metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[nickel(II)-μ3-1,1-di­cyano­ethene-2,2-di­thiol­ato-κ4S,S′:N:N′-bis­­[(15-crown-5)magnesium(II)]-μ3-1,1-di­cyano­ethene-2,2-di­thiol­ato-κ4N:N′:S,S′] dichloride]

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: dougroup@163.com

(Received 15 November 2007; accepted 4 December 2007; online 12 December 2007)

The reaction of MgCl2, NiCl2, and Na2(i-mnt) (i-mnt is 1,1-dicyano­thene-2,2-dithiol­ate) with 15-crown-5 (15-C-5) leads to an infinite chain polymer, {[NiMg2(C4N2S2)2(C10H20O5)2]Cl2}n or {[Mg(15-C-5)]2[Ni(i-mnt)2]Cl2}n, which consists of two [Mg(15-C-5)]2+ complex cations, one [Ni(i-mnt)2]2− complex anion and two Cl ions per formula unit. In the [Ni(i-mnt)2]2− complex anion, Ni2+ is located on a crystallographic mirror plane with a slightly distorted square-planar coordination by four S atoms. In the [Mg(15-C-5)]2+ complex cations, the Mg and one O atom of the crown lie on mirror planes and the Mg atoms are in sevenfold coordination environments of five O atoms from the crown and two N atoms from two i-mnt anions. The bridging of the two complexes via the Mg—N bonds leads to the formation of one-dimensional chains along the a axis.

Related literature

For studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999[Junk, P. C. & Steed, J. W. (1999). J. Chem. Soc. Dalton Trans. pp. 407-414.]). For comparative data on Ni–S bonds, see: Gao et al. (2005[Gao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Chem. Crystallogr. 35, 107-110.]). For comparative data on Mg–O bonds, see: Chadwick et al. (1999[Chadwick, S., Englich, U. & Ruhlandt-Senge, K. (1999). Inorg. Chem. 38, 6289-6293.]).

[Scheme 1]

Experimental

Crystal data
  • [NiMg2(C4N2S2)2(C10H20O5)2]Cl2

  • Mr = 899.11

  • Orthorhombic, C m c 21

  • a = 13.6227 (16) Å

  • b = 20.591 (3) Å

  • c = 15.148 (2) Å

  • V = 4249 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 (2) K

  • 0.41 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.719, Tmax = 0.783

  • 10632 measured reflections

  • 1979 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.192

  • S = 1.06

  • 1979 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1979 Friedel pairs

  • Flack parameter: 0.02 (5)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crown ethers have gained special attention due to their coordination abilities with not only alkali metal ions, but also alkaline earth ions (Junk & Steed, 1999). In this work, we report the synthesis and structure of a crown ether complex of Mg2+ networked with a dithiolate NiII complex. As shown in Fig. 1, the asymmetric unit of title complex is made up of two half [Mg(15—C-5)]2+ complex cations, one half [Ni(i-mnt)2]2- complex anion and two dissociative Cl- ions on mirror planes. For the two crystallographically independent [Mg(15—C-5)]2+ complex cations, each Mg2+ is coordinated by five O atoms of the crown ether with the average Mg–O distance of 2.566 (12) Å, which is far longer than the value in the complex [Mg(15—C-5)(SCPh3)2](2.177 Å) (Chadwick et al., 1999). The additional coordination sites of Mg2+ are occupied by two N atoms from cyano groups of the neighboring complex anions [Ni(i-mnt)2]2-, with the average Mg–N bond length of 2.531 (12) Å. For the complex anion, the Ni2+ is coordinated by four S atoms of two (i-mnt)2- anions in a square planar geometry. The Ni–S bond lengths are in the range of 2.207 (3) to 2.212 (3) Å, which is in perfect agreement with the values (average 2.215 Å) reported in the complex [Na(N15—C-5)]2[Ni(i-mnt)2] (Gao et al., 2005). Fig. 2 shows that the title complex is assembled into a one-dimensional polymer by the Mg–N bonds between the adjacent [Mg(15—C-5)]2+ complex cations and the [Ni(i-mnt)2]2- complex anions along the a axis. This motif is similar to what is found in the complex [Na(N15—C-5)]2[Ni(i-mnt)2], which is also assembled into a one-dimensional stucture by the Na–N bonds between the complex cations and the complex anions. [Na(N15—C-5)]2[Ni(i-mnt)2] further exhibits a two-dimensional supramolecular structure resulting from π-π stacking interactions between the naphthylene moieties of N15—C-5, which is not observed in the title complex.

Related literature top

For studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999). For comparative data on Ni–S bonds, see: Gao et al. (2005). For comparative data on Mg–O bonds, see: Chadwick et al. (1999).

Experimental top

A solution of NiCl2 (0.2377 g, 0.1 mmol), Na2(i-mnt) and MgCl2 in methanol (10 ml), was added to a solution of 15-C-5 (0.44 g, 2 mmol) in CH2Cl2 (10 ml). The mixture was stirred for 3 hrs at room temperature, and then separated. The underlayer was recrystallized in a mixture of CH2Cl2 and ether, and crystals suitable for X-ray diffraction were obtained after two weeks (m.p. 471–473 K). Analysis calc. for C28H40Cl2Mg2N4O10S4: C 37.37, H 4.49, N 6.23%; found: C 37.29, H 4.40, N 6.32%.

Refinement top

All H atoms were placed in geometrically idealized positions (C–H 0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C). 1979 Friedel pairs were used to determine the Flack parameter.

Structure description top

Crown ethers have gained special attention due to their coordination abilities with not only alkali metal ions, but also alkaline earth ions (Junk & Steed, 1999). In this work, we report the synthesis and structure of a crown ether complex of Mg2+ networked with a dithiolate NiII complex. As shown in Fig. 1, the asymmetric unit of title complex is made up of two half [Mg(15—C-5)]2+ complex cations, one half [Ni(i-mnt)2]2- complex anion and two dissociative Cl- ions on mirror planes. For the two crystallographically independent [Mg(15—C-5)]2+ complex cations, each Mg2+ is coordinated by five O atoms of the crown ether with the average Mg–O distance of 2.566 (12) Å, which is far longer than the value in the complex [Mg(15—C-5)(SCPh3)2](2.177 Å) (Chadwick et al., 1999). The additional coordination sites of Mg2+ are occupied by two N atoms from cyano groups of the neighboring complex anions [Ni(i-mnt)2]2-, with the average Mg–N bond length of 2.531 (12) Å. For the complex anion, the Ni2+ is coordinated by four S atoms of two (i-mnt)2- anions in a square planar geometry. The Ni–S bond lengths are in the range of 2.207 (3) to 2.212 (3) Å, which is in perfect agreement with the values (average 2.215 Å) reported in the complex [Na(N15—C-5)]2[Ni(i-mnt)2] (Gao et al., 2005). Fig. 2 shows that the title complex is assembled into a one-dimensional polymer by the Mg–N bonds between the adjacent [Mg(15—C-5)]2+ complex cations and the [Ni(i-mnt)2]2- complex anions along the a axis. This motif is similar to what is found in the complex [Na(N15—C-5)]2[Ni(i-mnt)2], which is also assembled into a one-dimensional stucture by the Na–N bonds between the complex cations and the complex anions. [Na(N15—C-5)]2[Ni(i-mnt)2] further exhibits a two-dimensional supramolecular structure resulting from π-π stacking interactions between the naphthylene moieties of N15—C-5, which is not observed in the title complex.

For studies on crown ether complexes of alkaline earth metals, see: Junk & Steed (1999). For comparative data on Ni–S bonds, see: Gao et al. (2005). For comparative data on Mg–O bonds, see: Chadwick et al. (1999).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids for non-H atoms. Symmetry codes: (A) 1 - x, +y, +z; (B) -x, +y, +z.
[Figure 2] Fig. 2. One-dimensional chain-like structure of the title complex (Cl- ions are omitted).
catena-Poly[[nickel(II)-µ3-1,1-dicyanothene-2,2-dithiolato-κ4S,S':N:N'- bis[(15-crown-5)magnesium(II)]-µ3-1,1-dicyanoethene-2,2-dithiolato- κ4N:N':S,S'] dichloride] top
Crystal data top
[NiMg2(C4N2S2)2(C10H20O5)2]Cl2F(000) = 1864
Mr = 899.11Dx = 1.406 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 4296 reflections
a = 13.6227 (16) Åθ = 2.2–24.9°
b = 20.591 (3) ŵ = 0.86 mm1
c = 15.148 (2) ÅT = 298 K
V = 4249 (1) Å3Block, brown
Z = 40.41 × 0.32 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1979 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.719, Tmax = 0.783k = 2423
10632 measured reflectionsl = 918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1979 reflectionsΔρmax = 0.92 e Å3
242 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
[NiMg2(C4N2S2)2(C10H20O5)2]Cl2V = 4249 (1) Å3
Mr = 899.11Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 13.6227 (16) ŵ = 0.86 mm1
b = 20.591 (3) ÅT = 298 K
c = 15.148 (2) Å0.41 × 0.32 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1651 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.783Rint = 0.033
10632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P]
where P = (Fo2 + 2Fc2)/3
S = 1.06Δρmax = 0.92 e Å3
1979 reflectionsΔρmin = 0.47 e Å3
242 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.02 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.12793 (7)0.9803 (2)0.0492 (4)
Mg10.50000.3176 (3)1.0866 (4)0.0713 (14)
Mg20.50000.0308 (2)0.8135 (3)0.0565 (11)
N10.3850 (8)0.2476 (5)0.9910 (9)0.093 (4)
N20.3863 (6)0.0587 (5)0.8547 (8)0.074 (3)
O10.50000.4399 (6)1.1122 (9)0.084 (3)
O20.3268 (7)0.3721 (4)1.1116 (7)0.084 (2)
O30.3963 (10)0.2655 (6)1.2030 (8)0.112 (4)
O40.50000.0908 (6)0.9581 (9)0.109 (5)
O50.6412 (9)0.1054 (5)0.8323 (8)0.103 (3)
O60.5988 (12)0.0446 (7)0.6826 (9)0.131 (4)
Cl10.00000.9064 (4)0.8312 (9)0.159 (4)
Cl20.00000.2859 (4)0.2265 (8)0.149 (3)
S10.12480 (17)0.18894 (12)1.02320 (19)0.0571 (6)
S20.12522 (16)0.07215 (11)0.9274 (2)0.0564 (6)
C10.4140 (11)0.4707 (7)1.1444 (12)0.095 (4)
H1A0.41580.51671.13090.114*
H1B0.40950.46551.20790.114*
C20.3302 (12)0.4407 (6)1.1020 (12)0.098 (4)
H2A0.27060.45911.12650.118*
H2B0.33160.45121.03950.118*
C30.2781 (12)0.3557 (9)1.1909 (12)0.100 (4)
H3A0.20840.36471.18630.120*
H3B0.30470.38031.24010.120*
C40.2959 (14)0.2843 (9)1.2035 (13)0.108 (5)
H4A0.26700.27121.25920.129*
H4B0.26200.26091.15690.129*
C50.4508 (14)0.2588 (10)1.2820 (11)0.116 (6)
H5A0.43010.29361.32100.140*
H5B0.43010.21851.30930.140*
C60.589 (2)0.1249 (9)0.9749 (16)0.132 (7)
H6A0.57840.17070.96350.159*
H6B0.60550.12021.03680.159*
C70.674 (2)0.1019 (10)0.9200 (15)0.130 (7)
H7A0.69220.05770.93530.156*
H7B0.73110.12970.92870.156*
C80.7145 (16)0.0869 (10)0.7714 (16)0.123 (6)
H8A0.77150.11480.77750.147*
H8B0.73470.04250.78230.147*
C90.6722 (17)0.0931 (10)0.6793 (15)0.127 (7)
H9A0.72090.08380.63430.152*
H9B0.64450.13580.66910.152*
C100.552 (2)0.0474 (13)0.600 (2)0.172 (11)
H10A0.57430.08630.56980.206*
H10B0.57430.01050.56520.206*
C110.1961 (6)0.1356 (4)0.9620 (6)0.051 (2)
C120.2935 (7)0.1459 (4)0.9403 (7)0.0521 (19)
C130.3435 (7)0.2023 (5)0.9693 (8)0.061 (2)
C140.3456 (7)0.0975 (5)0.8923 (8)0.057 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0437 (7)0.0506 (8)0.0532 (8)0.0000.0000.0009 (7)
Mg10.077 (3)0.067 (3)0.069 (3)0.0000.0000.006 (3)
Mg20.057 (2)0.058 (2)0.055 (2)0.0000.0000.009 (2)
N10.075 (6)0.090 (7)0.116 (9)0.019 (5)0.025 (6)0.051 (7)
N20.044 (4)0.075 (6)0.104 (7)0.008 (4)0.006 (5)0.033 (6)
O10.080 (8)0.071 (7)0.101 (9)0.0000.0000.023 (6)
O20.078 (5)0.086 (5)0.089 (6)0.005 (4)0.003 (5)0.012 (5)
O30.121 (9)0.138 (9)0.077 (6)0.016 (7)0.026 (6)0.007 (6)
O40.185 (16)0.072 (7)0.069 (8)0.0000.0000.007 (6)
O50.126 (9)0.080 (6)0.103 (8)0.020 (6)0.031 (7)0.013 (6)
O60.173 (12)0.117 (9)0.103 (9)0.033 (9)0.043 (9)0.004 (7)
Cl10.130 (6)0.122 (5)0.225 (11)0.0000.0000.018 (7)
Cl20.115 (5)0.136 (5)0.197 (9)0.0000.0000.046 (6)
S10.0443 (12)0.0618 (13)0.0652 (14)0.0027 (9)0.0003 (11)0.0202 (12)
S20.0471 (12)0.0464 (11)0.0757 (15)0.0005 (8)0.0012 (12)0.0051 (11)
C10.092 (9)0.084 (8)0.108 (11)0.010 (7)0.009 (9)0.006 (8)
C20.096 (10)0.081 (8)0.117 (11)0.016 (7)0.011 (9)0.009 (8)
C30.085 (9)0.116 (12)0.100 (11)0.005 (8)0.004 (8)0.006 (9)
C40.103 (11)0.120 (12)0.101 (11)0.014 (9)0.026 (9)0.002 (10)
C50.132 (13)0.136 (14)0.081 (9)0.036 (10)0.006 (9)0.012 (9)
C60.21 (2)0.098 (11)0.085 (9)0.031 (14)0.032 (16)0.003 (9)
C70.161 (19)0.104 (12)0.126 (16)0.037 (12)0.043 (15)0.029 (12)
C80.121 (15)0.108 (12)0.140 (16)0.038 (11)0.015 (14)0.022 (12)
C90.138 (16)0.110 (13)0.132 (16)0.022 (12)0.044 (14)0.013 (11)
C100.20 (3)0.18 (2)0.135 (18)0.064 (19)0.041 (18)0.006 (17)
C110.046 (4)0.052 (4)0.055 (6)0.007 (4)0.005 (4)0.001 (4)
C120.052 (5)0.049 (4)0.055 (5)0.006 (4)0.002 (4)0.005 (4)
C130.053 (5)0.062 (5)0.066 (6)0.002 (4)0.004 (5)0.017 (5)
C140.048 (5)0.052 (5)0.072 (6)0.000 (4)0.003 (5)0.006 (5)
Geometric parameters (Å, º) top
Ni1—S2i2.207 (3)O6—C101.41 (3)
Ni1—S22.207 (3)O6—C91.41 (2)
Ni1—S12.212 (3)S1—C111.734 (9)
Ni1—S1i2.212 (3)S2—C111.708 (9)
Mg1—O32.502 (13)C1—C21.45 (2)
Mg1—O3ii2.502 (13)C1—H1A0.9700
Mg1—O12.548 (13)C1—H1B0.9700
Mg1—N12.575 (12)C2—H2A0.9700
Mg1—N1ii2.575 (12)C2—H2B0.9700
Mg1—O2ii2.640 (10)C3—C41.50 (2)
Mg1—O22.640 (10)C3—H3A0.9700
Mg2—O6ii2.414 (12)C3—H3B0.9700
Mg2—O62.414 (12)C4—H4A0.9700
Mg2—O5ii2.478 (11)C4—H4B0.9700
Mg2—O52.478 (11)C5—H5A0.9700
Mg2—N2ii2.487 (10)C5—H5B0.9700
Mg2—N22.487 (9)C6—C71.51 (3)
Mg2—O42.514 (14)C6—H6A0.9700
N1—C131.140 (13)C6—H6B0.9700
N2—C141.128 (13)C7—H7A0.9700
O1—C1ii1.418 (16)C7—H7B0.9700
O1—C11.418 (16)C8—C91.51 (3)
O2—C31.41 (2)C8—H8A0.9700
O2—C21.420 (15)C8—H8B0.9700
O3—C51.41 (2)C9—H9A0.9700
O3—C41.42 (2)C9—H9B0.9700
O4—C61.42 (2)C10—H10A0.9700
O4—C6ii1.42 (2)C10—H10B0.9700
O5—C71.40 (2)C11—C121.383 (13)
O5—C81.41 (2)
S2i—Ni1—S2101.24 (16)C11—S2—Ni185.8 (3)
S2i—Ni1—S1175.2 (2)O1—C1—C2108.0 (12)
S2—Ni1—S178.94 (8)O1—C1—H1A110.1
S2i—Ni1—S1i78.94 (8)C2—C1—H1A110.1
S2—Ni1—S1i175.2 (2)O1—C1—H1B110.1
S1—Ni1—S1i100.48 (15)C2—C1—H1B110.1
O3—Mg1—O3ii68.8 (6)H1A—C1—H1B108.4
O3—Mg1—O1108.5 (4)O2—C2—C1113.8 (12)
O3ii—Mg1—O1108.5 (4)O2—C2—H2A108.8
O3—Mg1—N179.2 (4)C1—C2—H2A108.8
O3ii—Mg1—N1120.0 (5)O2—C2—H2B108.8
O1—Mg1—N1129.7 (4)C1—C2—H2B108.8
O3—Mg1—N1ii120.0 (5)H2A—C2—H2B107.7
O3ii—Mg1—N1ii79.2 (4)O2—C3—C4105.4 (13)
O1—Mg1—N1ii129.7 (4)O2—C3—H3A110.7
N1—Mg1—N1ii74.9 (5)C4—C3—H3A110.7
O3—Mg1—O2ii125.9 (4)O2—C3—H3B110.7
O3ii—Mg1—O2ii64.9 (4)C4—C3—H3B110.7
O1—Mg1—O2ii63.8 (2)H3A—C3—H3B108.8
N1—Mg1—O2ii149.6 (4)O3—C4—C3114.9 (14)
N1ii—Mg1—O2ii77.0 (3)O3—C4—H4A108.5
O3—Mg1—O264.9 (4)C3—C4—H4A108.5
O3ii—Mg1—O2125.9 (4)O3—C4—H4B108.5
O1—Mg1—O263.8 (2)C3—C4—H4B108.5
N1—Mg1—O277.0 (3)H4A—C4—H4B107.5
N1ii—Mg1—O2149.6 (4)C5ii—C5—O3121.6 (8)
O2ii—Mg1—O2126.7 (4)C5ii—C5—H5A106.9
O6ii—Mg2—O667.8 (9)O3—C5—H5A106.9
O6ii—Mg2—O5ii65.7 (5)C5ii—C5—H5B106.9
O6—Mg2—O5ii117.0 (5)O3—C5—H5B106.9
O6ii—Mg2—O5117.0 (5)H5A—C5—H5B106.7
O6—Mg2—O565.7 (5)O4—C6—C7113.9 (16)
O5ii—Mg2—O5101.9 (6)O4—C6—H6A108.8
O6ii—Mg2—N2ii129.8 (5)C7—C6—H6A108.8
O6—Mg2—N2ii86.9 (5)O4—C6—H6B108.8
O5ii—Mg2—N2ii156.1 (4)C7—C6—H6B108.8
O5—Mg2—N2ii87.0 (3)H6A—C6—H6B107.7
O6ii—Mg2—N286.9 (5)O5—C7—C6104.8 (19)
O6—Mg2—N2129.8 (5)O5—C7—H7A110.8
O5ii—Mg2—N287.0 (3)C6—C7—H7A110.8
O5—Mg2—N2156.1 (4)O5—C7—H7B110.8
N2ii—Mg2—N277.0 (4)C6—C7—H7B110.8
O6ii—Mg2—O4131.1 (4)H7A—C7—H7B108.9
O6—Mg2—O4131.1 (4)O5—C8—C9108.1 (17)
O5ii—Mg2—O466.1 (4)O5—C8—H8A110.1
O5—Mg2—O466.1 (4)C9—C8—H8A110.1
N2ii—Mg2—O498.4 (4)O5—C8—H8B110.1
N2—Mg2—O498.4 (4)C9—C8—H8B110.1
C13—N1—Mg1157.3 (12)H8A—C8—H8B108.4
C14—N2—Mg2163.5 (10)O6—C9—C8100.3 (15)
C1ii—O1—C1111.5 (14)O6—C9—H9A111.7
C1ii—O1—Mg1119.6 (7)C8—C9—H9A111.7
C1—O1—Mg1119.6 (8)O6—C9—H9B111.7
C3—O2—C2109.9 (13)C8—C9—H9B111.7
C3—O2—Mg1116.1 (9)H9A—C9—H9B109.5
C2—O2—Mg1112.2 (9)O6—C10—C10ii116.9 (12)
C5—O3—C4121.8 (13)O6—C10—H10A108.1
C5—O3—Mg1110.0 (10)C10ii—C10—H10A108.1
C4—O3—Mg1115.4 (10)O6—C10—H10B108.1
C6—O4—C6ii117 (2)C10ii—C10—H10B108.1
C6—O4—Mg2113.4 (13)H10A—C10—H10B107.3
C6ii—O4—Mg2113.4 (13)C12—C11—S2125.9 (7)
C7—O5—C8112.1 (18)C12—C11—S1124.6 (7)
C7—O5—Mg2109.1 (11)S2—C11—S1109.4 (5)
C8—O5—Mg2107.9 (10)C11—C12—C13120.9 (8)
C10—O6—C9105.1 (16)C11—C12—C14119.5 (8)
C10—O6—Mg2119.0 (14)C13—C12—C14119.5 (8)
C9—O6—Mg2120.5 (12)N1—C13—C12178.5 (12)
C11—S1—Ni185.1 (3)N2—C14—C12179.3 (13)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[NiMg2(C4N2S2)2(C10H20O5)2]Cl2
Mr899.11
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)298
a, b, c (Å)13.6227 (16), 20.591 (3), 15.148 (2)
V3)4249 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.41 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.719, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
10632, 1979, 1651
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.192, 1.06
No. of reflections1979
No. of parameters242
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1309P)2 + 12.7693P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.47
Absolute structureFlack (1983)
Absolute structure parameter0.02 (5)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadwick, S., Englich, U. & Ruhlandt-Senge, K. (1999). Inorg. Chem. 38, 6289–6293.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Chem. Crystallogr. 35, 107–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationJunk, P. C. & Steed, J. W. (1999). J. Chem. Soc. Dalton Trans. pp. 407–414.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds