metal-organic compounds
catena-Poly[[nickel(II)-μ3-1,1-dicyanoethene-2,2-dithiolato-κ4S,S′:N:N′-bis[(15-crown-5)magnesium(II)]-μ3-1,1-dicyanoethene-2,2-dithiolato-κ4N:N′:S,S′] dichloride]
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: dougroup@163.com
The reaction of MgCl2, NiCl2, and Na2(i-mnt) (i-mnt is 1,1-dicyanothene-2,2-dithiolate) with 15-crown-5 (15-C-5) leads to an infinite chain polymer, {[NiMg2(C4N2S2)2(C10H20O5)2]Cl2}n or {[Mg(15-C-5)]2[Ni(i-mnt)2]Cl2}n, which consists of two [Mg(15-C-5)]2+ complex cations, one [Ni(i-mnt)2]2− complex anion and two Cl− ions per formula unit. In the [Ni(i-mnt)2]2− complex anion, Ni2+ is located on a crystallographic mirror plane with a slightly distorted square-planar coordination by four S atoms. In the [Mg(15-C-5)]2+ complex cations, the Mg and one O atom of the crown lie on mirror planes and the Mg atoms are in sevenfold coordination environments of five O atoms from the crown and two N atoms from two i-mnt anions. The bridging of the two complexes via the Mg—N bonds leads to the formation of one-dimensional chains along the a axis.
Related literature
For studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999). For comparative data on Ni–S bonds, see: Gao et al. (2005). For comparative data on Mg–O bonds, see: Chadwick et al. (1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807065622/sq2001sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807065622/sq2001Isup2.hkl
A solution of NiCl2 (0.2377 g, 0.1 mmol), Na2(i-mnt) and MgCl2 in methanol (10 ml), was added to a solution of 15-C-5 (0.44 g, 2 mmol) in CH2Cl2 (10 ml). The mixture was stirred for 3 hrs at room temperature, and then separated. The underlayer was recrystallized in a mixture of CH2Cl2 and ether, and crystals suitable for X-ray diffraction were obtained after two weeks (m.p. 471–473 K). Analysis calc. for C28H40Cl2Mg2N4O10S4: C 37.37, H 4.49, N 6.23%; found: C 37.29, H 4.40, N 6.32%.
All H atoms were placed in geometrically idealized positions (C–H 0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C). 1979 Friedel pairs were used to determine the Flack parameter.
Crown π-π stacking interactions between the naphthylene moieties of N15—C-5, which is not observed in the title complex.
have gained special attention due to their coordination abilities with not only alkali metal ions, but also alkaline earth ions (Junk & Steed, 1999). In this work, we report the synthesis and structure of a crown ether complex of Mg2+ networked with a dithiolate NiII complex. As shown in Fig. 1, the of title complex is made up of two half [Mg(15—C-5)]2+ complex cations, one half [Ni(i-mnt)2]2- complex anion and two dissociative Cl- ions on mirror planes. For the two crystallographically independent [Mg(15—C-5)]2+ complex cations, each Mg2+ is coordinated by five O atoms of the crown ether with the average Mg–O distance of 2.566 (12) Å, which is far longer than the value in the complex [Mg(15—C-5)(SCPh3)2](2.177 Å) (Chadwick et al., 1999). The additional coordination sites of Mg2+ are occupied by two N atoms from cyano groups of the neighboring complex anions [Ni(i-mnt)2]2-, with the average Mg–N bond length of 2.531 (12) Å. For the complex anion, the Ni2+ is coordinated by four S atoms of two (i-mnt)2- anions in a square planar geometry. The Ni–S bond lengths are in the range of 2.207 (3) to 2.212 (3) Å, which is in perfect agreement with the values (average 2.215 Å) reported in the complex [Na(N15—C-5)]2[Ni(i-mnt)2] (Gao et al., 2005). Fig. 2 shows that the title complex is assembled into a one-dimensional polymer by the Mg–N bonds between the adjacent [Mg(15—C-5)]2+ complex cations and the [Ni(i-mnt)2]2- complex anions along the a axis. This motif is similar to what is found in the complex [Na(N15—C-5)]2[Ni(i-mnt)2], which is also assembled into a one-dimensional stucture by the Na–N bonds between the complex cations and the complex anions. [Na(N15—C-5)]2[Ni(i-mnt)2] further exhibits a two-dimensional supramolecular structure resulting fromFor studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999). For comparative data on Ni–S bonds, see: Gao et al. (2005). For comparative data on Mg–O bonds, see: Chadwick et al. (1999).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).[NiMg2(C4N2S2)2(C10H20O5)2]Cl2 | F(000) = 1864 |
Mr = 899.11 | Dx = 1.406 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 4296 reflections |
a = 13.6227 (16) Å | θ = 2.2–24.9° |
b = 20.591 (3) Å | µ = 0.86 mm−1 |
c = 15.148 (2) Å | T = 298 K |
V = 4249 (1) Å3 | Block, brown |
Z = 4 | 0.41 × 0.32 × 0.30 mm |
Bruker SMART CCD area-detector diffractometer | 1979 independent reflections |
Radiation source: fine-focus sealed tube | 1651 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→16 |
Tmin = 0.719, Tmax = 0.783 | k = −24→23 |
10632 measured reflections | l = −9→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.192 | w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1979 reflections | Δρmax = 0.92 e Å−3 |
242 parameters | Δρmin = −0.47 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (5) |
[NiMg2(C4N2S2)2(C10H20O5)2]Cl2 | V = 4249 (1) Å3 |
Mr = 899.11 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 13.6227 (16) Å | µ = 0.86 mm−1 |
b = 20.591 (3) Å | T = 298 K |
c = 15.148 (2) Å | 0.41 × 0.32 × 0.30 mm |
Bruker SMART CCD area-detector diffractometer | 1979 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1651 reflections with I > 2σ(I) |
Tmin = 0.719, Tmax = 0.783 | Rint = 0.033 |
10632 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.192 | w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | Δρmax = 0.92 e Å−3 |
1979 reflections | Δρmin = −0.47 e Å−3 |
242 parameters | Absolute structure: Flack (1983) |
1 restraint | Absolute structure parameter: 0.02 (5) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.12793 (7) | 0.9803 (2) | 0.0492 (4) | |
Mg1 | 0.5000 | 0.3176 (3) | 1.0866 (4) | 0.0713 (14) | |
Mg2 | 0.5000 | −0.0308 (2) | 0.8135 (3) | 0.0565 (11) | |
N1 | 0.3850 (8) | 0.2476 (5) | 0.9910 (9) | 0.093 (4) | |
N2 | 0.3863 (6) | 0.0587 (5) | 0.8547 (8) | 0.074 (3) | |
O1 | 0.5000 | 0.4399 (6) | 1.1122 (9) | 0.084 (3) | |
O2 | 0.3268 (7) | 0.3721 (4) | 1.1116 (7) | 0.084 (2) | |
O3 | 0.3963 (10) | 0.2655 (6) | 1.2030 (8) | 0.112 (4) | |
O4 | 0.5000 | −0.0908 (6) | 0.9581 (9) | 0.109 (5) | |
O5 | 0.6412 (9) | −0.1054 (5) | 0.8323 (8) | 0.103 (3) | |
O6 | 0.5988 (12) | −0.0446 (7) | 0.6826 (9) | 0.131 (4) | |
Cl1 | 0.0000 | 0.9064 (4) | 0.8312 (9) | 0.159 (4) | |
Cl2 | 0.0000 | 0.2859 (4) | 0.2265 (8) | 0.149 (3) | |
S1 | 0.12480 (17) | 0.18894 (12) | 1.02320 (19) | 0.0571 (6) | |
S2 | 0.12522 (16) | 0.07215 (11) | 0.9274 (2) | 0.0564 (6) | |
C1 | 0.4140 (11) | 0.4707 (7) | 1.1444 (12) | 0.095 (4) | |
H1A | 0.4158 | 0.5167 | 1.1309 | 0.114* | |
H1B | 0.4095 | 0.4655 | 1.2079 | 0.114* | |
C2 | 0.3302 (12) | 0.4407 (6) | 1.1020 (12) | 0.098 (4) | |
H2A | 0.2706 | 0.4591 | 1.1265 | 0.118* | |
H2B | 0.3316 | 0.4512 | 1.0395 | 0.118* | |
C3 | 0.2781 (12) | 0.3557 (9) | 1.1909 (12) | 0.100 (4) | |
H3A | 0.2084 | 0.3647 | 1.1863 | 0.120* | |
H3B | 0.3047 | 0.3803 | 1.2401 | 0.120* | |
C4 | 0.2959 (14) | 0.2843 (9) | 1.2035 (13) | 0.108 (5) | |
H4A | 0.2670 | 0.2712 | 1.2592 | 0.129* | |
H4B | 0.2620 | 0.2609 | 1.1569 | 0.129* | |
C5 | 0.4508 (14) | 0.2588 (10) | 1.2820 (11) | 0.116 (6) | |
H5A | 0.4301 | 0.2936 | 1.3210 | 0.140* | |
H5B | 0.4301 | 0.2185 | 1.3093 | 0.140* | |
C6 | 0.589 (2) | −0.1249 (9) | 0.9749 (16) | 0.132 (7) | |
H6A | 0.5784 | −0.1707 | 0.9635 | 0.159* | |
H6B | 0.6055 | −0.1202 | 1.0368 | 0.159* | |
C7 | 0.674 (2) | −0.1019 (10) | 0.9200 (15) | 0.130 (7) | |
H7A | 0.6922 | −0.0577 | 0.9353 | 0.156* | |
H7B | 0.7311 | −0.1297 | 0.9287 | 0.156* | |
C8 | 0.7145 (16) | −0.0869 (10) | 0.7714 (16) | 0.123 (6) | |
H8A | 0.7715 | −0.1148 | 0.7775 | 0.147* | |
H8B | 0.7347 | −0.0425 | 0.7823 | 0.147* | |
C9 | 0.6722 (17) | −0.0931 (10) | 0.6793 (15) | 0.127 (7) | |
H9A | 0.7209 | −0.0838 | 0.6343 | 0.152* | |
H9B | 0.6445 | −0.1358 | 0.6691 | 0.152* | |
C10 | 0.552 (2) | −0.0474 (13) | 0.600 (2) | 0.172 (11) | |
H10A | 0.5743 | −0.0863 | 0.5698 | 0.206* | |
H10B | 0.5743 | −0.0105 | 0.5652 | 0.206* | |
C11 | 0.1961 (6) | 0.1356 (4) | 0.9620 (6) | 0.051 (2) | |
C12 | 0.2935 (7) | 0.1459 (4) | 0.9403 (7) | 0.0521 (19) | |
C13 | 0.3435 (7) | 0.2023 (5) | 0.9693 (8) | 0.061 (2) | |
C14 | 0.3456 (7) | 0.0975 (5) | 0.8923 (8) | 0.057 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0437 (7) | 0.0506 (8) | 0.0532 (8) | 0.000 | 0.000 | −0.0009 (7) |
Mg1 | 0.077 (3) | 0.067 (3) | 0.069 (3) | 0.000 | 0.000 | −0.006 (3) |
Mg2 | 0.057 (2) | 0.058 (2) | 0.055 (2) | 0.000 | 0.000 | −0.009 (2) |
N1 | 0.075 (6) | 0.090 (7) | 0.116 (9) | −0.019 (5) | 0.025 (6) | −0.051 (7) |
N2 | 0.044 (4) | 0.075 (6) | 0.104 (7) | 0.008 (4) | 0.006 (5) | −0.033 (6) |
O1 | 0.080 (8) | 0.071 (7) | 0.101 (9) | 0.000 | 0.000 | −0.023 (6) |
O2 | 0.078 (5) | 0.086 (5) | 0.089 (6) | 0.005 (4) | 0.003 (5) | −0.012 (5) |
O3 | 0.121 (9) | 0.138 (9) | 0.077 (6) | 0.016 (7) | 0.026 (6) | 0.007 (6) |
O4 | 0.185 (16) | 0.072 (7) | 0.069 (8) | 0.000 | 0.000 | 0.007 (6) |
O5 | 0.126 (9) | 0.080 (6) | 0.103 (8) | 0.020 (6) | −0.031 (7) | −0.013 (6) |
O6 | 0.173 (12) | 0.117 (9) | 0.103 (9) | 0.033 (9) | 0.043 (9) | 0.004 (7) |
Cl1 | 0.130 (6) | 0.122 (5) | 0.225 (11) | 0.000 | 0.000 | 0.018 (7) |
Cl2 | 0.115 (5) | 0.136 (5) | 0.197 (9) | 0.000 | 0.000 | 0.046 (6) |
S1 | 0.0443 (12) | 0.0618 (13) | 0.0652 (14) | 0.0027 (9) | 0.0003 (11) | −0.0202 (12) |
S2 | 0.0471 (12) | 0.0464 (11) | 0.0757 (15) | 0.0005 (8) | 0.0012 (12) | −0.0051 (11) |
C1 | 0.092 (9) | 0.084 (8) | 0.108 (11) | 0.010 (7) | −0.009 (9) | −0.006 (8) |
C2 | 0.096 (10) | 0.081 (8) | 0.117 (11) | 0.016 (7) | −0.011 (9) | −0.009 (8) |
C3 | 0.085 (9) | 0.116 (12) | 0.100 (11) | −0.005 (8) | 0.004 (8) | −0.006 (9) |
C4 | 0.103 (11) | 0.120 (12) | 0.101 (11) | −0.014 (9) | 0.026 (9) | −0.002 (10) |
C5 | 0.132 (13) | 0.136 (14) | 0.081 (9) | −0.036 (10) | 0.006 (9) | 0.012 (9) |
C6 | 0.21 (2) | 0.098 (11) | 0.085 (9) | 0.031 (14) | −0.032 (16) | 0.003 (9) |
C7 | 0.161 (19) | 0.104 (12) | 0.126 (16) | 0.037 (12) | −0.043 (15) | −0.029 (12) |
C8 | 0.121 (15) | 0.108 (12) | 0.140 (16) | 0.038 (11) | 0.015 (14) | −0.022 (12) |
C9 | 0.138 (16) | 0.110 (13) | 0.132 (16) | 0.022 (12) | 0.044 (14) | −0.013 (11) |
C10 | 0.20 (3) | 0.18 (2) | 0.135 (18) | 0.064 (19) | 0.041 (18) | −0.006 (17) |
C11 | 0.046 (4) | 0.052 (4) | 0.055 (6) | 0.007 (4) | −0.005 (4) | 0.001 (4) |
C12 | 0.052 (5) | 0.049 (4) | 0.055 (5) | 0.006 (4) | −0.002 (4) | −0.005 (4) |
C13 | 0.053 (5) | 0.062 (5) | 0.066 (6) | −0.002 (4) | 0.004 (5) | −0.017 (5) |
C14 | 0.048 (5) | 0.052 (5) | 0.072 (6) | 0.000 (4) | −0.003 (5) | −0.006 (5) |
Ni1—S2i | 2.207 (3) | O6—C10 | 1.41 (3) |
Ni1—S2 | 2.207 (3) | O6—C9 | 1.41 (2) |
Ni1—S1 | 2.212 (3) | S1—C11 | 1.734 (9) |
Ni1—S1i | 2.212 (3) | S2—C11 | 1.708 (9) |
Mg1—O3 | 2.502 (13) | C1—C2 | 1.45 (2) |
Mg1—O3ii | 2.502 (13) | C1—H1A | 0.9700 |
Mg1—O1 | 2.548 (13) | C1—H1B | 0.9700 |
Mg1—N1 | 2.575 (12) | C2—H2A | 0.9700 |
Mg1—N1ii | 2.575 (12) | C2—H2B | 0.9700 |
Mg1—O2ii | 2.640 (10) | C3—C4 | 1.50 (2) |
Mg1—O2 | 2.640 (10) | C3—H3A | 0.9700 |
Mg2—O6ii | 2.414 (12) | C3—H3B | 0.9700 |
Mg2—O6 | 2.414 (12) | C4—H4A | 0.9700 |
Mg2—O5ii | 2.478 (11) | C4—H4B | 0.9700 |
Mg2—O5 | 2.478 (11) | C5—H5A | 0.9700 |
Mg2—N2ii | 2.487 (10) | C5—H5B | 0.9700 |
Mg2—N2 | 2.487 (9) | C6—C7 | 1.51 (3) |
Mg2—O4 | 2.514 (14) | C6—H6A | 0.9700 |
N1—C13 | 1.140 (13) | C6—H6B | 0.9700 |
N2—C14 | 1.128 (13) | C7—H7A | 0.9700 |
O1—C1ii | 1.418 (16) | C7—H7B | 0.9700 |
O1—C1 | 1.418 (16) | C8—C9 | 1.51 (3) |
O2—C3 | 1.41 (2) | C8—H8A | 0.9700 |
O2—C2 | 1.420 (15) | C8—H8B | 0.9700 |
O3—C5 | 1.41 (2) | C9—H9A | 0.9700 |
O3—C4 | 1.42 (2) | C9—H9B | 0.9700 |
O4—C6 | 1.42 (2) | C10—H10A | 0.9700 |
O4—C6ii | 1.42 (2) | C10—H10B | 0.9700 |
O5—C7 | 1.40 (2) | C11—C12 | 1.383 (13) |
O5—C8 | 1.41 (2) | ||
S2i—Ni1—S2 | 101.24 (16) | C11—S2—Ni1 | 85.8 (3) |
S2i—Ni1—S1 | 175.2 (2) | O1—C1—C2 | 108.0 (12) |
S2—Ni1—S1 | 78.94 (8) | O1—C1—H1A | 110.1 |
S2i—Ni1—S1i | 78.94 (8) | C2—C1—H1A | 110.1 |
S2—Ni1—S1i | 175.2 (2) | O1—C1—H1B | 110.1 |
S1—Ni1—S1i | 100.48 (15) | C2—C1—H1B | 110.1 |
O3—Mg1—O3ii | 68.8 (6) | H1A—C1—H1B | 108.4 |
O3—Mg1—O1 | 108.5 (4) | O2—C2—C1 | 113.8 (12) |
O3ii—Mg1—O1 | 108.5 (4) | O2—C2—H2A | 108.8 |
O3—Mg1—N1 | 79.2 (4) | C1—C2—H2A | 108.8 |
O3ii—Mg1—N1 | 120.0 (5) | O2—C2—H2B | 108.8 |
O1—Mg1—N1 | 129.7 (4) | C1—C2—H2B | 108.8 |
O3—Mg1—N1ii | 120.0 (5) | H2A—C2—H2B | 107.7 |
O3ii—Mg1—N1ii | 79.2 (4) | O2—C3—C4 | 105.4 (13) |
O1—Mg1—N1ii | 129.7 (4) | O2—C3—H3A | 110.7 |
N1—Mg1—N1ii | 74.9 (5) | C4—C3—H3A | 110.7 |
O3—Mg1—O2ii | 125.9 (4) | O2—C3—H3B | 110.7 |
O3ii—Mg1—O2ii | 64.9 (4) | C4—C3—H3B | 110.7 |
O1—Mg1—O2ii | 63.8 (2) | H3A—C3—H3B | 108.8 |
N1—Mg1—O2ii | 149.6 (4) | O3—C4—C3 | 114.9 (14) |
N1ii—Mg1—O2ii | 77.0 (3) | O3—C4—H4A | 108.5 |
O3—Mg1—O2 | 64.9 (4) | C3—C4—H4A | 108.5 |
O3ii—Mg1—O2 | 125.9 (4) | O3—C4—H4B | 108.5 |
O1—Mg1—O2 | 63.8 (2) | C3—C4—H4B | 108.5 |
N1—Mg1—O2 | 77.0 (3) | H4A—C4—H4B | 107.5 |
N1ii—Mg1—O2 | 149.6 (4) | C5ii—C5—O3 | 121.6 (8) |
O2ii—Mg1—O2 | 126.7 (4) | C5ii—C5—H5A | 106.9 |
O6ii—Mg2—O6 | 67.8 (9) | O3—C5—H5A | 106.9 |
O6ii—Mg2—O5ii | 65.7 (5) | C5ii—C5—H5B | 106.9 |
O6—Mg2—O5ii | 117.0 (5) | O3—C5—H5B | 106.9 |
O6ii—Mg2—O5 | 117.0 (5) | H5A—C5—H5B | 106.7 |
O6—Mg2—O5 | 65.7 (5) | O4—C6—C7 | 113.9 (16) |
O5ii—Mg2—O5 | 101.9 (6) | O4—C6—H6A | 108.8 |
O6ii—Mg2—N2ii | 129.8 (5) | C7—C6—H6A | 108.8 |
O6—Mg2—N2ii | 86.9 (5) | O4—C6—H6B | 108.8 |
O5ii—Mg2—N2ii | 156.1 (4) | C7—C6—H6B | 108.8 |
O5—Mg2—N2ii | 87.0 (3) | H6A—C6—H6B | 107.7 |
O6ii—Mg2—N2 | 86.9 (5) | O5—C7—C6 | 104.8 (19) |
O6—Mg2—N2 | 129.8 (5) | O5—C7—H7A | 110.8 |
O5ii—Mg2—N2 | 87.0 (3) | C6—C7—H7A | 110.8 |
O5—Mg2—N2 | 156.1 (4) | O5—C7—H7B | 110.8 |
N2ii—Mg2—N2 | 77.0 (4) | C6—C7—H7B | 110.8 |
O6ii—Mg2—O4 | 131.1 (4) | H7A—C7—H7B | 108.9 |
O6—Mg2—O4 | 131.1 (4) | O5—C8—C9 | 108.1 (17) |
O5ii—Mg2—O4 | 66.1 (4) | O5—C8—H8A | 110.1 |
O5—Mg2—O4 | 66.1 (4) | C9—C8—H8A | 110.1 |
N2ii—Mg2—O4 | 98.4 (4) | O5—C8—H8B | 110.1 |
N2—Mg2—O4 | 98.4 (4) | C9—C8—H8B | 110.1 |
C13—N1—Mg1 | 157.3 (12) | H8A—C8—H8B | 108.4 |
C14—N2—Mg2 | 163.5 (10) | O6—C9—C8 | 100.3 (15) |
C1ii—O1—C1 | 111.5 (14) | O6—C9—H9A | 111.7 |
C1ii—O1—Mg1 | 119.6 (7) | C8—C9—H9A | 111.7 |
C1—O1—Mg1 | 119.6 (8) | O6—C9—H9B | 111.7 |
C3—O2—C2 | 109.9 (13) | C8—C9—H9B | 111.7 |
C3—O2—Mg1 | 116.1 (9) | H9A—C9—H9B | 109.5 |
C2—O2—Mg1 | 112.2 (9) | O6—C10—C10ii | 116.9 (12) |
C5—O3—C4 | 121.8 (13) | O6—C10—H10A | 108.1 |
C5—O3—Mg1 | 110.0 (10) | C10ii—C10—H10A | 108.1 |
C4—O3—Mg1 | 115.4 (10) | O6—C10—H10B | 108.1 |
C6—O4—C6ii | 117 (2) | C10ii—C10—H10B | 108.1 |
C6—O4—Mg2 | 113.4 (13) | H10A—C10—H10B | 107.3 |
C6ii—O4—Mg2 | 113.4 (13) | C12—C11—S2 | 125.9 (7) |
C7—O5—C8 | 112.1 (18) | C12—C11—S1 | 124.6 (7) |
C7—O5—Mg2 | 109.1 (11) | S2—C11—S1 | 109.4 (5) |
C8—O5—Mg2 | 107.9 (10) | C11—C12—C13 | 120.9 (8) |
C10—O6—C9 | 105.1 (16) | C11—C12—C14 | 119.5 (8) |
C10—O6—Mg2 | 119.0 (14) | C13—C12—C14 | 119.5 (8) |
C9—O6—Mg2 | 120.5 (12) | N1—C13—C12 | 178.5 (12) |
C11—S1—Ni1 | 85.1 (3) | N2—C14—C12 | 179.3 (13) |
Symmetry codes: (i) −x, y, z; (ii) −x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [NiMg2(C4N2S2)2(C10H20O5)2]Cl2 |
Mr | 899.11 |
Crystal system, space group | Orthorhombic, Cmc21 |
Temperature (K) | 298 |
a, b, c (Å) | 13.6227 (16), 20.591 (3), 15.148 (2) |
V (Å3) | 4249 (1) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.41 × 0.32 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.719, 0.783 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10632, 1979, 1651 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.192, 1.06 |
No. of reflections | 1979 |
No. of parameters | 242 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.92, −0.47 |
Absolute structure | Flack (1983) |
Absolute structure parameter | 0.02 (5) |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
Acknowledgements
The authors acknowledge the support of the National Natural Science Foundation of China.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chadwick, S., Englich, U. & Ruhlandt-Senge, K. (1999). Inorg. Chem. 38, 6289–6293. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Chem. Crystallogr. 35, 107–110. Web of Science CSD CrossRef CAS Google Scholar
Junk, P. C. & Steed, J. W. (1999). J. Chem. Soc. Dalton Trans. pp. 407–414. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crown ethers have gained special attention due to their coordination abilities with not only alkali metal ions, but also alkaline earth ions (Junk & Steed, 1999). In this work, we report the synthesis and structure of a crown ether complex of Mg2+ networked with a dithiolate NiII complex. As shown in Fig. 1, the asymmetric unit of title complex is made up of two half [Mg(15—C-5)]2+ complex cations, one half [Ni(i-mnt)2]2- complex anion and two dissociative Cl- ions on mirror planes. For the two crystallographically independent [Mg(15—C-5)]2+ complex cations, each Mg2+ is coordinated by five O atoms of the crown ether with the average Mg–O distance of 2.566 (12) Å, which is far longer than the value in the complex [Mg(15—C-5)(SCPh3)2](2.177 Å) (Chadwick et al., 1999). The additional coordination sites of Mg2+ are occupied by two N atoms from cyano groups of the neighboring complex anions [Ni(i-mnt)2]2-, with the average Mg–N bond length of 2.531 (12) Å. For the complex anion, the Ni2+ is coordinated by four S atoms of two (i-mnt)2- anions in a square planar geometry. The Ni–S bond lengths are in the range of 2.207 (3) to 2.212 (3) Å, which is in perfect agreement with the values (average 2.215 Å) reported in the complex [Na(N15—C-5)]2[Ni(i-mnt)2] (Gao et al., 2005). Fig. 2 shows that the title complex is assembled into a one-dimensional polymer by the Mg–N bonds between the adjacent [Mg(15—C-5)]2+ complex cations and the [Ni(i-mnt)2]2- complex anions along the a axis. This motif is similar to what is found in the complex [Na(N15—C-5)]2[Ni(i-mnt)2], which is also assembled into a one-dimensional stucture by the Na–N bonds between the complex cations and the complex anions. [Na(N15—C-5)]2[Ni(i-mnt)2] further exhibits a two-dimensional supramolecular structure resulting from π-π stacking interactions between the naphthylene moieties of N15—C-5, which is not observed in the title complex.