—C9—Cl2179.7 (3)
C1—C2—C3—C4174.8 (3)C8—C9—C10—C62.8 (6)
C7—C2—C3—Cl1179.7 (2)Cl2—C9—C10—C6179.4 (3)
C1—C2—C3—Cl14.6 (4)C5—C6—C10—C9179.5 (4)
C2—C3—C4—C53.4 (5)C7—C6—C10—C90.4 (5)
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x, y+3/2, z+1/2; (iii) x+3/2, y, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H4Cl2NO2)2]
Mr541.01
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)13.5109 (14), 15.964 (2), 9.2157 (16)
V3)1987.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.49 × 0.33 × 0.31
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.57, 0.64
No. of measured, independent and
observed [I > 2σ(I)] reflections
9558, 1752, 1404
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.11
No. of reflections1752
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.76

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Co1—O12.093 (2)Co1—N12.197 (2)
Co1—O2i2.057 (2)
O2i—Co1—O2ii103.60 (12)O2ii—Co1—N187.24 (9)
O2i—Co1—O1170.96 (9)O1—Co1—N189.82 (9)
O2ii—Co1—O185.43 (8)O1iii—Co1—N192.31 (9)
O1—Co1—O1iii85.55 (12)N1iii—Co1—N1177.10 (14)
O2i—Co1—N190.97 (9)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+3/2, y, z+1/2; (iii) x+3/2, y+3/2, z.
 

Acknowledgements

This work was supported by the Natural Science Young Scholars Foundation of Chongqing University and Chongqing University Postgraduate Science and Innovation Fund.

References

First citationChen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationNuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171–175.  CrossRef Google Scholar
First citationPornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109–1115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597–606.  Web of Science CrossRef CAS Google Scholar
First citationTresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73–78.  Web of Science CrossRef Google Scholar
First citationTurel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401.  Google Scholar
First citationYang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120–121.  Google Scholar
First citationZhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds