metal-organic compounds
catena-Poly[cobalt(II)-bis(μ-3,7-dichloroquinoline-8-carboxylato-κ3N,O:O′)]
aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China, and bSchool of Materials Science and Engineering, Chongqing University, Chongqing 400044, People's Republic of China
*Correspondence e-mail: gongyun7211@yahoo.com.cn
In the 10H4Cl2NO2)2]n, the CoII cation lies on a twofold rotation axis. Each cation is N,O-chelated by the carboxylate anions of two 3,7-dichloroquinoline-8-carboxylate ligands. The second carboxylate O atom of each ligand coordinates to the CoII cation of an adjacent molecule, linking the cations into a linear chain. Strong interchain π–π stacking interactions are observed in the (perpendicular distance 3.42 Å, centroid-to-centroid distance 3.874 Å)
of the title compound, [Co(CRelated literature
For the use of 3,7-dichloro-8-quinolinecarboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related vanadium and cadmium complexes, see Chen et al. (2001); Yang et al. (2005). For related literature, see: Turel et al. (2004); Zhang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807066755/sj2456sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066755/sj2456Isup2.hkl
A mixture of quinclorac (0.5 mmol, 0.121 g), CoCl2.6H2O (1 mmol, 0.238 g), Na2MoO4.2H2O (0.5 mmol, 0.121 g) and H2O (10 ml) was treated with aqueous HCl to a pH of 5. The mixture was placed in a Teflon-lined autoclave; this was heated at 403 K for three days. Red crystals were collected and washed with water. C H & N elemental analysis. Calculated for C20H8Cl4N2O4Co: C 44.36, H 1.48, N 5.18%; found: C 44.48, H 1.69, N 5.31%. Selected FT—IR (KBr, cm-1): 3301(w), 1581(s), 1553(m), 1482(m), 1402(m), 1383(s), 1232(m), 1139 (m), 1101(s), 761(m), 553(m), 449(m).
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).
Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang et al., 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the CoII cation located on a twofold rotation axis. The CoII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom via a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face π–π stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2i–C7i benzene rings [symmetry code: (i) 2 - x, 1 - y, - z].
For the use of 3,7-dichloro-8-quinolinecarboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related vanadium and cadmium complexes, see Chen et al. (2001); Yang et al. (2005).
For related literature, see: Turel et al. (2004); Zhang et al. (2007).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).[Co(C10H4Cl2NO2)2] | F(000) = 1076 |
Mr = 541.01 | Dx = 1.808 Mg m−3 Dm = 1.800 Mg m−3 Dm measured by not measured |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 9558 reflections |
a = 13.5109 (14) Å | θ = 2.0–25.0° |
b = 15.964 (2) Å | µ = 1.43 mm−1 |
c = 9.2157 (16) Å | T = 298 K |
V = 1987.7 (5) Å3 | Block, red |
Z = 4 | 0.49 × 0.33 × 0.31 mm |
Siemens SMART CCD area-detector diffractometer | 1752 independent reflections |
Radiation source: fine-focus sealed tube | 1404 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→13 |
Tmin = 0.57, Tmax = 0.64 | k = −18→18 |
9558 measured reflections | l = −10→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0291P)2 + 3.6236P] where P = (Fo2 + 2Fc2)/3 |
1752 reflections | (Δ/σ)max = 0.001 |
141 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
[Co(C10H4Cl2NO2)2] | V = 1987.7 (5) Å3 |
Mr = 541.01 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 13.5109 (14) Å | µ = 1.43 mm−1 |
b = 15.964 (2) Å | T = 298 K |
c = 9.2157 (16) Å | 0.49 × 0.33 × 0.31 mm |
Siemens SMART CCD area-detector diffractometer | 1752 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1404 reflections with I > 2σ(I) |
Tmin = 0.57, Tmax = 0.64 | Rint = 0.039 |
9558 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.67 e Å−3 |
1752 reflections | Δρmin = −0.76 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.7500 | 0.7500 | 0.25905 (6) | 0.02337 (17) | |
Cl1 | 0.77826 (7) | 0.45967 (6) | −0.08682 (10) | 0.0438 (3) | |
Cl2 | 1.11100 (8) | 0.71113 (7) | 0.54570 (14) | 0.0641 (4) | |
N1 | 0.89374 (19) | 0.68581 (16) | 0.2651 (3) | 0.0271 (6) | |
O1 | 0.70392 (16) | 0.66997 (13) | 0.0924 (2) | 0.0296 (5) | |
O2 | 0.80139 (16) | 0.65857 (13) | −0.1029 (2) | 0.0287 (5) | |
C1 | 0.7764 (2) | 0.64027 (19) | 0.0240 (3) | 0.0253 (7) | |
C2 | 0.8430 (2) | 0.57762 (19) | 0.0989 (3) | 0.0254 (7) | |
C3 | 0.8519 (2) | 0.4963 (2) | 0.0541 (4) | 0.0305 (7) | |
C4 | 0.9198 (3) | 0.4403 (2) | 0.1170 (4) | 0.0406 (9) | |
H4 | 0.9214 | 0.3846 | 0.0871 | 0.049* | |
C5 | 0.9831 (3) | 0.4674 (2) | 0.2212 (4) | 0.0405 (9) | |
H5 | 1.0300 | 0.4309 | 0.2594 | 0.049* | |
C6 | 0.9783 (2) | 0.5510 (2) | 0.2723 (4) | 0.0325 (8) | |
C7 | 0.9051 (2) | 0.60506 (19) | 0.2140 (3) | 0.0273 (7) | |
C8 | 0.9570 (2) | 0.7133 (2) | 0.3621 (4) | 0.0325 (8) | |
H8 | 0.9503 | 0.7681 | 0.3949 | 0.039* | |
C9 | 1.0338 (2) | 0.6646 (2) | 0.4188 (4) | 0.0378 (8) | |
C10 | 1.0438 (3) | 0.5835 (2) | 0.3773 (4) | 0.0397 (9) | |
H10 | 1.0929 | 0.5499 | 0.4175 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0269 (3) | 0.0247 (3) | 0.0185 (3) | 0.0027 (3) | 0.000 | 0.000 |
Cl1 | 0.0472 (5) | 0.0369 (5) | 0.0472 (6) | −0.0042 (4) | −0.0028 (4) | −0.0106 (4) |
Cl2 | 0.0561 (6) | 0.0563 (7) | 0.0799 (8) | 0.0064 (5) | −0.0383 (6) | −0.0098 (6) |
N1 | 0.0271 (14) | 0.0274 (14) | 0.0268 (15) | 0.0037 (11) | −0.0010 (11) | 0.0010 (11) |
O1 | 0.0316 (12) | 0.0338 (12) | 0.0233 (12) | 0.0062 (10) | −0.0014 (10) | −0.0035 (10) |
O2 | 0.0344 (12) | 0.0307 (12) | 0.0211 (12) | 0.0016 (10) | 0.0015 (9) | 0.0020 (10) |
C1 | 0.0322 (17) | 0.0217 (15) | 0.0220 (16) | −0.0028 (12) | −0.0030 (13) | 0.0000 (12) |
C2 | 0.0258 (16) | 0.0285 (16) | 0.0218 (16) | 0.0024 (13) | 0.0053 (13) | 0.0052 (13) |
C3 | 0.0331 (17) | 0.0261 (17) | 0.0323 (18) | −0.0021 (14) | 0.0046 (14) | 0.0002 (14) |
C4 | 0.051 (2) | 0.0242 (18) | 0.047 (2) | 0.0059 (16) | 0.0032 (19) | −0.0001 (16) |
C5 | 0.042 (2) | 0.0340 (19) | 0.045 (2) | 0.0122 (16) | −0.0004 (17) | 0.0073 (17) |
C6 | 0.0332 (18) | 0.0330 (18) | 0.0311 (19) | 0.0051 (14) | 0.0012 (14) | 0.0049 (15) |
C7 | 0.0266 (16) | 0.0289 (17) | 0.0264 (17) | 0.0044 (13) | 0.0070 (13) | 0.0044 (14) |
C8 | 0.0292 (17) | 0.0315 (18) | 0.037 (2) | 0.0018 (14) | −0.0010 (15) | 0.0008 (15) |
C9 | 0.0306 (18) | 0.042 (2) | 0.041 (2) | 0.0018 (15) | −0.0088 (16) | −0.0023 (17) |
C10 | 0.0337 (19) | 0.045 (2) | 0.040 (2) | 0.0106 (16) | −0.0065 (16) | 0.0053 (18) |
Co1—O1 | 2.093 (2) | C2—C3 | 1.368 (4) |
Co1—O1i | 2.093 (2) | C2—C7 | 1.422 (4) |
Co1—O2ii | 2.057 (2) | C3—C4 | 1.406 (5) |
Co1—O2iii | 2.057 (2) | C4—C5 | 1.357 (5) |
Co1—N1i | 2.197 (2) | C4—H4 | 0.9300 |
Co1—N1 | 2.197 (2) | C5—C6 | 1.416 (5) |
Cl1—C3 | 1.738 (3) | C5—H5 | 0.9300 |
Cl2—C9 | 1.734 (4) | C6—C10 | 1.410 (5) |
N1—C8 | 1.312 (4) | C6—C7 | 1.419 (4) |
N1—C7 | 1.381 (4) | C8—C9 | 1.398 (5) |
O1—C1 | 1.257 (4) | C8—H8 | 0.9300 |
O2—C1 | 1.252 (4) | C9—C10 | 1.358 (5) |
O2—Co1iv | 2.057 (2) | C10—H10 | 0.9300 |
C1—C2 | 1.512 (4) | ||
O2ii—Co1—O2iii | 103.60 (12) | C7—C2—C1 | 119.2 (3) |
O2ii—Co1—O1 | 170.96 (9) | C2—C3—C4 | 122.5 (3) |
O2iii—Co1—O1 | 85.43 (8) | C2—C3—Cl1 | 119.6 (3) |
O2ii—Co1—O1i | 85.43 (8) | C4—C3—Cl1 | 117.9 (3) |
O2iii—Co1—O1i | 170.96 (8) | C5—C4—C3 | 120.0 (3) |
O1—Co1—O1i | 85.55 (12) | C5—C4—H4 | 120.0 |
O2ii—Co1—N1i | 87.24 (9) | C3—C4—H4 | 120.0 |
O2iii—Co1—N1i | 90.97 (9) | C4—C5—C6 | 120.5 (3) |
O1—Co1—N1i | 92.31 (9) | C4—C5—H5 | 119.8 |
O1i—Co1—N1i | 89.82 (9) | C6—C5—H5 | 119.8 |
O2ii—Co1—N1 | 90.97 (9) | C10—C6—C5 | 123.1 (3) |
O2iii—Co1—N1 | 87.24 (9) | C10—C6—C7 | 118.3 (3) |
O1—Co1—N1 | 89.82 (9) | C5—C6—C7 | 118.6 (3) |
O1i—Co1—N1 | 92.31 (9) | N1—C7—C6 | 121.1 (3) |
N1i—Co1—N1 | 177.10 (14) | N1—C7—C2 | 118.5 (3) |
C8—N1—C7 | 118.2 (3) | C6—C7—C2 | 120.5 (3) |
C8—N1—Co1 | 115.9 (2) | N1—C8—C9 | 123.5 (3) |
C7—N1—Co1 | 121.7 (2) | N1—C8—H8 | 118.2 |
C1—O1—Co1 | 111.49 (19) | C9—C8—H8 | 118.2 |
C1—O2—Co1iv | 130.7 (2) | C10—C9—C8 | 119.9 (3) |
O2—C1—O1 | 126.2 (3) | C10—C9—Cl2 | 122.6 (3) |
O2—C1—C2 | 114.9 (3) | C8—C9—Cl2 | 117.4 (3) |
O1—C1—C2 | 119.0 (3) | C9—C10—C6 | 118.8 (3) |
C3—C2—C7 | 117.8 (3) | C9—C10—H10 | 120.6 |
C3—C2—C1 | 122.9 (3) | C6—C10—H10 | 120.6 |
O2ii—Co1—N1—C8 | 9.9 (2) | Cl1—C3—C4—C5 | 176.0 (3) |
O2iii—Co1—N1—C8 | −93.6 (2) | C3—C4—C5—C6 | 3.0 (5) |
O1—Co1—N1—C8 | −179.1 (2) | C4—C5—C6—C10 | −178.1 (4) |
O1i—Co1—N1—C8 | 95.4 (2) | C4—C5—C6—C7 | 1.0 (5) |
O2ii—Co1—N1—C7 | 166.4 (2) | C8—N1—C7—C6 | 4.7 (4) |
O2iii—Co1—N1—C7 | 62.8 (2) | Co1—N1—C7—C6 | −151.2 (2) |
O1—Co1—N1—C7 | −22.7 (2) | C8—N1—C7—C2 | −174.0 (3) |
O1i—Co1—N1—C7 | −108.2 (2) | Co1—N1—C7—C2 | 30.1 (4) |
O1i—Co1—O1—C1 | 68.44 (19) | C10—C6—C7—N1 | −4.1 (5) |
N1i—Co1—O1—C1 | 158.1 (2) | C5—C6—C7—N1 | 176.6 (3) |
N1—Co1—O1—C1 | −23.9 (2) | C10—C6—C7—C2 | 174.5 (3) |
Co1iv—O2—C1—O1 | 8.1 (5) | C5—C6—C7—C2 | −4.8 (5) |
Co1iv—O2—C1—C2 | −170.54 (19) | C3—C2—C7—N1 | −177.0 (3) |
Co1—O1—C1—O2 | −109.2 (3) | C1—C2—C7—N1 | 7.7 (4) |
Co1—O1—C1—C2 | 69.4 (3) | C3—C2—C7—C6 | 4.4 (4) |
O2—C1—C2—C3 | −65.8 (4) | C1—C2—C7—C6 | −170.9 (3) |
O1—C1—C2—C3 | 115.4 (3) | C7—N1—C8—C9 | −1.4 (5) |
O2—C1—C2—C7 | 109.2 (3) | Co1—N1—C8—C9 | 155.8 (3) |
O1—C1—C2—C7 | −69.6 (4) | N1—C8—C9—C10 | −2.3 (6) |
C7—C2—C3—C4 | −0.3 (5) | N1—C8—C9—Cl2 | 179.7 (3) |
C1—C2—C3—C4 | 174.8 (3) | C8—C9—C10—C6 | 2.8 (6) |
C7—C2—C3—Cl1 | −179.7 (2) | Cl2—C9—C10—C6 | −179.4 (3) |
C1—C2—C3—Cl1 | −4.6 (4) | C5—C6—C10—C9 | 179.5 (4) |
C2—C3—C4—C5 | −3.4 (5) | C7—C6—C10—C9 | 0.4 (5) |
Symmetry codes: (i) −x+3/2, −y+3/2, z; (ii) x, −y+3/2, z+1/2; (iii) −x+3/2, y, z+1/2; (iv) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C10H4Cl2NO2)2] |
Mr | 541.01 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 298 |
a, b, c (Å) | 13.5109 (14), 15.964 (2), 9.2157 (16) |
V (Å3) | 1987.7 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.43 |
Crystal size (mm) | 0.49 × 0.33 × 0.31 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.57, 0.64 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9558, 1752, 1404 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.089, 1.11 |
No. of reflections | 1752 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.76 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
Co1—O1 | 2.093 (2) | Co1—N1 | 2.197 (2) |
Co1—O2i | 2.057 (2) | ||
O2i—Co1—O2ii | 103.60 (12) | O2ii—Co1—N1 | 87.24 (9) |
O2i—Co1—O1 | 170.96 (9) | O1—Co1—N1 | 89.82 (9) |
O2ii—Co1—O1 | 85.43 (8) | O1iii—Co1—N1 | 92.31 (9) |
O1—Co1—O1iii | 85.55 (12) | N1iii—Co1—N1 | 177.10 (14) |
O2i—Co1—N1 | 90.97 (9) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+3/2, y, z+1/2; (iii) −x+3/2, −y+3/2, z. |
Acknowledgements
This work was supported by the Natural Science Young Scholars Foundation of Chongqing University and Chongqing University Postgraduate Science and Innovation Fund.
References
Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35–37. Web of Science CSD CrossRef CAS Google Scholar
Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171–175. CrossRef Google Scholar
Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109–1115. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597–606. Web of Science CrossRef CAS Google Scholar
Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73–78. Web of Science CrossRef Google Scholar
Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401. Google Scholar
Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120–121. Google Scholar
Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang et al., 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the CoII cation located on a twofold rotation axis. The CoII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom via a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face π–π stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2i–C7i benzene rings [symmetry code: (i) 2 - x, 1 - y, - z].