metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­iodidocadmium(II)]-μ-1-(4-pyridylmeth­yl)-1H-benzimidazole] methanol hemisolvate]

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: tlhu@nankai.edu.cn

(Received 15 November 2007; accepted 20 November 2007; online 18 December 2007)

In the title coordination polymer, {[CdI2(C13H11N3)]·0.5CH4O}n, each CdII center is four-coordinated by two N-atom donors from two 1-(4-pyridylmeth­yl)-1H-benzimidazole (L) ligands and two iodide anions, forming a tetra­hedral coordination geometry. L ligands bridge adjacent CdII ions, generating two crystallographically independent approximately orthogonal one-dimensional chains. The methanol solvent mol­ecule associates with one of the chains via O—H⋯I inter­actions.

Related literature

For a review of N-containing heterocyclic aromatic compounds as bridging ligands, see: Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]). For a discussion of benzimidazole ligands in complexes, see: Li et al. (2007[Li, L., Hu, T. L., Li, J. R., Wang, D. Z., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 412-420.]); Meng et al. (2004[Meng, X. R., Xiao, B., Fan, Y. T., Hou, H. W. & Li, G. (2004). Inorg. Chim. Acta, 357, 1471-1477.]). For an example of a silver coordination polymer of the present ligand, see: Huang et al. (2006[Huang, M., Liu, P., Wang, J., Chen, Y., Liu, Z. & Liu, Q. (2006). Inorg. Chem. Commun. 9, 952-959.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C13H11N3)]·0.5CH4O

  • Mr = 591.47

  • Monoclinic, P 21 /c

  • a = 17.469 (4) Å

  • b = 12.913 (3) Å

  • c = 16.814 (3) Å

  • β = 117.56 (3)°

  • V = 3362.6 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 293 (2) K

  • 0.10 × 0.06 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.826

  • 33513 measured reflections

  • 5901 independent reflections

  • 5155 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.02

  • 5901 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 1.49 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N3i 2.271 (3)
Cd1—N1 2.278 (3)
Cd1—I2 2.7051 (6)
Cd1—I1 2.7264 (10)
Cd2—N6ii 2.236 (3)
Cd2—N4 2.315 (3)
Cd2—I3 2.702 (6)
Cd2—I4 2.706 (1)
N3i—Cd1—N1 97.99 (11)
N3i—Cd1—I2 108.01 (8)
N1—Cd1—I2 106.72 (8)
N3i—Cd1—I1 104.48 (8)
N1—Cd1—I1 106.76 (8)
I2—Cd1—I1 128.711 (15)
N6ii—Cd2—N4 98.86 (12)
N6ii—Cd2—I3 107.34 (9)
N4—Cd2—I3 105.01 (8)
N6ii—Cd2—I4 110.99 (9)
N4—Cd2—I4 100.80 (8)
I3—Cd2—I4 129.14 (8)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I2iii 0.82 2.88 3.647 (5) 155
Symmetry code: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); data reduction: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). In recent years, benzimidazole groups have been used to link different alkyl or aromatic groups to form a series of bi- and multi-dentate flexible ligands, which can adopt different conformations according to the different geometric requirements of the metal centers when forming complexes (Li et al., 2007). Many complexes with these ligands show unique structural topologies and interesting properties (Meng et al., 2004). Recently, Liu and co-workers synthesized a flexible bridging ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) as well as its chiral one-dimensional double helix polymer, [Ag(L)(NO3)]n (Huang et al., 2006). We herein report the crystal structure of a cadmium complex of this ligand (I).

In the molecule of (I), (Fig. 1 and 2), the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987). The CdII center is tetrahedrally coordinated by two N atoms from two L ligands (L = 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole) and two iodide ions. In the extended structure of (I), the CdII centers are interconnected by L ligands to form two one-dimensional chains along two different directions (Fig. 3). The chain containing Cd1 is along the c direction and the other one containing Cd2 is along the b direction, making them essentially orthogonal. The methanol solvate molecules are associated with the Cd1 chains via O—H···I interactions.

Related literature top

For a review of N-containing heterocyclic aromatic compounds as bridging ligands, see: Steel (2005). For a discussion of benzimidazole ligands in complexes, see: Li et al. (2007); Meng et al. (2004). For an example of a silver coordination polymer of the present ligand, see: Huang et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) was synthesized according to a reported method (Li et al., 2007). The reaction of L (58 mg, 0.2 mmol), NaI (30 mg, 0.2 mmol) and Cd(ClO4)2 (31 mg, 0.1 mmol) in a solution of methanol and water (v/v = 1:1,10 ml) for a few minutes afforded a white solid, which was separated by filtration. The resulting solution was kept at room temperature. Colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 40%).

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2*Ueq(C).

Structure description top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). In recent years, benzimidazole groups have been used to link different alkyl or aromatic groups to form a series of bi- and multi-dentate flexible ligands, which can adopt different conformations according to the different geometric requirements of the metal centers when forming complexes (Li et al., 2007). Many complexes with these ligands show unique structural topologies and interesting properties (Meng et al., 2004). Recently, Liu and co-workers synthesized a flexible bridging ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) as well as its chiral one-dimensional double helix polymer, [Ag(L)(NO3)]n (Huang et al., 2006). We herein report the crystal structure of a cadmium complex of this ligand (I).

In the molecule of (I), (Fig. 1 and 2), the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987). The CdII center is tetrahedrally coordinated by two N atoms from two L ligands (L = 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole) and two iodide ions. In the extended structure of (I), the CdII centers are interconnected by L ligands to form two one-dimensional chains along two different directions (Fig. 3). The chain containing Cd1 is along the c direction and the other one containing Cd2 is along the b direction, making them essentially orthogonal. The methanol solvate molecules are associated with the Cd1 chains via O—H···I interactions.

For a review of N-containing heterocyclic aromatic compounds as bridging ligands, see: Steel (2005). For a discussion of benzimidazole ligands in complexes, see: Li et al. (2007); Meng et al. (2004). For an example of a silver coordination polymer of the present ligand, see: Huang et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) x, 3/2 - y, 1/2 + z].
[Figure 2] Fig. 2. The coordination environment of Cd2, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (B) 1 - x, -1/2 + y, 3/2 - z].
[Figure 3] Fig. 3. View of the two crystallographically independent one-dimensional chains that run along the b and c axes.
catena-Poly[[[diiodidocadmium(II)]-µ-1-(4-pyridylmethyl)- 1H-benzimidazole] methanol hemisolvate] top
Crystal data top
[CdI2(C13H11N3)]·0.5CH4OF(000) = 2184
Mr = 591.47Dx = 2.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9593 reflections
a = 17.469 (4) Åθ = 2.7–25.0°
b = 12.913 (3) ŵ = 4.97 mm1
c = 16.814 (3) ÅT = 293 K
β = 117.56 (3)°Block, colorless
V = 3362.6 (16) Å30.10 × 0.06 × 0.04 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5901 independent reflections
Radiation source: fine-focus sealed tube5155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2020
Tmin = 0.637, Tmax = 0.826k = 1515
33513 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0176P)2]
where P = (Fo2 + 2Fc2)/3
5901 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[CdI2(C13H11N3)]·0.5CH4OV = 3362.6 (16) Å3
Mr = 591.47Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.469 (4) ŵ = 4.97 mm1
b = 12.913 (3) ÅT = 293 K
c = 16.814 (3) Å0.10 × 0.06 × 0.04 mm
β = 117.56 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5901 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
5155 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.826Rint = 0.066
33513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.02Δρmax = 1.49 e Å3
5901 reflectionsΔρmin = 0.81 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.185504 (19)0.46826 (2)0.868473 (19)0.01644 (8)
Cd20.272027 (19)0.52226 (2)0.547057 (19)0.01630 (8)
I10.356936 (18)0.51615 (2)0.948024 (19)0.02392 (8)
I20.109810 (19)0.27969 (2)0.825044 (19)0.02452 (8)
I30.2197 (2)0.3922 (2)0.6382 (2)0.0220 (8)
I40.178051 (18)0.61285 (2)0.385404 (17)0.02101 (8)
N10.1207 (2)0.5680 (2)0.7429 (2)0.0166 (8)
N20.0638 (2)0.8382 (2)0.4991 (2)0.0158 (8)
N30.1338 (2)0.9484 (3)0.4526 (2)0.0169 (8)
N40.32450 (19)0.6665 (2)0.6382 (2)0.0142 (8)
N50.4629 (2)0.9308 (2)0.8829 (2)0.0159 (8)
N60.6033 (2)0.9608 (3)0.9407 (2)0.0178 (8)
C10.1638 (2)0.6488 (3)0.7339 (3)0.0159 (9)
H1A0.21590.66710.78260.019*
C20.1355 (2)0.7062 (3)0.6570 (3)0.0160 (9)
H2A0.16940.75940.65310.019*
C30.0561 (3)0.6843 (3)0.5853 (3)0.0155 (9)
C40.0106 (3)0.5992 (3)0.5937 (3)0.0190 (10)
H4A0.04230.58020.54640.023*
C50.0448 (3)0.5442 (3)0.6721 (3)0.0171 (9)
H5A0.01410.48770.67670.020*
C60.0143 (3)0.7484 (3)0.5008 (3)0.0236 (10)
H6A0.00440.70440.45010.028*
H6B0.04150.77180.49280.028*
C70.0926 (2)0.8603 (3)0.4385 (3)0.0167 (9)
H7A0.08370.81650.39110.020*
C80.1326 (2)0.9898 (3)0.5286 (3)0.0152 (9)
C130.0877 (2)0.9230 (3)0.5583 (3)0.0135 (9)
C120.0736 (3)0.9453 (3)0.6317 (3)0.0175 (10)
H12A0.04280.90090.64990.021*
C110.1082 (3)1.0372 (3)0.6757 (3)0.0220 (10)
H11A0.09991.05590.72460.026*
C100.1551 (3)1.1025 (3)0.6488 (3)0.0220 (10)
H10A0.17901.16240.68160.026*
C90.1674 (3)1.0815 (3)0.5751 (3)0.0186 (10)
H9A0.19781.12690.55710.022*
C140.3534 (2)0.6536 (3)0.7270 (3)0.0176 (9)
H14A0.36210.58670.75000.021*
C150.3706 (2)0.7354 (3)0.7848 (3)0.0191 (10)
H15A0.39150.72360.84590.023*
C160.3568 (2)0.8352 (3)0.7520 (3)0.0152 (9)
C170.3283 (2)0.8485 (3)0.6601 (3)0.0161 (9)
H17A0.32000.91470.63560.019*
C180.3127 (2)0.7629 (3)0.6064 (3)0.0175 (10)
H18A0.29310.77260.54520.021*
C190.3725 (2)0.9284 (3)0.8137 (3)0.0174 (9)
H19A0.35890.99170.77880.021*
H19B0.33510.92410.84190.021*
C200.5281 (3)0.9789 (3)0.8737 (3)0.0162 (9)
H20A0.51941.02000.82480.019*
C210.5015 (3)0.8769 (3)0.9641 (3)0.0165 (9)
C220.4677 (3)0.8140 (3)1.0078 (3)0.0217 (10)
H22A0.40860.80280.98430.026*
C230.5263 (3)0.7690 (3)1.0875 (3)0.0273 (11)
H23A0.50640.72641.11860.033*
C240.6145 (3)0.7866 (3)1.1220 (3)0.0257 (11)
H24A0.65220.75391.17510.031*
C250.6478 (3)0.8505 (3)1.0806 (3)0.0224 (10)
H25A0.70680.86311.10540.027*
C260.5893 (3)0.8961 (3)0.9996 (3)0.0166 (9)
C270.4068 (3)0.1849 (4)0.6542 (3)0.0435 (14)
H27A0.41590.22100.70780.065*
H27B0.34620.18350.61320.065*
H27C0.43700.22000.62680.065*
O10.4380 (2)0.0826 (2)0.6760 (2)0.0395 (9)
H10.43660.05450.63160.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01903 (18)0.01604 (18)0.01442 (17)0.00084 (13)0.00788 (14)0.00038 (13)
Cd20.01569 (17)0.01688 (18)0.01279 (17)0.00087 (13)0.00356 (14)0.00074 (13)
I10.01795 (16)0.03018 (19)0.01836 (16)0.00153 (13)0.00393 (13)0.00307 (13)
I20.02970 (18)0.01589 (16)0.03350 (18)0.00305 (13)0.01931 (15)0.00410 (13)
I30.0239 (2)0.0196 (2)0.0212 (2)0.0028 (1)0.0092 (1)0.0016 (1)
I40.02138 (17)0.02211 (17)0.01193 (15)0.00291 (12)0.00126 (13)0.00017 (12)
N10.016 (2)0.0158 (19)0.020 (2)0.0012 (15)0.0105 (17)0.0010 (16)
N20.0174 (19)0.0115 (19)0.0131 (18)0.0013 (15)0.0024 (16)0.0025 (15)
N30.018 (2)0.017 (2)0.0158 (19)0.0003 (16)0.0082 (16)0.0001 (16)
N40.0109 (18)0.017 (2)0.0118 (18)0.0015 (14)0.0023 (15)0.0026 (15)
N50.0129 (19)0.019 (2)0.0110 (18)0.0038 (15)0.0017 (16)0.0074 (15)
N60.0146 (19)0.021 (2)0.0166 (19)0.0021 (16)0.0060 (17)0.0012 (16)
C10.015 (2)0.012 (2)0.019 (2)0.0009 (18)0.0061 (19)0.0015 (18)
C20.015 (2)0.011 (2)0.023 (2)0.0002 (18)0.010 (2)0.0030 (18)
C30.019 (2)0.012 (2)0.016 (2)0.0034 (18)0.0081 (19)0.0012 (18)
C40.014 (2)0.022 (3)0.015 (2)0.0021 (18)0.0015 (19)0.0004 (19)
C50.016 (2)0.016 (2)0.018 (2)0.0031 (18)0.006 (2)0.0014 (19)
C60.020 (2)0.019 (2)0.022 (2)0.009 (2)0.002 (2)0.002 (2)
C70.020 (2)0.017 (2)0.010 (2)0.0059 (19)0.0049 (19)0.0017 (18)
C80.009 (2)0.017 (2)0.016 (2)0.0036 (17)0.0027 (19)0.0048 (18)
C130.013 (2)0.009 (2)0.014 (2)0.0031 (17)0.0028 (18)0.0014 (18)
C120.020 (2)0.018 (2)0.017 (2)0.0009 (19)0.010 (2)0.0047 (19)
C110.033 (3)0.022 (3)0.013 (2)0.008 (2)0.012 (2)0.006 (2)
C100.029 (3)0.015 (2)0.016 (2)0.002 (2)0.006 (2)0.0008 (19)
C90.023 (2)0.014 (2)0.021 (2)0.0011 (19)0.011 (2)0.0048 (19)
C140.014 (2)0.018 (2)0.017 (2)0.0009 (18)0.0036 (19)0.0007 (19)
C150.015 (2)0.026 (3)0.011 (2)0.0033 (19)0.0015 (19)0.0015 (19)
C160.007 (2)0.017 (2)0.019 (2)0.0032 (18)0.0026 (18)0.0049 (19)
C170.014 (2)0.012 (2)0.020 (2)0.0001 (17)0.0055 (19)0.0048 (18)
C180.017 (2)0.022 (3)0.011 (2)0.0009 (19)0.0038 (19)0.0006 (19)
C190.011 (2)0.021 (2)0.016 (2)0.0028 (18)0.0024 (19)0.0068 (19)
C200.020 (2)0.017 (2)0.009 (2)0.0006 (19)0.005 (2)0.0014 (18)
C210.023 (2)0.015 (2)0.011 (2)0.0011 (19)0.007 (2)0.0030 (18)
C220.023 (3)0.025 (3)0.017 (2)0.007 (2)0.009 (2)0.006 (2)
C230.040 (3)0.025 (3)0.021 (3)0.003 (2)0.017 (2)0.000 (2)
C240.034 (3)0.022 (3)0.014 (2)0.001 (2)0.005 (2)0.004 (2)
C250.019 (2)0.021 (2)0.020 (2)0.001 (2)0.003 (2)0.003 (2)
C260.017 (2)0.016 (2)0.015 (2)0.0023 (18)0.006 (2)0.0025 (18)
C270.041 (3)0.042 (3)0.041 (3)0.006 (3)0.014 (3)0.005 (3)
O10.054 (2)0.029 (2)0.0241 (19)0.0026 (18)0.0081 (19)0.0014 (16)
Geometric parameters (Å, º) top
Cd1—N3i2.271 (3)C8—C131.405 (5)
Cd1—N12.278 (3)C13—C121.395 (5)
Cd1—I22.7051 (6)C12—C111.382 (5)
Cd1—I12.7264 (10)C12—H12A0.9300
Cd2—N6ii2.236 (3)C11—C101.388 (5)
Cd2—N42.315 (3)C11—H11A0.9300
Cd2—I32.702 (6)C10—C91.380 (5)
Cd2—I42.706 (1)C10—H10A0.9300
N1—C11.334 (5)C9—H9A0.9300
N1—C51.346 (5)C14—C151.372 (5)
N2—C71.359 (5)C14—H14A0.9300
N2—C131.407 (5)C15—C161.379 (5)
N2—C61.453 (5)C15—H15A0.9300
N3—C71.308 (5)C16—C171.398 (5)
N3—C81.394 (5)C16—C191.529 (5)
N3—Cd1iii2.271 (3)C17—C181.373 (5)
N4—C181.333 (5)C17—H17A0.9300
N4—C141.347 (5)C18—H18A0.9300
N5—C201.366 (5)C19—H19A0.9700
N5—C211.397 (5)C19—H19B0.9700
N5—C191.465 (5)C20—H20A0.9300
N6—C201.297 (5)C21—C261.386 (5)
N6—C261.401 (5)C21—C221.396 (5)
N6—Cd2iv2.236 (3)C22—C231.383 (6)
C1—C21.369 (5)C22—H22A0.9300
C1—H1A0.9300C23—C241.391 (6)
C2—C31.382 (5)C23—H23A0.9300
C2—H2A0.9300C24—C251.370 (5)
C3—C41.402 (5)C24—H24A0.9300
C3—C61.509 (5)C25—C261.400 (5)
C4—C51.367 (5)C25—H25A0.9300
C4—H4A0.9300C27—O11.412 (5)
C5—H5A0.9300C27—H27A0.9600
C6—H6A0.9700C27—H27B0.9600
C6—H6B0.9700C27—H27C0.9600
C7—H7A0.9300O1—H10.8200
C8—C91.394 (5)
N3i—Cd1—N197.99 (11)C11—C12—H12A122.0
N3i—Cd1—I2108.01 (8)C13—C12—H12A122.0
N1—Cd1—I2106.72 (8)C12—C11—C10121.7 (4)
N3i—Cd1—I1104.48 (8)C12—C11—H11A119.2
N1—Cd1—I1106.76 (8)C10—C11—H11A119.2
I2—Cd1—I1128.711 (15)C9—C10—C11122.3 (4)
N6ii—Cd2—N498.86 (12)C9—C10—H10A118.9
N6ii—Cd2—I3107.34 (9)C11—C10—H10A118.9
N4—Cd2—I3105.01 (8)C10—C9—C8117.5 (4)
N6ii—Cd2—I4110.99 (9)C10—C9—H9A121.3
N4—Cd2—I4100.80 (8)C8—C9—H9A121.3
I3—Cd2—I4129.14 (8)N4—C14—C15122.5 (4)
C1—N1—C5117.1 (3)N4—C14—H14A118.7
C1—N1—Cd1118.8 (3)C15—C14—H14A118.7
C5—N1—Cd1123.7 (3)C14—C15—C16119.7 (4)
C7—N2—C13106.0 (3)C14—C15—H15A120.1
C7—N2—C6127.6 (3)C16—C15—H15A120.1
C13—N2—C6126.3 (3)C15—C16—C17117.7 (4)
C7—N3—C8105.0 (3)C15—C16—C19121.4 (4)
C7—N3—Cd1iii130.1 (3)C17—C16—C19120.9 (3)
C8—N3—Cd1iii124.6 (3)C18—C17—C16119.3 (4)
C18—N4—C14118.0 (3)C18—C17—H17A120.4
C18—N4—Cd2123.1 (3)C16—C17—H17A120.4
C14—N4—Cd2117.7 (3)N4—C18—C17122.8 (4)
C20—N5—C21106.6 (3)N4—C18—H18A118.6
C20—N5—C19124.6 (3)C17—C18—H18A118.6
C21—N5—C19128.3 (3)N5—C19—C16110.2 (3)
C20—N6—C26106.4 (3)N5—C19—H19A109.6
C20—N6—Cd2iv124.7 (3)C16—C19—H19A109.6
C26—N6—Cd2iv128.9 (3)N5—C19—H19B109.6
N1—C1—C2123.6 (4)C16—C19—H19B109.6
N1—C1—H1A118.2H19A—C19—H19B108.1
C2—C1—H1A118.2N6—C20—N5112.5 (4)
C1—C2—C3119.5 (4)N6—C20—H20A123.7
C1—C2—H2A120.3N5—C20—H20A123.7
C3—C2—H2A120.3C26—C21—C22122.0 (4)
C2—C3—C4117.3 (4)C26—C21—N5105.6 (3)
C2—C3—C6124.3 (4)C22—C21—N5132.4 (4)
C4—C3—C6118.4 (4)C23—C22—C21116.8 (4)
C5—C4—C3119.3 (4)C23—C22—H22A121.6
C5—C4—H4A120.4C21—C22—H22A121.6
C3—C4—H4A120.4C22—C23—C24121.0 (4)
N1—C5—C4123.1 (4)C22—C23—H23A119.5
N1—C5—H5A118.4C24—C23—H23A119.5
C4—C5—H5A118.4C25—C24—C23122.3 (4)
N2—C6—C3115.0 (3)C25—C24—H24A118.8
N2—C6—H6A108.5C23—C24—H24A118.8
C3—C6—H6A108.5C24—C25—C26117.2 (4)
N2—C6—H6B108.5C24—C25—H25A121.4
C3—C6—H6B108.5C26—C25—H25A121.4
H6A—C6—H6B107.5C21—C26—C25120.5 (4)
N3—C7—N2114.2 (3)C21—C26—N6108.9 (3)
N3—C7—H7A122.9C25—C26—N6130.6 (4)
N2—C7—H7A122.9O1—C27—H27A109.5
N3—C8—C9130.7 (4)O1—C27—H27B109.5
N3—C8—C13109.8 (4)H27A—C27—H27B109.5
C9—C8—C13119.5 (4)O1—C27—H27C109.5
C12—C13—C8123.0 (4)H27A—C27—H27C109.5
C12—C13—N2132.1 (4)H27B—C27—H27C109.5
C8—C13—N2105.0 (3)C27—O1—H1109.5
C11—C12—C13116.0 (4)
N3i—Cd1—N1—C192.6 (3)N2—C13—C12—C11179.2 (4)
I2—Cd1—N1—C1155.8 (3)C13—C12—C11—C100.8 (6)
I1—Cd1—N1—C115.2 (3)C12—C11—C10—C92.3 (6)
N3i—Cd1—N1—C594.8 (3)C11—C10—C9—C81.6 (6)
I2—Cd1—N1—C516.8 (3)N3—C8—C9—C10179.5 (4)
I1—Cd1—N1—C5157.4 (3)C13—C8—C9—C100.4 (6)
N6ii—Cd2—N4—C18107.4 (3)C18—N4—C14—C150.2 (6)
I3—Cd2—N4—C18141.9 (3)Cd2—N4—C14—C15167.5 (3)
I4—Cd2—N4—C186.1 (3)N4—C14—C15—C161.1 (6)
N6ii—Cd2—N4—C1485.6 (3)C14—C15—C16—C172.3 (6)
I3—Cd2—N4—C1425.1 (3)C14—C15—C16—C19178.2 (4)
I4—Cd2—N4—C14160.9 (3)C15—C16—C17—C182.1 (6)
C5—N1—C1—C21.2 (6)C19—C16—C17—C18178.4 (3)
Cd1—N1—C1—C2171.9 (3)C14—N4—C18—C170.4 (6)
N1—C1—C2—C33.5 (6)Cd2—N4—C18—C17166.6 (3)
C1—C2—C3—C43.7 (6)C16—C17—C18—N40.8 (6)
C1—C2—C3—C6173.8 (4)C20—N5—C19—C1688.7 (5)
C2—C3—C4—C51.9 (6)C21—N5—C19—C1683.1 (4)
C6—C3—C4—C5175.7 (4)C15—C16—C19—N559.9 (5)
C1—N1—C5—C40.8 (6)C17—C16—C19—N5119.7 (4)
Cd1—N1—C5—C4173.4 (3)C26—N6—C20—N50.2 (4)
C3—C4—C5—N10.3 (6)Cd2iv—N6—C20—N5179.3 (2)
C7—N2—C6—C3121.7 (4)C21—N5—C20—N60.1 (5)
C13—N2—C6—C361.8 (5)C19—N5—C20—N6173.4 (3)
C2—C3—C6—N20.4 (6)C20—N5—C21—C260.0 (4)
C4—C3—C6—N2177.1 (3)C19—N5—C21—C26172.9 (3)
C8—N3—C7—N20.3 (4)C20—N5—C21—C22179.4 (4)
Cd1iii—N3—C7—N2174.1 (2)C19—N5—C21—C226.5 (7)
C13—N2—C7—N31.3 (4)C26—C21—C22—C231.6 (6)
C6—N2—C7—N3178.3 (3)N5—C21—C22—C23177.7 (4)
C7—N3—C8—C9179.2 (4)C21—C22—C23—C240.2 (6)
Cd1iii—N3—C8—C96.6 (6)C22—C23—C24—C251.5 (7)
C7—N3—C8—C130.9 (4)C23—C24—C25—C261.8 (6)
Cd1iii—N3—C8—C13173.3 (2)C22—C21—C26—C251.3 (6)
N3—C8—C13—C12178.0 (3)N5—C21—C26—C25178.1 (3)
C9—C8—C13—C121.9 (6)C22—C21—C26—N6179.6 (4)
N3—C8—C13—N21.6 (4)N5—C21—C26—N60.2 (4)
C9—C8—C13—N2178.4 (3)C24—C25—C26—C210.4 (6)
C7—N2—C13—C12177.9 (4)C24—C25—C26—N6177.5 (4)
C6—N2—C13—C120.8 (6)C20—N6—C26—C210.2 (4)
C7—N2—C13—C81.7 (4)Cd2iv—N6—C26—C21179.2 (3)
C6—N2—C13—C8178.8 (3)C20—N6—C26—C25177.8 (4)
C8—C13—C12—C111.2 (6)Cd2iv—N6—C26—C251.2 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I2v0.822.883.647 (5)155
Symmetry code: (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CdI2(C13H11N3)]·0.5CH4O
Mr591.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.469 (4), 12.913 (3), 16.814 (3)
β (°) 117.56 (3)
V3)3362.6 (16)
Z8
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.637, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
33513, 5901, 5155
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.02
No. of reflections5901
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.49, 0.81

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Cd1—N3i2.271 (3)Cd2—N6ii2.236 (3)
Cd1—N12.278 (3)Cd2—N42.315 (3)
Cd1—I22.7051 (6)Cd2—I32.702 (6)
Cd1—I12.7264 (10)Cd2—I42.706 (1)
N3i—Cd1—N197.99 (11)N6ii—Cd2—N498.86 (12)
N3i—Cd1—I2108.01 (8)N6ii—Cd2—I3107.34 (9)
N1—Cd1—I2106.72 (8)N4—Cd2—I3105.01 (8)
N3i—Cd1—I1104.48 (8)N6ii—Cd2—I4110.99 (9)
N1—Cd1—I1106.76 (8)N4—Cd2—I4100.80 (8)
I2—Cd1—I1128.711 (15)I3—Cd2—I4129.14 (8)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I2iii0.822.883.647 (5)155
Symmetry code: (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Nankai University for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, M., Liu, P., Wang, J., Chen, Y., Liu, Z. & Liu, Q. (2006). Inorg. Chem. Commun. 9, 952–959.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L., Hu, T. L., Li, J. R., Wang, D. Z., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 412–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X. R., Xiao, B., Fan, Y. T., Hou, H. W. & Li, G. (2004). Inorg. Chim. Acta, 357, 1471–1477.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds