metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Bromido-di­bromido-μ-hydroxido-bis­­[(4S)-2-halo-6-(4-iso­propyl-4,5-di­hydro­oxazol-2-yl)pyridine]dicopper(II) (halo: Cl/Br = 3:1)

aInstitut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
*Correspondence e-mail: bernhard.breit@organik.chemie.uni-freiburg.de

(Received 6 September 2007; accepted 13 November 2007; online 6 December 2007)

The crystal structure of the title complex, [Cu2Br3(OH)(C11H13Br0.5Cl1.5N2O)2], consists of two (2-halo-6-oxazolin­yl)pyridine·CuBr units bridged by a Br atom and a hydroxide group. The CuII atoms are five-coordinate with an (N,N)BrCu(Br)(OH) distorted tetra­gonal–pyramidal core, and relatively short contacts to the bridging atoms (Cu—μ-OH and Cu—μ-Br). There are two symmetry-independent half-mol­ecules in the asymmetric unit, which differ only in the arrangement of the isopropyl group. The mol­ecules are located on a twofold rotation axes.

Related literature

For related literature, see: Chelucci & Thummel (2002[Chelucci, G. & Thummel, R. P. (2002). Chem. Rev. 102, 3129-3170.]); Fache et al. (2000[Fache, F., Schulz, E., Tommasino, M. & Lemaire, M. (2000). Chem. Rev. 100, 2159-2232.]); Karlin & Gultneh (1987[Karlin, K. D. & Gultneh, Y. (1987). Prog. Inorg. Chem. 35, 219-327.]); Kaim & Schwederski (1991[Kaim, W. & Schwederski, B. (1991). Bioanorganische Chemie. Stuttgart: Teubner.]); Lehn (1995[Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH.]); Mezei & Raptis (2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]); Thompson et al. (1987[Thompson, L. K., Mandal, S. K., Rosenberg, L., Lee, F. L. & Gabe, E. J. (1987). Inorg. Chim. Acta, 133, 81-91.]); Walther et al. (1997[Walther, D., Hamza, K., Görls, H. & Imhof, W. (1997). Z. Anorg. Allg. Chem. 623, 1135-1143.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br3(OH)(C11H13Br0.5Cl1.5N2O)2]

  • Mr = 855.42

  • Monoclinic, C 2

  • a = 23.2485 (5) Å

  • b = 7.98620 (10) Å

  • c = 17.9187 (4) Å

  • β = 119.9850 (9)°

  • V = 2881.63 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.50 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.313, Tmax = 0.521

  • 16751 measured reflections

  • 6381 independent reflections

  • 6086 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.06

  • 6381 reflections

  • 354 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2880 Friedel pairs

  • Flack parameter: −0.002 (7)

Table 1
Selected geometric parameters (Å, °)

Br11—Cu11 2.4069 (5)
Br12—Cu11 2.5538 (5)
Cu11—O102 1.8706 (19)
Cu11—N101 1.966 (3)
Cu11—N102 2.362 (3)
Cu11—Cu11i 3.2480 (8)
Br21—Cu21 2.4280 (5)
Br22—Cu21 2.5321 (6)
Cu21—O202 1.8705 (19)
Cu21—N201 1.974 (3)
Cu21—N202 2.362 (3)
Cu21—Cu21ii 3.2415 (8)
Cu11—Br12—Cu11i 78.98 (2)
Cu11i—O102—Cu11 120.5 (2)
Cu21—Br22—Cu21ii 79.59 (2)
Cu21ii—O202—Cu21 120.1 (2)
Symmetry codes: (i) -x+2, y, -z+2; (ii) -x+2, y, -z+1.

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1997[Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

Metal coordination and ligand geometry is essential in terms of activating and directing a metal-catalyzed process. Therefore, it is of interest to obtain a deeper insight into the structure of different coordination motifs and thus, this could help to enhance our understanding about the coordination behaviour and the scope and limitations of ligands applied in catalysis. Chiral oxazolines and pyridines are regarded as privileged ligands, which have found numerous applications in many asymmetric transformations (Fache et al., 2000; Chelucci & Thummel, 2002). Moreover, N-donor ligands are also found as component parts of enzymatic processes such as the fixation, activation and transport of oxygen (Kaim & Schwederski, 1991; Karlin & Gultneh, 1987), or they are used for studies concerning self-organizing phenomena (Lehn, 1995).

During our work in the field of supramolecular ligands and catalysts, the novel title compound (I) was isolated from a mixture of Cl- and Br-substituted oxazolinyl-pyridine ligands. This mixture was obtained from the oxazoline ring closure reaction of 2-bromo-6-(4-isopropyl-4,5-dihydro-oxazol-2-yl)pyridine under acidic conditions (HCl), and subsequent partial aromatic substitution of the bromine. After complexation with CuBr.SMe2, X-ray structure analysis reveales a 3:1 Cl/Br disorder ratio at the 2-halopyridine position, and the complex contains an unprecedented coordination motif of two [(2-halo-6-oxazolinyl)pyridine]CuIIBr units bridged by a Br atom and a hydroxide group. To the best of our knowledge there are various triple bridged dinuclear CuII complexes bearing different µ3-bridging ligands (µ-OH, µ-Br and µ-pyridazine) (Thompson et al., 1987), but only two double bridged dinuclear CuII complexes with Cl and OH as µ2-bridging anions have been reported (Walther et al., 1997; Mezei & Raptis, 2004).

In analogy to a previous report, complex (I) was obtained by aerial oxidation of a CDCl3 solution of a red oxazolinyl pyridine/CuBr complex (Walther et al., 1997). The X-ray structure analysis confirms a distorted tetragonal-pyramidal coordination geometry at the CuII centers of the dimeric complex. Both chiral oxazolinyl pyridine ligands act as a bidentate N,N-ligand, forming a five-membered chelate ring. Although all nitrogen atoms are sp2-hybridized, the bond lengths of the Cu — N(pyr) bonds [Cu11 — N102 = 2.362 (3) Å, Cu21 — N202 = 2.362 (3) Å] are significantly longer than the Cu — N(oxa) distance [Cu11 — N101 = 1.966 (3) Å, Cu21 — N201 = 1.97 (3) Å]. This presumably originates from dipole-dipole repulsion between the pyridinyl halides and the bridging ligands OH and Br.

Br(11) and Br(21) are bonded with somewhat shorter distances [Cu11 — Br11= 2.4069 (5) Å, Cu21 — Br21= 2.4280 (5) Å], and the bridging bromine Br12 and Br22 respectively are bonded by more distant contacts [Cu11 — Br12 = 2.5538 (5) Å, Cu21 — Br22 = 2.5321 (6) Å]. Although the atomic radii increase from Cl to Br, these Cu — Br bridging bonds and the Cu ··· Cu distances [Cu11 ··· Cu11a = 3.2480 (8) Å, Cu21 ··· Cu21a = 3.2415 (8) Å] in complex (I) are in the range of those observed in previous reported Cu ··· Cu contacts [3.1963 (7); Mezei & Raptis, 2004; 3.271 Å; Walther et al., 1997] and Cu — µCl bonds [2.409 (1) and 2.450 (1); Mezei & Raptis, 2004; 2.648 (2) Å and 2.507 (2) Å; Walther et al., 1997]. Moreover, the distance between the Cu atoms and the bridging hydroxo groups are slightly shorter [1.8716 (19) Å and 1.8705 (19) Å] when compared with both µ-Cl, µ-OH bridged CuII complexes [1.903 (3) and 1.905 (3); Mezei & Raptis, 2004; 1.914 (5) Å and 1.917 (5) Å; Walther et al., 1997]. The hydroxide bridge angles [120.5 (2)° and 120.1 (2)°] are substantially larger [114.2 (2)°; Mezei & Raptis, 2004; 117.3 (2)°; Walther et al., 1997], whereas the Cu — Br — Cu angle [78.98 (2)° and 79.59 (2)°] are in good agreement with one reported [78.7 (3)°; Walther et al., 1997] and smaller than the other [82.27 (4)°; Mezei & Raptis, 2004]. The compound (I) obtained provides a new motif in CuII pyridine and oxazoline chemistry, and represents the first example of a Br and OH µ2-bridged dinuclear (ligand)(halide)CuII complex.

Noteworthy is the absence of hydrogen bonds for the bridging OH-group. This OH-group is located in a "pocket" constituted by two Br and two Cl atoms of the same molecule. As a consequence no hydrogen-acceptor atom is accessible for hydrogen-bond formation. Although this hydrogen is on a restrained position, it is the only possible location.

Related literature top

For related literature, see: Chelucci & Thummel (2002); Fache et al. (2000); Karlin & Gultneh (1987); Kaim & Schwederski (1991); Lehn (1995); Mezei & Raptis (2004); Thompson et al. (1987); Walther et al. (1997).

Experimental top

A 3:1 mixture of (4S)-2-chloro-6-(4-isopropyl-4,5-dihydro-oxazol-2-yl)pyridine and (4S)-2-bromo-6-(4-isopropyl-4,5-dihydro-oxazol-2-yl)pyridine (15.1 mg, 56.1 µmol, 2.0 eq.) and CuBr.SMe2 (5.70 mg, 27.7 µmol) were dissolved in CDCl3 (0.7 ml) under argon atmosphere. The resulting deep red CuI complex could not be isolated and reacted with air to form a brown solution and a black precipitate after five days. The reaction mixture was allowed to evaporate in air at room temperature. Black crystals of (I) were separated from the filtrate after two weeks.

Refinement top

The two positions of the disordered Cl- versus Br-atoms were determined from the difference map and refined anisotropically with occupancies of 0.75 (Cl) and 0.25 (Br). All H atom bound to C atoms were placed in calculated positions (C — H = 0.95 or 0.98 or 0.99 or 1.00 Å) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C). The H atoms bound to the bridging OH groups were found in Fourier difference map, restrained with O—H = 0.85 (2) Å and refined with Uiso = 1.2Ueq(O)

Structure description top

Metal coordination and ligand geometry is essential in terms of activating and directing a metal-catalyzed process. Therefore, it is of interest to obtain a deeper insight into the structure of different coordination motifs and thus, this could help to enhance our understanding about the coordination behaviour and the scope and limitations of ligands applied in catalysis. Chiral oxazolines and pyridines are regarded as privileged ligands, which have found numerous applications in many asymmetric transformations (Fache et al., 2000; Chelucci & Thummel, 2002). Moreover, N-donor ligands are also found as component parts of enzymatic processes such as the fixation, activation and transport of oxygen (Kaim & Schwederski, 1991; Karlin & Gultneh, 1987), or they are used for studies concerning self-organizing phenomena (Lehn, 1995).

During our work in the field of supramolecular ligands and catalysts, the novel title compound (I) was isolated from a mixture of Cl- and Br-substituted oxazolinyl-pyridine ligands. This mixture was obtained from the oxazoline ring closure reaction of 2-bromo-6-(4-isopropyl-4,5-dihydro-oxazol-2-yl)pyridine under acidic conditions (HCl), and subsequent partial aromatic substitution of the bromine. After complexation with CuBr.SMe2, X-ray structure analysis reveales a 3:1 Cl/Br disorder ratio at the 2-halopyridine position, and the complex contains an unprecedented coordination motif of two [(2-halo-6-oxazolinyl)pyridine]CuIIBr units bridged by a Br atom and a hydroxide group. To the best of our knowledge there are various triple bridged dinuclear CuII complexes bearing different µ3-bridging ligands (µ-OH, µ-Br and µ-pyridazine) (Thompson et al., 1987), but only two double bridged dinuclear CuII complexes with Cl and OH as µ2-bridging anions have been reported (Walther et al., 1997; Mezei & Raptis, 2004).

In analogy to a previous report, complex (I) was obtained by aerial oxidation of a CDCl3 solution of a red oxazolinyl pyridine/CuBr complex (Walther et al., 1997). The X-ray structure analysis confirms a distorted tetragonal-pyramidal coordination geometry at the CuII centers of the dimeric complex. Both chiral oxazolinyl pyridine ligands act as a bidentate N,N-ligand, forming a five-membered chelate ring. Although all nitrogen atoms are sp2-hybridized, the bond lengths of the Cu — N(pyr) bonds [Cu11 — N102 = 2.362 (3) Å, Cu21 — N202 = 2.362 (3) Å] are significantly longer than the Cu — N(oxa) distance [Cu11 — N101 = 1.966 (3) Å, Cu21 — N201 = 1.97 (3) Å]. This presumably originates from dipole-dipole repulsion between the pyridinyl halides and the bridging ligands OH and Br.

Br(11) and Br(21) are bonded with somewhat shorter distances [Cu11 — Br11= 2.4069 (5) Å, Cu21 — Br21= 2.4280 (5) Å], and the bridging bromine Br12 and Br22 respectively are bonded by more distant contacts [Cu11 — Br12 = 2.5538 (5) Å, Cu21 — Br22 = 2.5321 (6) Å]. Although the atomic radii increase from Cl to Br, these Cu — Br bridging bonds and the Cu ··· Cu distances [Cu11 ··· Cu11a = 3.2480 (8) Å, Cu21 ··· Cu21a = 3.2415 (8) Å] in complex (I) are in the range of those observed in previous reported Cu ··· Cu contacts [3.1963 (7); Mezei & Raptis, 2004; 3.271 Å; Walther et al., 1997] and Cu — µCl bonds [2.409 (1) and 2.450 (1); Mezei & Raptis, 2004; 2.648 (2) Å and 2.507 (2) Å; Walther et al., 1997]. Moreover, the distance between the Cu atoms and the bridging hydroxo groups are slightly shorter [1.8716 (19) Å and 1.8705 (19) Å] when compared with both µ-Cl, µ-OH bridged CuII complexes [1.903 (3) and 1.905 (3); Mezei & Raptis, 2004; 1.914 (5) Å and 1.917 (5) Å; Walther et al., 1997]. The hydroxide bridge angles [120.5 (2)° and 120.1 (2)°] are substantially larger [114.2 (2)°; Mezei & Raptis, 2004; 117.3 (2)°; Walther et al., 1997], whereas the Cu — Br — Cu angle [78.98 (2)° and 79.59 (2)°] are in good agreement with one reported [78.7 (3)°; Walther et al., 1997] and smaller than the other [82.27 (4)°; Mezei & Raptis, 2004]. The compound (I) obtained provides a new motif in CuII pyridine and oxazoline chemistry, and represents the first example of a Br and OH µ2-bridged dinuclear (ligand)(halide)CuII complex.

Noteworthy is the absence of hydrogen bonds for the bridging OH-group. This OH-group is located in a "pocket" constituted by two Br and two Cl atoms of the same molecule. As a consequence no hydrogen-acceptor atom is accessible for hydrogen-bond formation. Although this hydrogen is on a restrained position, it is the only possible location.

For related literature, see: Chelucci & Thummel (2002); Fache et al. (2000); Karlin & Gultneh (1987); Kaim & Schwederski (1991); Lehn (1995); Mezei & Raptis (2004); Thompson et al. (1987); Walther et al. (1997).

Computing details top

Data collection: COLLECT (Nonius, 1997–2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local programs.

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. The structure contains a 3:1 Cl/Br disorder at the 2-halopyridine position. The figure displays the Cl-part of this disorder (Cl15). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. CPK-plot of the bridging OH-group located in a pocket constituted by two Br (green) and two Cl (orange) atoms, illustrating no possibility for hydrogen bonding.
µ-Bromido-dibromido-bis[(4S)-2-(bromo/chloro)- 6-(4-isopropyl-4,5-dihydrooxazol-2-yl)pyridine]-µ-hydroxido-dicopper(II) top
Crystal data top
[Cu2Br3(OH)(C11H13Br0.5Cl1.5N2O)2]F(000) = 1668
Mr = 855.42Dx = 1.972 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 9966 reflections
a = 23.2485 (5) Åθ = 1.0–27.5°
b = 7.9862 (1) ŵ = 6.50 mm1
c = 17.9187 (4) ÅT = 100 K
β = 119.9850 (9)°Irregular, green
V = 2881.63 (10) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6381 independent reflections
Radiation source: long-fine-focus sealed tube6086 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.4°
CCD scansh = 2926
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1010
Tmin = 0.313, Tmax = 0.521l = 1923
16751 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0381P)2 + 2.2361P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.003
S = 1.06Δρmax = 0.92 e Å3
6381 reflectionsΔρmin = 0.90 e Å3
354 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.00132 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2880 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (7)
Crystal data top
[Cu2Br3(OH)(C11H13Br0.5Cl1.5N2O)2]V = 2881.63 (10) Å3
Mr = 855.42Z = 4
Monoclinic, C2Mo Kα radiation
a = 23.2485 (5) ŵ = 6.50 mm1
b = 7.9862 (1) ÅT = 100 K
c = 17.9187 (4) Å0.20 × 0.20 × 0.10 mm
β = 119.9850 (9)°
Data collection top
Nonius KappaCCD
diffractometer
6381 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
6086 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.521Rint = 0.046
16751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.92 e Å3
S = 1.06Δρmin = 0.90 e Å3
6381 reflectionsAbsolute structure: Flack (1983), 2880 Friedel pairs
354 parametersAbsolute structure parameter: 0.002 (7)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1011.19690 (17)0.7710 (4)1.0541 (3)0.0261 (8)
H1011.23140.86031.08200.031*
C1021.2139 (2)0.6644 (6)0.9968 (3)0.0353 (9)
H10A1.26220.66761.01780.042*
H10B1.20030.54650.99570.042*
C1031.12960 (19)0.8306 (4)0.9153 (3)0.0268 (8)
C1041.0775 (2)0.9089 (5)0.8353 (3)0.0308 (9)
C1051.0784 (3)0.9087 (6)0.7593 (3)0.0432 (12)
H1051.11250.85170.75490.052*
C1061.0294 (3)0.9923 (7)0.6900 (3)0.0498 (13)
H1061.02980.99690.63730.060*
C1070.9790 (3)1.0704 (6)0.6970 (3)0.0490 (14)
H1070.94441.12950.65000.059*
C1080.9812 (2)1.0585 (5)0.7764 (3)0.0342 (9)
C1091.19183 (17)0.6747 (4)1.1239 (3)0.0259 (8)
H1091.15180.60081.09570.031*
C1101.1840 (2)0.7949 (5)1.1846 (3)0.0324 (8)
H11A1.22130.87391.20930.049*
H11B1.18360.73111.23110.049*
H11C1.14220.85661.15250.049*
C1111.25314 (19)0.5648 (5)1.1744 (3)0.0378 (10)
H11D1.25680.48601.13510.057*
H11E1.24900.50231.21870.057*
H11F1.29290.63551.20200.057*
Br111.140591 (18)1.23282 (4)1.04093 (2)0.02632 (9)
Br121.00000.74718 (6)1.00000.02323 (11)
Br150.9118 (6)1.1501 (12)0.7897 (7)0.0444 (19)0.25
Cl150.9179 (4)1.1483 (8)0.7855 (5)0.0382 (12)0.75
Cu111.06770 (2)0.99397 (5)0.99464 (3)0.02011 (10)
N1011.13358 (15)0.8501 (4)0.9880 (2)0.0242 (6)
N1021.02942 (16)0.9853 (4)0.8453 (2)0.0279 (7)
O1011.17680 (15)0.7393 (4)0.9118 (2)0.0357 (7)
O1021.00001.1102 (5)1.00000.0269 (8)
H1021.00001.215 (3)1.00000.05 (2)*
C2010.83962 (18)0.8232 (4)0.5075 (2)0.0233 (7)
H2010.86310.92090.49980.028*
C2020.81820 (18)0.8714 (5)0.5736 (3)0.0283 (8)
H20A0.81900.99440.58070.034*
H20B0.77280.83030.55470.034*
C2030.90193 (17)0.6897 (4)0.6330 (2)0.0211 (7)
C2040.95679 (17)0.5943 (4)0.7024 (2)0.0216 (7)
C2050.96634 (19)0.5830 (5)0.7843 (3)0.0268 (8)
H2050.93630.63370.79900.032*
C2061.0221 (2)0.4941 (5)0.8456 (3)0.0308 (8)
H2061.02960.47930.90240.037*
C2071.0657 (2)0.4288 (5)0.8229 (3)0.0314 (9)
H2071.10430.37010.86370.038*
C2081.05201 (18)0.4507 (4)0.7385 (3)0.0258 (8)
C2090.78238 (19)0.7738 (5)0.4198 (3)0.0289 (8)
H2090.75910.67550.42720.035*
C2100.7332 (2)0.9214 (5)0.3837 (3)0.0340 (9)
H21A0.75641.02150.38080.051*
H21B0.71490.94320.42150.051*
H21C0.69710.89350.32580.051*
C2110.8058 (2)0.7261 (6)0.3569 (3)0.0438 (11)
H21D0.83160.81860.35240.066*
H21E0.76720.70340.30020.066*
H21F0.83370.62570.37790.066*
Br210.868653 (17)0.29997 (4)0.49113 (3)0.02563 (9)
Br221.00000.78245 (7)0.50000.03828 (16)
Br251.1113 (5)0.3707 (13)0.7061 (8)0.0325 (13)0.25
Cl251.1087 (5)0.3860 (12)0.7098 (7)0.0410 (15)0.75
Cu210.94230 (2)0.53885 (5)0.52565 (3)0.02187 (10)
N2010.88948 (14)0.6897 (4)0.5554 (2)0.0211 (6)
N2020.99806 (15)0.5291 (4)0.6777 (2)0.0234 (6)
O2010.86664 (13)0.7907 (3)0.65432 (17)0.0262 (5)
O2021.00000.4219 (5)0.50000.0282 (8)
H2021.00000.317 (3)0.50000.05 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1010.0164 (17)0.0216 (18)0.041 (2)0.0028 (13)0.0149 (16)0.0031 (15)
C1020.032 (2)0.033 (2)0.054 (3)0.0000 (17)0.031 (2)0.0058 (19)
C1030.0271 (19)0.0214 (18)0.043 (2)0.0101 (14)0.0258 (18)0.0072 (15)
C1040.035 (2)0.0281 (19)0.036 (2)0.0183 (17)0.0226 (19)0.0106 (16)
C1050.058 (3)0.044 (2)0.037 (2)0.032 (2)0.031 (2)0.0140 (19)
C1060.067 (4)0.048 (3)0.035 (2)0.036 (3)0.026 (2)0.012 (2)
C1070.056 (3)0.040 (3)0.028 (2)0.029 (2)0.003 (2)0.0048 (18)
C1080.036 (2)0.029 (2)0.028 (2)0.0167 (17)0.0080 (18)0.0003 (15)
C1090.0162 (16)0.0192 (16)0.037 (2)0.0020 (13)0.0098 (16)0.0008 (14)
C1100.0254 (19)0.0320 (19)0.036 (2)0.0065 (16)0.0121 (17)0.0001 (17)
C1110.022 (2)0.0246 (19)0.053 (3)0.0011 (16)0.0090 (19)0.0005 (18)
Br110.02191 (18)0.02086 (17)0.0380 (2)0.00514 (13)0.01633 (16)0.00369 (14)
Br120.0214 (2)0.0200 (2)0.0320 (3)0.0000.0161 (2)0.000
Br150.033 (3)0.043 (3)0.044 (3)0.0047 (19)0.0094 (19)0.020 (2)
Cl150.0285 (17)0.0254 (17)0.042 (2)0.0022 (11)0.0032 (15)0.0027 (15)
Cu110.0165 (2)0.0181 (2)0.0272 (2)0.00104 (16)0.01203 (18)0.00062 (16)
N1010.0200 (15)0.0221 (15)0.0324 (17)0.0041 (11)0.0145 (14)0.0039 (12)
N1020.0321 (18)0.0205 (15)0.0292 (17)0.0113 (13)0.0139 (14)0.0019 (13)
O1010.0381 (16)0.0355 (15)0.0512 (18)0.0059 (13)0.0356 (15)0.0109 (14)
O1020.0208 (19)0.0166 (18)0.047 (2)0.0000.0195 (17)0.000
C2010.0204 (17)0.0166 (16)0.035 (2)0.0031 (13)0.0151 (16)0.0042 (14)
C2020.0216 (18)0.0266 (18)0.037 (2)0.0065 (15)0.0146 (17)0.0001 (16)
C2030.0189 (17)0.0148 (16)0.033 (2)0.0023 (12)0.0154 (16)0.0016 (13)
C2040.0185 (17)0.0151 (15)0.0294 (19)0.0060 (12)0.0108 (15)0.0032 (13)
C2050.028 (2)0.0230 (18)0.032 (2)0.0069 (15)0.0170 (17)0.0047 (14)
C2060.034 (2)0.0247 (18)0.030 (2)0.0062 (16)0.0130 (17)0.0029 (15)
C2070.027 (2)0.0198 (17)0.036 (2)0.0021 (14)0.0076 (18)0.0034 (15)
C2080.0213 (18)0.0187 (17)0.038 (2)0.0016 (13)0.0155 (17)0.0046 (14)
C2090.0258 (19)0.0223 (19)0.038 (2)0.0007 (14)0.0152 (17)0.0013 (15)
C2100.0221 (19)0.035 (2)0.041 (2)0.0059 (15)0.0133 (18)0.0032 (17)
C2110.051 (3)0.044 (2)0.032 (2)0.024 (2)0.018 (2)0.0063 (19)
Br210.01980 (17)0.02221 (17)0.0378 (2)0.00142 (13)0.01654 (15)0.00206 (14)
Br220.0538 (4)0.0178 (3)0.0731 (4)0.0000.0542 (4)0.000
Br250.025 (2)0.0273 (19)0.052 (3)0.0113 (16)0.0246 (19)0.0141 (16)
Cl250.032 (2)0.038 (2)0.059 (3)0.0180 (14)0.0271 (17)0.0128 (16)
Cu210.0209 (2)0.0171 (2)0.0357 (2)0.00226 (16)0.0202 (2)0.00261 (17)
N2010.0202 (15)0.0163 (14)0.0312 (17)0.0039 (11)0.0160 (13)0.0028 (11)
N2020.0200 (15)0.0189 (15)0.0334 (17)0.0015 (11)0.0148 (13)0.0023 (12)
O2010.0233 (13)0.0276 (13)0.0330 (14)0.0021 (10)0.0180 (11)0.0025 (11)
O2020.029 (2)0.0177 (18)0.054 (2)0.0000.033 (2)0.000
Geometric parameters (Å, º) top
C101—N1011.492 (5)C201—N2011.491 (4)
C101—C1091.522 (5)C201—C2091.518 (5)
C101—C1021.530 (5)C201—C2021.546 (5)
C101—H1011.0000C201—H2011.0000
C102—O1011.451 (6)C202—O2011.466 (5)
C102—H10A0.9900C202—H20A0.9900
C102—H10B0.9900C202—H20B0.9900
C103—N1011.268 (5)C203—N2011.271 (5)
C103—O1011.345 (5)C203—O2011.334 (4)
C103—C1041.476 (6)C203—C2041.472 (5)
C104—N1021.361 (5)C204—N2021.346 (5)
C104—C1051.372 (6)C204—C2051.375 (5)
C105—C1061.369 (8)C205—C2061.403 (6)
C105—H1050.9500C205—H2050.9500
C106—C1071.388 (8)C206—C2071.371 (6)
C106—H1060.9500C206—H2060.9500
C107—C1081.401 (7)C207—C2081.393 (6)
C107—H1070.9500C207—H2070.9500
C108—N1021.319 (5)C208—N2021.336 (5)
C108—Cl151.715 (11)C208—Cl251.715 (10)
C108—Br151.891 (14)C208—Br251.855 (12)
C109—C1111.527 (5)C209—C2111.524 (6)
C109—C1101.529 (5)C209—C2101.541 (5)
C109—H1091.0000C209—H2091.0000
C110—H11A0.9800C210—H21A0.9800
C110—H11B0.9800C210—H21B0.9800
C110—H11C0.9800C210—H21C0.9800
C111—H11D0.9800C211—H21D0.9800
C111—H11E0.9800C211—H21E0.9800
C111—H11F0.9800C211—H21F0.9800
Br11—Cu112.4069 (5)Br21—Cu212.4280 (5)
Br12—Cu112.5538 (5)Br22—Cu212.5321 (6)
Br12—Cu11i2.5538 (5)Br22—Cu21ii2.5321 (6)
Cu11—O1021.8706 (19)Cu21—O2021.8705 (19)
Cu11—N1011.966 (3)Cu21—N2011.974 (3)
Cu11—N1022.362 (3)Cu21—N2022.362 (3)
O102—Cu11i1.8706 (19)O202—Cu21ii1.8705 (19)
O102—H1020.83 (2)O202—H2020.84 (2)
Cu11—Cu11i3.2480 (8)Cu21—Cu21ii3.2415 (8)
N101—C101—C109114.6 (3)N201—C201—C209115.9 (3)
N101—C101—C102100.7 (3)N201—C201—C202101.1 (3)
C109—C101—C102115.0 (3)C209—C201—C202114.0 (3)
N101—C101—H101108.7N201—C201—H201108.5
C109—C101—H101108.7C209—C201—H201108.5
C102—C101—H101108.7C202—C201—H201108.5
O101—C102—C101104.9 (3)O201—C202—C201105.3 (3)
O101—C102—H10A110.8O201—C202—H20A110.7
C101—C102—H10A110.8C201—C202—H20A110.7
O101—C102—H10B110.8O201—C202—H20B110.7
C101—C102—H10B110.8C201—C202—H20B110.7
H10A—C102—H10B108.8H20A—C202—H20B108.8
N101—C103—O101118.1 (4)N201—C203—O201118.5 (3)
N101—C103—C104123.3 (3)N201—C203—C204123.4 (3)
O101—C103—C104118.5 (3)O201—C203—C204118.0 (3)
N102—C104—C105123.5 (4)N202—C204—C205124.4 (3)
N102—C104—C103113.0 (3)N202—C204—C203112.5 (3)
C105—C104—C103123.4 (4)C205—C204—C203123.0 (3)
C106—C105—C104118.7 (5)C204—C205—C206117.5 (4)
C106—C105—H105120.6C204—C205—H205121.2
C104—C105—H105120.6C206—C205—H205121.2
C105—C106—C107119.7 (4)C207—C206—C205119.4 (4)
C105—C106—H106120.2C207—C206—H206120.3
C107—C106—H106120.2C205—C206—H206120.3
C106—C107—C108117.3 (4)C206—C207—C208118.3 (4)
C106—C107—H107121.4C206—C207—H207120.9
C108—C107—H107121.4C208—C207—H207120.9
N102—C108—C107124.2 (5)N202—C208—C207123.8 (4)
N102—C108—Cl15117.8 (4)N202—C208—Cl25116.5 (5)
C107—C108—Cl15118.0 (5)C207—C208—Cl25119.7 (5)
N102—C108—Br15115.7 (5)N202—C208—Br25116.6 (5)
C107—C108—Br15120.1 (5)C207—C208—Br25119.6 (5)
C101—C109—C111110.2 (3)C201—C209—C211112.2 (3)
C101—C109—C110110.7 (3)C201—C209—C210108.6 (3)
C111—C109—C110110.2 (3)C211—C209—C210110.2 (3)
C101—C109—H109108.6C201—C209—H209108.6
C111—C109—H109108.6C211—C209—H209108.6
C110—C109—H109108.6C210—C209—H209108.6
C109—C110—H11A109.5C209—C210—H21A109.5
C109—C110—H11B109.5C209—C210—H21B109.5
H11A—C110—H11B109.5H21A—C210—H21B109.5
C109—C110—H11C109.5C209—C210—H21C109.5
H11A—C110—H11C109.5H21A—C210—H21C109.5
H11B—C110—H11C109.5H21B—C210—H21C109.5
C109—C111—H11D109.5C209—C211—H21D109.5
C109—C111—H11E109.5C209—C211—H21E109.5
H11D—C111—H11E109.5H21D—C211—H21E109.5
C109—C111—H11F109.5C209—C211—H21F109.5
H11D—C111—H11F109.5H21D—C211—H21F109.5
H11E—C111—H11F109.5H21E—C211—H21F109.5
Cu11—Br12—Cu11i78.98 (2)Cu21—Br22—Cu21ii79.59 (2)
O102—Cu11—N101173.95 (13)O202—Cu21—N201171.98 (13)
O102—Cu11—N102102.86 (9)O202—Cu21—N202102.67 (8)
N101—Cu11—N10277.15 (13)N201—Cu21—N20276.43 (11)
O102—Cu11—Br1193.13 (10)O202—Cu21—Br2192.64 (10)
N101—Cu11—Br1192.77 (9)N201—Cu21—Br2195.36 (9)
N102—Cu11—Br11102.44 (8)N202—Cu21—Br21100.29 (7)
O102—Cu11—Br1280.27 (10)O202—Cu21—Br2280.15 (10)
N101—Cu11—Br1293.71 (9)N201—Cu21—Br2292.17 (9)
N102—Cu11—Br1297.44 (8)N202—Cu21—Br22101.51 (7)
Br11—Cu11—Br12160.00 (2)Br21—Cu21—Br22158.06 (2)
C103—N101—C101107.5 (3)C203—N201—C201108.4 (3)
C103—N101—Cu11118.4 (3)C203—N201—Cu21117.6 (2)
C101—N101—Cu11133.5 (2)C201—N201—Cu21133.6 (2)
C108—N102—C104116.5 (4)C208—N202—C204116.5 (3)
C108—N102—Cu11135.2 (3)C208—N202—Cu21134.9 (3)
C104—N102—Cu11107.1 (3)C204—N202—Cu21107.2 (2)
C103—O101—C102104.3 (3)C203—O201—C202105.2 (3)
Cu11i—O102—Cu11120.5 (2)Cu21ii—O202—Cu21120.1 (2)
Cu11i—O102—H102119.76 (10)Cu21ii—O202—H202119.95 (10)
Cu11—O102—H102119.76 (9)Cu21—O202—H202119.95 (10)
N101—C101—C102—O10120.7 (3)N201—C201—C202—O20111.8 (3)
C109—C101—C102—O101144.4 (3)C209—C201—C202—O201136.9 (3)
N101—C103—C104—N1028.1 (5)N201—C203—C204—N2029.8 (5)
O101—C103—C104—N102174.5 (3)O201—C203—C204—N202165.2 (3)
N101—C103—C104—C105170.1 (4)N201—C203—C204—C205174.0 (3)
O101—C103—C104—C1057.3 (5)O201—C203—C204—C20511.0 (5)
N102—C104—C105—C1061.4 (6)N202—C204—C205—C2061.6 (5)
C103—C104—C105—C106176.7 (4)C203—C204—C205—C206177.4 (3)
C104—C105—C106—C1072.0 (6)C204—C205—C206—C2072.7 (5)
C105—C106—C107—C1080.1 (6)C205—C206—C207—C2081.3 (6)
C106—C107—C108—N1023.4 (6)C206—C207—C208—N2021.3 (6)
C106—C107—C108—Cl15178.0 (4)C206—C207—C208—Cl25174.7 (5)
C106—C107—C108—Br15176.4 (5)C206—C207—C208—Br25177.9 (5)
N101—C101—C109—C111166.2 (3)N201—C201—C209—C21162.8 (4)
C102—C101—C109—C11150.2 (4)C202—C201—C209—C211179.6 (3)
N101—C101—C109—C11071.6 (4)N201—C201—C209—C210175.1 (3)
C102—C101—C109—C110172.4 (3)C202—C201—C209—C21058.4 (4)
Cu11i—Br12—Cu11—O1020.0Cu21ii—Br22—Cu21—O2020.0
Cu11i—Br12—Cu11—N101179.35 (10)Cu21ii—Br22—Cu21—N201177.65 (9)
Cu11i—Br12—Cu11—N102101.85 (9)Cu21ii—Br22—Cu21—N202101.06 (7)
Cu11i—Br12—Cu11—Br1171.98 (6)Cu21ii—Br22—Cu21—Br2172.21 (5)
O101—C103—N101—C1014.5 (4)O201—C203—N201—C2015.6 (4)
C104—C103—N101—C101172.8 (3)C204—C203—N201—C201169.4 (3)
O101—C103—N101—Cu11176.6 (2)O201—C203—N201—Cu21179.9 (2)
C104—C103—N101—Cu110.8 (5)C204—C203—N201—Cu215.1 (4)
C109—C101—N101—C103139.6 (3)C209—C201—N201—C203134.4 (3)
C102—C101—N101—C10315.7 (4)C202—C201—N201—C20310.6 (4)
C109—C101—N101—Cu1150.1 (4)C209—C201—N201—Cu2152.3 (4)
C102—C101—N101—Cu11174.0 (3)C202—C201—N201—Cu21176.1 (3)
N102—Cu11—N101—C1035.2 (3)N202—Cu21—N201—C20310.5 (3)
Br11—Cu11—N101—C10396.9 (3)Br21—Cu21—N201—C20388.8 (3)
Br12—Cu11—N101—C103102.0 (3)Br22—Cu21—N201—C203111.8 (3)
N102—Cu11—N101—C101174.7 (3)N202—Cu21—N201—C201162.3 (3)
Br11—Cu11—N101—C10172.6 (3)Br21—Cu21—N201—C20198.3 (3)
Br12—Cu11—N101—C10188.5 (3)Br22—Cu21—N201—C20161.0 (3)
C107—C108—N102—C1044.0 (6)C207—C208—N202—C2042.4 (5)
Cl15—C108—N102—C104177.3 (4)Cl25—C208—N202—C204173.7 (5)
Br15—C108—N102—C104175.7 (4)Br25—C208—N202—C204176.8 (4)
C107—C108—N102—Cu11161.2 (3)C207—C208—N202—Cu21162.2 (3)
Cl15—C108—N102—Cu1117.5 (5)Cl25—C208—N202—Cu2121.7 (6)
Br15—C108—N102—Cu1119.1 (6)Br25—C208—N202—Cu2118.6 (6)
C105—C104—N102—C1081.6 (5)C205—C204—N202—C2080.9 (5)
C103—C104—N102—C108179.8 (3)C203—C204—N202—C208175.3 (3)
C105—C104—N102—Cu11167.5 (3)C205—C204—N202—Cu21167.7 (3)
C103—C104—N102—Cu1110.7 (3)C203—C204—N202—Cu2116.1 (3)
O102—Cu11—N102—C10811.1 (4)O202—Cu21—N202—C2087.7 (3)
N101—Cu11—N102—C108175.1 (4)N201—Cu21—N202—C208179.5 (3)
Br11—Cu11—N102—C10885.1 (4)Br21—Cu21—N202—C20887.4 (3)
Br12—Cu11—N102—C10892.7 (4)Br22—Cu21—N202—C20890.0 (3)
O102—Cu11—N102—C104177.2 (2)O202—Cu21—N202—C204173.2 (2)
N101—Cu11—N102—C1049.0 (2)N201—Cu21—N202—C20414.9 (2)
Br11—Cu11—N102—C10481.0 (2)Br21—Cu21—N202—C20478.1 (2)
Br12—Cu11—N102—C104101.1 (2)Br22—Cu21—N202—C204104.4 (2)
N101—C103—O101—C1029.7 (4)N201—C203—O201—C2022.8 (4)
C104—C103—O101—C102172.8 (3)C204—C203—O201—C202178.0 (3)
C101—C102—O101—C10318.8 (4)C201—C202—O201—C2039.4 (4)
N102—Cu11—O102—Cu11i95.49 (8)N202—Cu21—O202—Cu21ii99.70 (8)
Br11—Cu11—O102—Cu11i160.99 (2)Br21—Cu21—O202—Cu21ii159.13 (2)
Br12—Cu11—O102—Cu11i0.0Br22—Cu21—O202—Cu21ii0.0
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Br3(OH)(C11H13Br0.5Cl1.5N2O)2]
Mr855.42
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)23.2485 (5), 7.9862 (1), 17.9187 (4)
β (°) 119.9850 (9)
V3)2881.63 (10)
Z4
Radiation typeMo Kα
µ (mm1)6.50
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.313, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
16751, 6381, 6086
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.06
No. of reflections6381
No. of parameters354
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.90
Absolute structureFlack (1983), 2880 Friedel pairs
Absolute structure parameter0.002 (7)

Computer programs: COLLECT (Nonius, 1997–2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and local programs.

Selected geometric parameters (Å, º) top
Br11—Cu112.4069 (5)Br21—Cu212.4280 (5)
Br12—Cu112.5538 (5)Br22—Cu212.5321 (6)
Cu11—O1021.8706 (19)Cu21—O2021.8705 (19)
Cu11—N1011.966 (3)Cu21—N2011.974 (3)
Cu11—N1022.362 (3)Cu21—N2022.362 (3)
Cu11—Cu11i3.2480 (8)Cu21—Cu21ii3.2415 (8)
Cu11—Br12—Cu11i78.98 (2)Cu21—Br22—Cu21ii79.59 (2)
Cu11i—O102—Cu11120.5 (2)Cu21ii—O202—Cu21120.1 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie, DFG (Int. Research Training Group GRK 1038), the Alfried Krupp Award for young university teachers of the Krupp Foundation (to BB), and BASF.

References

First citationAltomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChelucci, G. & Thummel, R. P. (2002). Chem. Rev. 102, 3129–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFache, F., Schulz, E., Tommasino, M. & Lemaire, M. (2000). Chem. Rev. 100, 2159–2232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaim, W. & Schwederski, B. (1991). Bioanorganische Chemie. Stuttgart: Teubner.  Google Scholar
First citationKarlin, K. D. & Gultneh, Y. (1987). Prog. Inorg. Chem. 35, 219–327.  CrossRef CAS Web of Science Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH.  Google Scholar
First citationMezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, L. K., Mandal, S. K., Rosenberg, L., Lee, F. L. & Gabe, E. J. (1987). Inorg. Chim. Acta, 133, 81–91.  CSD CrossRef CAS Web of Science Google Scholar
First citationWalther, D., Hamza, K., Görls, H. & Imhof, W. (1997). Z. Anorg. Allg. Chem. 623, 1135–1143.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds