organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­oxy­phen­yl)phenanthro[9,10-d]imidazole methanol solvate

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: liuqj@sdnu.edu.cn

(Received 18 November 2007; accepted 23 November 2007; online 6 December 2007)

The title compound, C22H16N2O·CH4O, is a product of the condensation reaction between phenanthrene­quinone and 4-methoxy­benzadehyde. There are two imidazole mol­ecules and two methanol molecules in the asymmetric unit. The phenanthryl and imidazole rings are almost parallel in both mol­ecules, with inter­planar angles of 6.65 (1) and 5.40 (3)°. The dihedral angles between the imidazole and the attached benzene rings are 5.40 (3) and 6.65 (1)° in the two molecules. Inter­molecular O—H⋯N and N—H⋯O hydrogen bonds stabilize the crystal packing.

Related literature

For an example of fluorescence properties, see: Krebs & Spanggaard (2002[Krebs, F. C. & Spanggaard, H. (2002). J. Org. Chem. 67, 7185-7192.]). For a related structure, see: Krebs et al. (2001[Krebs, F. C., Lindvold, L. R. & Jorgensen, M. (2001). Tetrahedron Lett. 62, 6753-6757.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O·CH4O

  • Mr = 356.41

  • Monoclinic, C 2/c

  • a = 17.755 (3) Å

  • b = 17.681 (3) Å

  • c = 25.131 (4) Å

  • β = 107.890 (3)°

  • V = 7508 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.47 × 0.34 × 0.16 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.987

  • 19569 measured reflections

  • 6972 independent reflections

  • 3852 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.131

  • S = 0.95

  • 6972 reflections

  • 493 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N4i 0.82 1.94 2.755 (2) 173
O3—H3A⋯N2ii 0.82 1.95 2.768 (2) 175
N3—H3⋯O3 0.86 1.99 2.840 (3) 168
N1—H1⋯O4 0.86 1.98 2.825 (2) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1H-phenanthro[9,10 - d]imidazole is a promising building block in the field of molecular materials. It has many desirable properties such as good heat stability, ease of introduction into molecules used as chromophores with high extinction coefficient, readily tunable absorption wavelength, and fluorescent properties. For these reasons, the molecule is used as a large planar synthetic building block in supramolecular chemistry (Krebs & Spanggaard, 2002). As part of our studies of phenanthro[9,10 - d]imidazole derivatives, we report here the structure of the title compound (I), a 1:1 solvate with MeOH.

The bond lengths and angles in (I) agree well with those reported for the related compounds (Krebs et al., 2001). There are two molecules in the asymmetric unit. The phenanthryl and imidazole rings in each molecule are almost parallel, with the interplanar angles being 6.65 (1)° and 5.40 (3)°.

There are intermolecular O4—H4A···N4, O3—H3A···N2, N3—H3···O3, and N1—H1···O4 close contacts (Table 2) in the crystal for (I). These contacts and the cross-linking interactions stabilize the crystal packing.

Related literature top

For an example of fluorescence properties, see: Krebs & Spanggaard (2002). For a related structure, see: Krebs et al. (2001).

Experimental top

A mixture of phenanthrenequinone (4.161 g, 20 mmol), 4-methoxybenzaldehyde (2.723 g, 20 mmol), and ammonium acetate (7.708 g, 100 mmol) in acetic acid (50 ml) was refluxed for 1 h. Upon cooling to room temperature, the precipitate obtained on addition of water was purified by flash column chromatography on silica gel. Single crystals suitable for X-ray diffraction were obtained by recrystallization from methanol solution.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with aromatic C—H = 0.93 Å and Uiso(H) = 1.2*Ueq(C); methyl C—H = 0.97 Å and Uiso(H) = 1.5*Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.2*Ueq(O); N—H = 0.86 Å and Uiso(H) = 1.2*Ueq(N).

Structure description top

The 1H-phenanthro[9,10 - d]imidazole is a promising building block in the field of molecular materials. It has many desirable properties such as good heat stability, ease of introduction into molecules used as chromophores with high extinction coefficient, readily tunable absorption wavelength, and fluorescent properties. For these reasons, the molecule is used as a large planar synthetic building block in supramolecular chemistry (Krebs & Spanggaard, 2002). As part of our studies of phenanthro[9,10 - d]imidazole derivatives, we report here the structure of the title compound (I), a 1:1 solvate with MeOH.

The bond lengths and angles in (I) agree well with those reported for the related compounds (Krebs et al., 2001). There are two molecules in the asymmetric unit. The phenanthryl and imidazole rings in each molecule are almost parallel, with the interplanar angles being 6.65 (1)° and 5.40 (3)°.

There are intermolecular O4—H4A···N4, O3—H3A···N2, N3—H3···O3, and N1—H1···O4 close contacts (Table 2) in the crystal for (I). These contacts and the cross-linking interactions stabilize the crystal packing.

For an example of fluorescence properties, see: Krebs & Spanggaard (2002). For a related structure, see: Krebs et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and ellipsoids drawn at the 30% probability level. Both independent imidazole and methanol solvate molecules are shown.
[Figure 2] Fig. 2. The packing diagram for (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.
2-(4-Methoxyphenyl)phenanthro[9,10 - d]imidazole methanol solvate top
Crystal data top
C22H16N2O·CH4OF(000) = 3008
Mr = 356.41Dx = 1.261 Mg m3
Monoclinic, C2/cMelting point: 527 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.755 (3) ÅCell parameters from 2357 reflections
b = 17.681 (3) Åθ = 2.3–20.6°
c = 25.131 (4) ŵ = 0.08 mm1
β = 107.890 (3)°T = 298 K
V = 7508 (2) Å3Plan, colourless
Z = 160.47 × 0.34 × 0.16 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
6972 independent reflections
Radiation source: fine-focus sealed tube3852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2021
Tmin = 0.963, Tmax = 0.987k = 1821
19569 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
6972 reflections(Δ/σ)max < 0.001
493 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H16N2O·CH4OV = 7508 (2) Å3
Mr = 356.41Z = 16
Monoclinic, C2/cMo Kα radiation
a = 17.755 (3) ŵ = 0.08 mm1
b = 17.681 (3) ÅT = 298 K
c = 25.131 (4) Å0.47 × 0.34 × 0.16 mm
β = 107.890 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
6972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3852 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.987Rint = 0.050
19569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.95Δρmax = 0.13 e Å3
6972 reflectionsΔρmin = 0.14 e Å3
493 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2>σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00685 (14)0.41421 (11)0.03594 (9)0.0457 (6)
C20.05442 (14)0.42635 (12)0.06132 (10)0.0488 (6)
C30.13452 (14)0.41336 (13)0.03316 (11)0.0612 (7)
H3B0.14940.39490.00330.073*
C40.19126 (16)0.42739 (15)0.05849 (12)0.0730 (8)
H40.24430.41850.03940.088*
C50.16933 (17)0.45483 (15)0.11244 (13)0.0717 (8)
H50.20780.46410.12970.086*
C60.09215 (16)0.46835 (13)0.14050 (11)0.0637 (7)
H60.07890.48680.17690.076*
C70.03134 (15)0.45537 (12)0.11639 (10)0.0518 (6)
C80.05131 (15)0.47244 (12)0.14516 (10)0.0521 (6)
C90.07707 (17)0.50153 (15)0.19970 (11)0.0696 (8)
H90.03990.50950.21840.084*
C100.15405 (19)0.51847 (16)0.22634 (12)0.0838 (9)
H100.16870.53690.26280.101*
C110.21063 (18)0.50848 (17)0.19957 (12)0.0917 (10)
H110.26330.52030.21770.110*
C120.18846 (16)0.48101 (15)0.14599 (11)0.0729 (8)
H120.22650.47510.12780.087*
C130.11032 (15)0.46176 (12)0.11817 (10)0.0523 (6)
C140.08366 (13)0.43179 (11)0.06299 (9)0.0451 (6)
C150.07191 (14)0.38688 (12)0.02125 (10)0.0475 (6)
C160.09225 (14)0.36201 (12)0.07017 (10)0.0481 (6)
C170.03205 (15)0.34411 (13)0.11865 (10)0.0591 (7)
H170.02030.34760.11890.071*
C180.04807 (16)0.32133 (13)0.16623 (10)0.0641 (7)
H180.00670.30940.19810.077*
C190.12526 (17)0.31611 (13)0.16687 (10)0.0589 (7)
C200.18619 (15)0.33390 (13)0.11954 (10)0.0597 (7)
H200.23840.33050.11970.072*
C210.16935 (15)0.35687 (12)0.07173 (10)0.0568 (7)
H210.21080.36910.04000.068*
C220.21299 (17)0.28221 (18)0.21888 (12)0.1021 (11)
H22A0.24050.32970.21220.153*
H22B0.21100.26370.25520.153*
H22C0.24040.24640.19090.153*
C230.59455 (13)0.43889 (12)0.05693 (9)0.0468 (6)
C240.58717 (13)0.43623 (13)0.11163 (10)0.0525 (6)
C250.57882 (15)0.36890 (15)0.13888 (11)0.0660 (7)
H250.57610.32290.12040.079*
C260.57471 (17)0.37032 (18)0.19234 (12)0.0803 (9)
H260.56970.32550.21030.096*
C270.57810 (17)0.43864 (19)0.21961 (12)0.0822 (9)
H270.57630.43950.25620.099*
C280.58407 (16)0.50466 (17)0.19342 (11)0.0754 (8)
H280.58450.55010.21220.090*
C290.58955 (14)0.50622 (14)0.13907 (10)0.0554 (6)
C300.59432 (13)0.57775 (14)0.11076 (11)0.0563 (6)
C310.59150 (15)0.64903 (16)0.13541 (12)0.0706 (8)
H310.58850.65150.17170.085*
C320.59311 (17)0.71454 (16)0.10672 (15)0.0826 (9)
H320.59050.76080.12360.099*
C330.59845 (17)0.71294 (16)0.05339 (14)0.0807 (9)
H330.59980.75790.03450.097*
C340.60174 (15)0.64507 (14)0.02809 (12)0.0681 (7)
H340.60510.64420.00810.082*
C350.60016 (13)0.57697 (13)0.05601 (10)0.0531 (6)
C360.60142 (13)0.50504 (12)0.03021 (10)0.0470 (6)
C370.60503 (13)0.41509 (13)0.02666 (9)0.0472 (6)
C380.60895 (13)0.37375 (13)0.07583 (9)0.0504 (6)
C390.61133 (15)0.29564 (14)0.07878 (10)0.0606 (7)
H390.61170.26730.04750.073*
C400.61311 (15)0.25848 (14)0.12690 (11)0.0659 (7)
H400.61440.20590.12780.079*
C410.61303 (17)0.29935 (17)0.17316 (11)0.0722 (8)
C420.61049 (19)0.37649 (17)0.17058 (11)0.0900 (10)
H420.61030.40460.20190.108*
C430.60826 (17)0.41370 (15)0.12323 (11)0.0749 (8)
H430.60630.46630.12300.090*
C440.6210 (3)0.1907 (2)0.22710 (14)0.1336 (16)
H44A0.66850.17260.20010.200*
H44B0.62190.17790.26400.200*
H44C0.57590.16770.22030.200*
C450.3353 (2)0.36715 (17)0.10140 (14)0.1058 (12)
H45A0.38870.38450.11780.159*
H45B0.33580.31910.08370.159*
H45C0.31030.36180.13010.159*
C460.67782 (19)0.20684 (18)0.09661 (14)0.1066 (11)
H46A0.69140.24320.12640.160*
H46B0.72000.20350.08030.160*
H46C0.66980.15830.11110.160*
N10.59680 (11)0.38208 (10)0.02006 (7)0.0503 (5)
H10.59360.33440.02560.060*
N20.60849 (11)0.48982 (10)0.02171 (8)0.0515 (5)
N30.12500 (11)0.41427 (10)0.02640 (7)0.0496 (5)
H30.17510.41960.03240.060*
N40.00083 (11)0.38598 (10)0.01671 (7)0.0498 (5)
O10.61638 (14)0.26985 (12)0.22247 (8)0.1066 (8)
O20.13454 (11)0.29238 (10)0.21638 (7)0.0811 (6)
O30.29293 (9)0.42005 (10)0.06127 (7)0.0671 (5)
H3A0.32390.44440.04970.101*
O40.60764 (11)0.22969 (9)0.05543 (8)0.0670 (5)
H4A0.57730.19360.04670.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (16)0.0433 (13)0.0494 (15)0.0028 (11)0.0143 (13)0.0034 (11)
C20.0448 (16)0.0468 (14)0.0543 (16)0.0003 (11)0.0144 (13)0.0054 (11)
C30.0467 (17)0.0692 (17)0.0664 (18)0.0000 (13)0.0154 (15)0.0022 (13)
C40.0459 (18)0.087 (2)0.084 (2)0.0004 (15)0.0162 (17)0.0036 (16)
C50.051 (2)0.084 (2)0.087 (2)0.0026 (15)0.0304 (18)0.0023 (16)
C60.063 (2)0.0697 (18)0.0632 (18)0.0026 (14)0.0262 (17)0.0007 (13)
C70.0510 (17)0.0503 (14)0.0555 (16)0.0016 (12)0.0183 (14)0.0050 (11)
C80.0555 (18)0.0530 (15)0.0488 (15)0.0019 (12)0.0173 (14)0.0027 (11)
C90.063 (2)0.092 (2)0.0567 (18)0.0030 (16)0.0230 (16)0.0077 (14)
C100.069 (2)0.118 (3)0.0590 (19)0.0111 (19)0.0118 (18)0.0222 (16)
C110.060 (2)0.138 (3)0.073 (2)0.0167 (18)0.0150 (18)0.0346 (19)
C120.055 (2)0.102 (2)0.0629 (19)0.0105 (16)0.0195 (16)0.0223 (15)
C130.0489 (17)0.0533 (15)0.0523 (16)0.0058 (12)0.0123 (14)0.0017 (11)
C140.0455 (16)0.0445 (14)0.0473 (15)0.0063 (11)0.0170 (13)0.0016 (10)
C150.0456 (16)0.0460 (14)0.0501 (15)0.0043 (11)0.0138 (13)0.0033 (11)
C160.0473 (16)0.0485 (14)0.0473 (15)0.0077 (11)0.0128 (13)0.0022 (11)
C170.0495 (17)0.0760 (18)0.0534 (16)0.0096 (13)0.0184 (14)0.0026 (13)
C180.0570 (19)0.0855 (19)0.0462 (16)0.0162 (15)0.0105 (14)0.0049 (13)
C190.066 (2)0.0627 (16)0.0512 (17)0.0064 (14)0.0231 (16)0.0037 (12)
C200.0525 (18)0.0690 (17)0.0592 (17)0.0027 (13)0.0197 (15)0.0057 (13)
C210.0506 (17)0.0628 (16)0.0551 (16)0.0064 (12)0.0131 (14)0.0037 (12)
C220.081 (3)0.154 (3)0.082 (2)0.006 (2)0.041 (2)0.020 (2)
C230.0355 (14)0.0550 (15)0.0495 (15)0.0035 (11)0.0124 (12)0.0043 (12)
C240.0398 (15)0.0668 (17)0.0517 (15)0.0008 (12)0.0153 (13)0.0077 (13)
C250.069 (2)0.0697 (18)0.0633 (18)0.0016 (14)0.0257 (16)0.0096 (13)
C260.089 (2)0.093 (2)0.065 (2)0.0011 (17)0.0319 (19)0.0168 (17)
C270.086 (2)0.109 (3)0.0541 (19)0.0026 (19)0.0253 (18)0.0034 (18)
C280.071 (2)0.096 (2)0.0592 (19)0.0017 (16)0.0200 (16)0.0068 (16)
C290.0391 (15)0.0707 (18)0.0556 (16)0.0012 (12)0.0134 (13)0.0030 (13)
C300.0380 (15)0.0638 (17)0.0649 (18)0.0021 (12)0.0126 (13)0.0049 (13)
C310.0551 (19)0.076 (2)0.081 (2)0.0004 (15)0.0211 (17)0.0118 (16)
C320.071 (2)0.063 (2)0.115 (3)0.0017 (16)0.029 (2)0.0114 (18)
C330.075 (2)0.060 (2)0.110 (3)0.0066 (15)0.032 (2)0.0086 (17)
C340.0615 (19)0.0601 (18)0.082 (2)0.0070 (14)0.0211 (16)0.0093 (15)
C350.0343 (14)0.0578 (16)0.0646 (17)0.0017 (12)0.0114 (13)0.0033 (13)
C360.0315 (14)0.0555 (16)0.0537 (16)0.0005 (11)0.0124 (12)0.0065 (12)
C370.0374 (14)0.0547 (16)0.0485 (15)0.0067 (11)0.0117 (12)0.0088 (12)
C380.0416 (15)0.0579 (16)0.0497 (16)0.0085 (12)0.0108 (13)0.0066 (12)
C390.0669 (19)0.0655 (18)0.0549 (17)0.0066 (14)0.0267 (15)0.0082 (13)
C400.075 (2)0.0658 (17)0.0630 (19)0.0090 (14)0.0296 (16)0.0002 (14)
C410.086 (2)0.082 (2)0.0515 (18)0.0163 (17)0.0256 (17)0.0037 (15)
C420.138 (3)0.083 (2)0.0513 (19)0.022 (2)0.033 (2)0.0096 (15)
C430.102 (2)0.0657 (18)0.0552 (18)0.0145 (16)0.0213 (17)0.0077 (14)
C440.224 (5)0.101 (3)0.099 (3)0.033 (3)0.082 (3)0.034 (2)
C450.126 (3)0.095 (2)0.109 (3)0.024 (2)0.054 (3)0.039 (2)
C460.070 (2)0.126 (3)0.103 (3)0.009 (2)0.003 (2)0.017 (2)
N10.0485 (13)0.0509 (12)0.0520 (13)0.0066 (10)0.0159 (11)0.0070 (10)
N20.0432 (13)0.0544 (13)0.0557 (13)0.0025 (9)0.0132 (11)0.0076 (9)
N30.0436 (12)0.0558 (12)0.0510 (12)0.0090 (9)0.0169 (11)0.0015 (9)
N40.0463 (13)0.0532 (12)0.0492 (13)0.0027 (9)0.0135 (11)0.0031 (9)
O10.167 (2)0.1000 (17)0.0643 (14)0.0238 (15)0.0526 (15)0.0116 (11)
O20.0743 (15)0.1156 (16)0.0573 (12)0.0037 (11)0.0261 (11)0.0177 (10)
O30.0538 (12)0.0723 (12)0.0782 (13)0.0097 (10)0.0250 (11)0.0134 (9)
O40.0602 (13)0.0616 (11)0.0740 (13)0.0136 (9)0.0130 (11)0.0048 (9)
Geometric parameters (Å, º) top
C1—C141.360 (3)C25—H250.9300
C1—N41.381 (3)C26—C271.381 (4)
C1—C21.436 (3)C26—H260.9300
C2—C31.399 (3)C27—C281.360 (3)
C2—C71.414 (3)C27—H270.9300
C3—C41.370 (3)C28—C291.399 (3)
C3—H3B0.9300C28—H280.9300
C4—C51.379 (3)C29—C301.466 (3)
C4—H40.9300C30—C351.411 (3)
C5—C61.356 (3)C30—C311.412 (3)
C5—H50.9300C31—C321.369 (3)
C6—C71.410 (3)C31—H310.9300
C6—H60.9300C32—C331.373 (4)
C7—C81.454 (3)C32—H320.9300
C8—C91.403 (3)C33—C341.368 (3)
C8—C131.425 (3)C33—H330.9300
C9—C101.358 (4)C34—C351.398 (3)
C9—H90.9300C34—H340.9300
C10—C111.382 (3)C35—C361.431 (3)
C10—H100.9300C36—N21.375 (3)
C11—C121.371 (3)C37—N21.327 (3)
C11—H110.9300C37—N11.358 (2)
C12—C131.391 (3)C37—C381.456 (3)
C12—H120.9300C38—C431.382 (3)
C13—C141.423 (3)C38—C391.384 (3)
C14—N31.377 (2)C39—C401.385 (3)
C15—N41.331 (3)C39—H390.9300
C15—N31.365 (3)C40—C411.368 (3)
C15—C161.452 (3)C40—H400.9300
C16—C211.384 (3)C41—O11.363 (3)
C16—C171.388 (3)C41—C421.367 (3)
C17—C181.372 (3)C42—C431.371 (3)
C17—H170.9300C42—H420.9300
C18—C191.379 (3)C43—H430.9300
C18—H180.9300C44—O11.408 (3)
C19—O21.370 (3)C44—H44A0.9600
C19—C201.376 (3)C44—H44B0.9600
C20—C211.385 (3)C44—H44C0.9600
C20—H200.9300C45—O31.411 (3)
C21—H210.9300C45—H45A0.9600
C22—O21.425 (3)C45—H45B0.9600
C22—H22A0.9600C45—H45C0.9600
C22—H22B0.9600C46—O41.412 (3)
C22—H22C0.9600C46—H46A0.9600
C23—C361.373 (3)C46—H46B0.9600
C23—N11.375 (3)C46—H46C0.9600
C23—C241.421 (3)N1—H10.8600
C24—C251.404 (3)N3—H30.8600
C24—C291.411 (3)O3—H3A0.8200
C25—C261.368 (3)O4—H4A0.8200
C14—C1—N4110.51 (19)C28—C27—C26120.6 (3)
C14—C1—C2121.6 (2)C28—C27—H27119.7
N4—C1—C2127.9 (2)C26—C27—H27119.7
C3—C2—C7119.9 (2)C27—C28—C29121.9 (3)
C3—C2—C1122.8 (2)C27—C28—H28119.0
C7—C2—C1117.2 (2)C29—C28—H28119.0
C4—C3—C2120.9 (2)C28—C29—C24117.3 (2)
C4—C3—H3B119.5C28—C29—C30121.5 (2)
C2—C3—H3B119.5C24—C29—C30121.1 (2)
C3—C4—C5119.7 (3)C35—C30—C31117.4 (2)
C3—C4—H4120.2C35—C30—C29119.8 (2)
C5—C4—H4120.2C31—C30—C29122.8 (2)
C6—C5—C4120.6 (3)C32—C31—C30121.0 (3)
C6—C5—H5119.7C32—C31—H31119.5
C4—C5—H5119.7C30—C31—H31119.5
C5—C6—C7122.2 (3)C31—C32—C33121.0 (3)
C5—C6—H6118.9C31—C32—H32119.5
C7—C6—H6118.9C33—C32—H32119.5
C6—C7—C2116.7 (2)C34—C33—C32119.8 (3)
C6—C7—C8122.8 (2)C34—C33—H33120.1
C2—C7—C8120.4 (2)C32—C33—H33120.1
C9—C8—C13116.6 (2)C33—C34—C35120.8 (3)
C9—C8—C7122.6 (2)C33—C34—H34119.6
C13—C8—C7120.9 (2)C35—C34—H34119.6
C10—C9—C8122.7 (2)C34—C35—C30120.0 (2)
C10—C9—H9118.7C34—C35—C36122.2 (2)
C8—C9—H9118.7C30—C35—C36117.8 (2)
C9—C10—C11120.3 (3)C23—C36—N2110.2 (2)
C9—C10—H10119.9C23—C36—C35121.3 (2)
C11—C10—H10119.9N2—C36—C35128.5 (2)
C12—C11—C10119.4 (3)N2—C37—N1111.16 (19)
C12—C11—H11120.3N2—C37—C38124.52 (19)
C10—C11—H11120.3N1—C37—C38124.3 (2)
C11—C12—C13121.5 (2)C43—C38—C39117.1 (2)
C11—C12—H12119.3C43—C38—C37119.0 (2)
C13—C12—H12119.3C39—C38—C37123.8 (2)
C12—C13—C14124.3 (2)C38—C39—C40121.9 (2)
C12—C13—C8119.6 (2)C38—C39—H39119.0
C14—C13—C8116.1 (2)C40—C39—H39119.0
C1—C14—N3105.9 (2)C41—C40—C39119.8 (2)
C1—C14—C13123.7 (2)C41—C40—H40120.1
N3—C14—C13130.5 (2)C39—C40—H40120.1
N4—C15—N3110.84 (19)O1—C41—C42115.9 (2)
N4—C15—C16124.7 (2)O1—C41—C40125.6 (3)
N3—C15—C16124.5 (2)C42—C41—C40118.6 (2)
C21—C16—C17117.5 (2)C41—C42—C43122.0 (2)
C21—C16—C15123.3 (2)C41—C42—H42119.0
C17—C16—C15119.2 (2)C43—C42—H42119.0
C18—C17—C16121.5 (2)C42—C43—C38120.5 (2)
C18—C17—H17119.3C42—C43—H43119.7
C16—C17—H17119.3C38—C43—H43119.7
C17—C18—C19120.2 (2)O1—C44—H44A109.5
C17—C18—H18119.9O1—C44—H44B109.5
C19—C18—H18119.9H44A—C44—H44B109.5
O2—C19—C20125.0 (2)O1—C44—H44C109.5
O2—C19—C18115.4 (2)H44A—C44—H44C109.5
C20—C19—C18119.7 (2)H44B—C44—H44C109.5
C19—C20—C21119.7 (2)O3—C45—H45A109.5
C19—C20—H20120.2O3—C45—H45B109.5
C21—C20—H20120.2H45A—C45—H45B109.5
C16—C21—C20121.5 (2)O3—C45—H45C109.5
C16—C21—H21119.2H45A—C45—H45C109.5
C20—C21—H21119.2H45B—C45—H45C109.5
O2—C22—H22A109.5O4—C46—H46A109.5
O2—C22—H22B109.5O4—C46—H46B109.5
H22A—C22—H22B109.5H46A—C46—H46B109.5
O2—C22—H22C109.5O4—C46—H46C109.5
H22A—C22—H22C109.5H46A—C46—H46C109.5
H22B—C22—H22C109.5H46B—C46—H46C109.5
C36—C23—N1105.50 (19)C37—N1—C23107.56 (18)
C36—C23—C24123.4 (2)C37—N1—H1126.2
N1—C23—C24131.1 (2)C23—N1—H1126.2
C25—C24—C29119.8 (2)C37—N2—C36105.59 (17)
C25—C24—C23123.7 (2)C15—N3—C14107.44 (18)
C29—C24—C23116.5 (2)C15—N3—H3126.3
C26—C25—C24120.6 (3)C14—N3—H3126.3
C26—C25—H25119.7C15—N4—C1105.36 (19)
C24—C25—H25119.7C41—O1—C44118.4 (2)
C25—C26—C27119.8 (3)C19—O2—C22118.1 (2)
C25—C26—H26120.1C45—O3—H3A109.5
C27—C26—H26120.1C46—O4—H4A109.5
C14—C1—C2—C3175.8 (2)C27—C28—C29—C30178.7 (2)
N4—C1—C2—C33.1 (3)C25—C24—C29—C280.6 (4)
C14—C1—C2—C71.8 (3)C23—C24—C29—C28178.7 (2)
N4—C1—C2—C7179.4 (2)C25—C24—C29—C30177.0 (2)
C7—C2—C3—C40.9 (3)C23—C24—C29—C303.8 (3)
C1—C2—C3—C4178.4 (2)C28—C29—C30—C35179.7 (2)
C2—C3—C4—C50.1 (4)C24—C29—C30—C352.8 (3)
C3—C4—C5—C60.3 (4)C28—C29—C30—C311.8 (4)
C4—C5—C6—C70.1 (4)C24—C29—C30—C31175.7 (2)
C5—C6—C7—C20.8 (3)C35—C30—C31—C321.0 (4)
C5—C6—C7—C8177.5 (2)C29—C30—C31—C32177.5 (2)
C3—C2—C7—C61.2 (3)C30—C31—C32—C330.8 (4)
C1—C2—C7—C6178.88 (19)C31—C32—C33—C340.4 (4)
C3—C2—C7—C8177.1 (2)C32—C33—C34—C350.3 (4)
C1—C2—C7—C80.5 (3)C33—C34—C35—C300.6 (4)
C6—C7—C8—C91.5 (3)C33—C34—C35—C36178.3 (2)
C2—C7—C8—C9179.8 (2)C31—C30—C35—C340.9 (3)
C6—C7—C8—C13177.0 (2)C29—C30—C35—C34177.6 (2)
C2—C7—C8—C131.3 (3)C31—C30—C35—C36178.8 (2)
C13—C8—C9—C100.5 (4)C29—C30—C35—C360.2 (3)
C7—C8—C9—C10179.1 (3)N1—C23—C36—N20.5 (2)
C8—C9—C10—C111.1 (5)C24—C23—C36—N2179.3 (2)
C9—C10—C11—C120.3 (5)N1—C23—C36—C35179.0 (2)
C10—C11—C12—C131.0 (5)C24—C23—C36—C351.1 (3)
C11—C12—C13—C14178.9 (3)C34—C35—C36—C23175.6 (2)
C11—C12—C13—C81.6 (4)C30—C35—C36—C232.1 (3)
C9—C8—C13—C120.8 (3)C34—C35—C36—N23.8 (4)
C7—C8—C13—C12177.8 (2)C30—C35—C36—N2178.4 (2)
C9—C8—C13—C14179.6 (2)N2—C37—C38—C436.9 (3)
C7—C8—C13—C141.8 (3)N1—C37—C38—C43172.7 (2)
N4—C1—C14—N30.1 (2)N2—C37—C38—C39174.9 (2)
C2—C1—C14—N3178.94 (18)N1—C37—C38—C395.6 (4)
N4—C1—C14—C13179.68 (19)C43—C38—C39—C400.1 (4)
C2—C1—C14—C131.3 (3)C37—C38—C39—C40178.4 (2)
C12—C13—C14—C1179.0 (2)C38—C39—C40—C410.4 (4)
C8—C13—C14—C10.5 (3)C39—C40—C41—O1178.5 (3)
C12—C13—C14—N31.3 (4)C39—C40—C41—C420.6 (4)
C8—C13—C14—N3179.2 (2)O1—C41—C42—C43179.0 (3)
N4—C15—C16—C21173.7 (2)C40—C41—C42—C430.2 (5)
N3—C15—C16—C216.2 (3)C41—C42—C43—C380.4 (5)
N4—C15—C16—C178.1 (3)C39—C38—C43—C420.5 (4)
N3—C15—C16—C17172.0 (2)C37—C38—C43—C42178.9 (3)
C21—C16—C17—C180.7 (3)N2—C37—N1—C230.2 (2)
C15—C16—C17—C18179.1 (2)C38—C37—N1—C23179.4 (2)
C16—C17—C18—C190.4 (4)C36—C23—N1—C370.2 (2)
C17—C18—C19—O2179.6 (2)C24—C23—N1—C37179.7 (2)
C17—C18—C19—C200.0 (4)N1—C37—N2—C360.6 (2)
O2—C19—C20—C21179.6 (2)C38—C37—N2—C36179.0 (2)
C18—C19—C20—C210.0 (4)C23—C36—N2—C370.7 (2)
C17—C16—C21—C200.8 (3)C35—C36—N2—C37178.8 (2)
C15—C16—C21—C20179.1 (2)N4—C15—N3—C140.1 (2)
C19—C20—C21—C160.4 (3)C16—C15—N3—C14179.96 (19)
C36—C23—C24—C25178.9 (2)C1—C14—N3—C150.0 (2)
N1—C23—C24—C251.3 (4)C13—C14—N3—C15179.8 (2)
C36—C23—C24—C291.9 (3)N3—C15—N4—C10.2 (2)
N1—C23—C24—C29178.0 (2)C16—C15—N4—C1179.91 (19)
C29—C24—C25—C261.5 (4)C14—C1—N4—C150.2 (2)
C23—C24—C25—C26177.7 (2)C2—C1—N4—C15178.8 (2)
C24—C25—C26—C270.6 (4)C42—C41—O1—C44178.5 (3)
C25—C26—C27—C281.2 (5)C40—C41—O1—C440.6 (5)
C26—C27—C28—C292.1 (4)C20—C19—O2—C222.7 (4)
C27—C28—C29—C241.2 (4)C18—C19—O2—C22176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N4i0.821.942.755 (2)173
O3—H3A···N2ii0.821.952.768 (2)175
N3—H3···O30.861.992.840 (3)168
N1—H1···O40.861.982.825 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H16N2O·CH4O
Mr356.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.755 (3), 17.681 (3), 25.131 (4)
β (°) 107.890 (3)
V3)7508 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.34 × 0.16
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
19569, 6972, 3852
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.131, 0.95
No. of reflections6972
No. of parameters493
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
C1—N41.381 (3)C14—N31.377 (2)
C1—C21.436 (3)C15—N41.331 (3)
C7—C81.454 (3)C15—N31.365 (3)
C8—C91.403 (3)C37—C381.456 (3)
C9—C101.358 (4)C44—O11.408 (3)
C11—C121.371 (3)C45—O31.411 (3)
C12—C131.391 (3)C46—O41.412 (3)
N4—C15—C16124.7 (2)N2—C37—C38124.52 (19)
N3—C15—C16124.5 (2)N1—C37—C38124.3 (2)
C21—C16—C17117.5 (2)C43—C38—C37119.0 (2)
C21—C16—C15123.3 (2)C39—C38—C37123.8 (2)
C17—C16—C15119.2 (2)O1—C41—C42115.9 (2)
O2—C19—C20125.0 (2)O1—C41—C40125.6 (3)
O2—C19—C18115.4 (2)C19—O2—C22118.1 (2)
C14—C1—C2—C3175.8 (2)C27—C28—C29—C30178.7 (2)
N4—C1—C2—C33.1 (3)C23—C24—C29—C28178.7 (2)
C1—C2—C3—C4178.4 (2)C25—C24—C29—C30177.0 (2)
C5—C6—C7—C8177.5 (2)C23—C24—C29—C303.8 (3)
C1—C2—C7—C6178.88 (19)C24—C29—C30—C352.8 (3)
C3—C2—C7—C8177.1 (2)C28—C29—C30—C311.8 (4)
C6—C7—C8—C13177.0 (2)C24—C29—C30—C31175.7 (2)
C2—C7—C8—C131.3 (3)C29—C30—C31—C32177.5 (2)
C7—C8—C13—C141.8 (3)C33—C34—C35—C36178.3 (2)
C2—C1—C14—C131.3 (3)C29—C30—C35—C34177.6 (2)
C12—C13—C14—N31.3 (4)C24—C23—C36—C351.1 (3)
N4—C15—C16—C21173.7 (2)C34—C35—C36—C23175.6 (2)
N3—C15—C16—C216.2 (3)C30—C35—C36—C232.1 (3)
N4—C15—C16—C178.1 (3)C34—C35—C36—N23.8 (4)
N3—C15—C16—C17172.0 (2)N2—C37—C38—C436.9 (3)
N1—C23—C24—C251.3 (4)N1—C37—C38—C43172.7 (2)
C36—C23—C24—C291.9 (3)N2—C37—C38—C39174.9 (2)
N1—C23—C24—C29178.0 (2)N1—C37—C38—C395.6 (4)
C25—C26—C27—C281.2 (5)C20—C19—O2—C222.7 (4)
C26—C27—C28—C292.1 (4)C18—C19—O2—C22176.9 (2)
C27—C28—C29—C241.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N4i0.821.942.755 (2)172.8
O3—H3A···N2ii0.821.952.768 (2)174.8
N3—H3···O30.861.992.840 (3)167.9
N1—H1···O40.861.982.825 (2)165.8
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge Dr Jianping Ma of Shandong Normal University for his help in the crystallographic analysis.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrebs, F. C., Lindvold, L. R. & Jorgensen, M. (2001). Tetrahedron Lett. 62, 6753–6757.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, F. C. & Spanggaard, H. (2002). J. Org. Chem. 67, 7185–7192.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds