metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[2-(piperazin-1-yl)­ethan­amine]­bis­­(saccharinato)cobalt(II)

aDepartment of Chemistry, Faculty of Arts and Sciences, University of Uludag, 16059 Gorukle, Bursa, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey
*Correspondence e-mail: vtyilmaz@uludag.edu.tr

(Received 19 November 2007; accepted 23 November 2007; online 6 December 2007)

In the centrosymmetric title complex, [Co(C7H4NO3S)2(C6H15N3)2], the CoII ion is coordinated by two saccharinate (sac) anions and two neutral 2-piperazin-1-ylethanamine (ppzea) ligands, showing a distorted octa­hedral coordination. Sac is O-bonded via the carbonyl group, while ppzea acts as an N,N′-bidentate chelating ligand. The mol­ecules are connected by N—H⋯N and N—H⋯O hydrogen bonds, forming a linear chain running parallel to the crystallographic a axis. The compound is isostructural with the reported Ni, Zn, and Cd analogues.

Related literature

For the structures of the analogous Ni, Zn, and Cd complexes, see: Guney et al. (2005[Guney, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). J. Coord. Chem. 58, 1667-1674.]); Yilmaz et al. (2005[Yilmaz, V. T., Guney, S. & Harrison, W. T. A. (2005). Z. Naturforsch. Teil B, 60, 403-407.]). For a review of saccharinate complexes, see: Baran & Yilmaz (2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4NO3S)2(C6H15N3)2]

  • Mr = 681.69

  • Triclinic, [P \overline 1]

  • a = 8.4294 (7) Å

  • b = 9.3742 (10) Å

  • c = 11.5618 (10) Å

  • α = 93.651 (8)°

  • β = 110.473 (6)°

  • γ = 116.486 (13)°

  • V = 739.31 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 293 (2) K

  • 0.58 × 0.41 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.721, Tmax = 0.865

  • 9652 measured reflections

  • 2913 independent reflections

  • 2635 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.07

  • 2913 reflections

  • 208 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.0897 (13)
Co1—N2 2.1101 (16)
Co1—N3 2.3589 (16)
O1—Co1—N2i 91.53 (6)
O1—Co1—N2 88.47 (6)
O1—Co1—N3 87.06 (6)
N2—Co1—N3 80.62 (6)
O1—Co1—N3i 92.94 (6)
N2—Co1—N3i 99.38 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N4ii 0.85 (3) 2.38 (3) 3.172 (3) 154 (2)
N2—H2A⋯N1i 0.91 (3) 2.25 (3) 2.982 (2) 137 (2)
N4—H4A⋯O3iii 0.838 (17) 2.221 (18) 3.054 (3) 173 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The saccharinate (sac) anion is formed by the deprotonation of saccharin and coordinates to various metal ions rather easily (Baran & Yilmaz 2006). In the course of the synthesis and structural characterization of mixed ligand–metal complexes of sac, recently we reported nickel(II), zinc(II) and cadmium(II) complexes of sac with 2-piperazin-1-ylethanamine (ppzea) (Guney et al., 2005; Yilmaz et al., 2005). In this paper, the crystal and molecular structure of the isomorphous sac complex of cobalt(II) with ppzea (I) is reported.

The title complex (I) is isostructural with the nickel(II), zinc(II) and cadmium(II) complexes of the same ligands (Guney et al., 2005; Yilmaz et al., 2005) and shows similar structural characteristics. In these isostructural complexes, the MII ions show an elongated octahedral geometry, possibly due to a poor overlap of the sp3 lone pair on the N atom of ppz with the valence orbitals of the metal ions. As shown in Fig. 1, (I) is a mononuclear CoII complex, in which the CoII ion lies on a centre of inversion and also exhibits an elongated distorted octahedral geometry with two neutral bidendate (N,N') ppzea ligands and two anionic sac ligands. In spite of the common N-coordination mode, sac coordinates to CoII through the carbonyl O atom. The puckering parameters of the ppz ring system in (I) are q = 0.538 (2)Å and Θ = 5.4 (2)°, suggesting that the ppz rings exhibit a typical (e.g., cyclohexane-like) chair conformation.

The amine hydrogen atoms of ppzea form intramolecular hydrogen bonds with the negatively charged N atom of sac. The individual molecules are linked by N—H···N and N—H···O hydrogen bonds, involving the amine H atoms of ppzea and the ring N atom of ppzea and the sulfonyl O atoms of sac, forming a linear chain running paralel to the crystallographic a axis.

Related literature top

For the structures of the analogous Ni, Zn, and Cd complexes, see: Guney et al. (2005); Yilmaz et al. (2005). For a review of saccharinate complexes, see: Baran & Yilmaz (2006).

Experimental top

A 20 ml e thanol solution containing ppzea (0.26 g, 2 mmol) and sacH (0.36 g, 2 mmol) was mixed with a 20 ml e thanol solution of Co(OAc)2.4H2O (0.25 g, 1 mmol). The reaction solution was stirred for 1 h at room temperature. Red-brown prisms were obtained after 5 days by slow evaporation of the solution at room temperature.

Refinement top

All N-bonded H atoms were refined freely, while C-bonded H atoms were placed in idealized locations (C—H = 0.95 Å) and included as riding atoms with Uiso(H) = 1.2*Ueq(C). The instruction DFIX was applied to the N4—H4A bond to increase its length to a reasonable value.

Structure description top

The saccharinate (sac) anion is formed by the deprotonation of saccharin and coordinates to various metal ions rather easily (Baran & Yilmaz 2006). In the course of the synthesis and structural characterization of mixed ligand–metal complexes of sac, recently we reported nickel(II), zinc(II) and cadmium(II) complexes of sac with 2-piperazin-1-ylethanamine (ppzea) (Guney et al., 2005; Yilmaz et al., 2005). In this paper, the crystal and molecular structure of the isomorphous sac complex of cobalt(II) with ppzea (I) is reported.

The title complex (I) is isostructural with the nickel(II), zinc(II) and cadmium(II) complexes of the same ligands (Guney et al., 2005; Yilmaz et al., 2005) and shows similar structural characteristics. In these isostructural complexes, the MII ions show an elongated octahedral geometry, possibly due to a poor overlap of the sp3 lone pair on the N atom of ppz with the valence orbitals of the metal ions. As shown in Fig. 1, (I) is a mononuclear CoII complex, in which the CoII ion lies on a centre of inversion and also exhibits an elongated distorted octahedral geometry with two neutral bidendate (N,N') ppzea ligands and two anionic sac ligands. In spite of the common N-coordination mode, sac coordinates to CoII through the carbonyl O atom. The puckering parameters of the ppz ring system in (I) are q = 0.538 (2)Å and Θ = 5.4 (2)°, suggesting that the ppz rings exhibit a typical (e.g., cyclohexane-like) chair conformation.

The amine hydrogen atoms of ppzea form intramolecular hydrogen bonds with the negatively charged N atom of sac. The individual molecules are linked by N—H···N and N—H···O hydrogen bonds, involving the amine H atoms of ppzea and the ring N atom of ppzea and the sulfonyl O atoms of sac, forming a linear chain running paralel to the crystallographic a axis.

For the structures of the analogous Ni, Zn, and Cd complexes, see: Guney et al. (2005); Yilmaz et al. (2005). For a review of saccharinate complexes, see: Baran & Yilmaz (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x + 1, -y + 1, -z + 1. The intramolecular N—H···N hydrogen bonds are indicated by dashed lines.
trans-Bis[2-(piperazin-1-yl)ethanamine]bis(saccharinato)cobalt(II) top
Crystal data top
[Co(C7H4NO3S)2(C6H15N3)2]Z = 1
Mr = 681.69F(000) = 357
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4294 (7) ÅCell parameters from 16784 reflections
b = 9.3742 (10) Åθ = 2.0–28.0°
c = 11.5618 (10) ŵ = 0.78 mm1
α = 93.651 (8)°T = 293 K
β = 110.473 (6)°Prism, light brown
γ = 116.486 (13)°0.58 × 0.41 × 0.25 mm
V = 739.31 (17) Å3
Data collection top
Stoe IPDS 2
diffractometer
2913 independent reflections
Radiation source: fine-focus sealed tube2635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.0°
rotation method scansh = 1010
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1011
Tmin = 0.721, Tmax = 0.865l = 1414
9652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1493P]
where P = (Fo2 + 2Fc2)/3
2913 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.64 e Å3
Crystal data top
[Co(C7H4NO3S)2(C6H15N3)2]γ = 116.486 (13)°
Mr = 681.69V = 739.31 (17) Å3
Triclinic, P1Z = 1
a = 8.4294 (7) ÅMo Kα radiation
b = 9.3742 (10) ŵ = 0.78 mm1
c = 11.5618 (10) ÅT = 293 K
α = 93.651 (8)°0.58 × 0.41 × 0.25 mm
β = 110.473 (6)°
Data collection top
Stoe IPDS 2
diffractometer
2913 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2635 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.865Rint = 0.103
9652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
2913 reflectionsΔρmin = 0.64 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02842 (12)
S10.60105 (7)0.20581 (6)0.86106 (4)0.03467 (14)
O10.4721 (2)0.46565 (17)0.67018 (13)0.0386 (3)
O20.7830 (2)0.2754 (2)0.97136 (15)0.0540 (4)
O30.5203 (3)0.03573 (19)0.79884 (17)0.0557 (4)
N10.6138 (2)0.3163 (2)0.75875 (16)0.0379 (4)
N20.4126 (2)0.6783 (2)0.50483 (16)0.0324 (3)
N30.8077 (2)0.73527 (18)0.62659 (14)0.0312 (3)
N41.1486 (2)0.7105 (2)0.6325 (2)0.0498 (5)
C10.4967 (3)0.3785 (2)0.74533 (16)0.0313 (4)
C20.3873 (3)0.3351 (2)0.82672 (17)0.0311 (4)
C30.4282 (3)0.2328 (2)0.89749 (17)0.0332 (4)
C40.3404 (3)0.1714 (3)0.9774 (2)0.0441 (5)
H40.36930.10301.02510.053*
C50.2076 (3)0.2162 (3)0.9835 (2)0.0501 (5)
H50.14370.17521.03520.060*
C60.1672 (3)0.3207 (3)0.9146 (2)0.0508 (5)
H60.07900.35080.92190.061*
C70.2570 (3)0.3805 (3)0.8352 (2)0.0436 (5)
H70.22980.45020.78840.052*
C80.5815 (3)0.8468 (2)0.5672 (2)0.0379 (4)
H8A0.54280.91660.60170.046*
H8B0.62770.89340.50520.046*
C90.7420 (3)0.8403 (2)0.67326 (19)0.0381 (4)
H9A0.85240.95140.71500.046*
H9B0.69570.79760.73630.046*
C100.9221 (3)0.8211 (2)0.5561 (2)0.0405 (4)
H10A1.02260.93210.60820.049*
H10B0.83650.82970.47850.049*
C111.0174 (3)0.7314 (3)0.5215 (2)0.0475 (5)
H11A0.91590.62340.46420.057*
H11B1.09100.79250.47590.057*
C121.0468 (3)0.6362 (3)0.7102 (2)0.0448 (5)
H12A1.14100.63980.78980.054*
H12B0.95250.52100.66570.054*
C130.9411 (3)0.7169 (3)0.74108 (18)0.0390 (4)
H13A0.86580.65150.78420.047*
H13B1.03710.82530.79970.047*
H2A0.348 (3)0.681 (3)0.424 (2)0.043 (6)*
H2B0.337 (3)0.655 (3)0.543 (2)0.040 (6)*
H4A1.244 (3)0.804 (2)0.677 (3)0.064 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0362 (2)0.03155 (19)0.02755 (19)0.02107 (15)0.01746 (14)0.01371 (14)
S10.0412 (3)0.0402 (3)0.0304 (2)0.0253 (2)0.0159 (2)0.01366 (19)
O10.0519 (8)0.0450 (7)0.0335 (7)0.0294 (6)0.0246 (6)0.0217 (6)
O20.0454 (8)0.0778 (11)0.0397 (8)0.0367 (8)0.0107 (7)0.0189 (8)
O30.0727 (10)0.0430 (8)0.0596 (10)0.0346 (8)0.0296 (8)0.0114 (7)
N10.0430 (8)0.0491 (9)0.0348 (8)0.0276 (7)0.0228 (7)0.0197 (7)
N20.0360 (8)0.0385 (8)0.0332 (8)0.0238 (7)0.0178 (7)0.0141 (7)
N30.0333 (7)0.0337 (7)0.0310 (7)0.0190 (6)0.0150 (6)0.0102 (6)
N40.0321 (9)0.0534 (11)0.0560 (12)0.0198 (8)0.0152 (8)0.0008 (9)
C10.0357 (9)0.0347 (8)0.0249 (8)0.0176 (7)0.0141 (7)0.0094 (7)
C20.0333 (8)0.0336 (8)0.0267 (8)0.0158 (7)0.0139 (7)0.0096 (7)
C30.0369 (9)0.0344 (9)0.0288 (9)0.0169 (7)0.0154 (7)0.0104 (7)
C40.0558 (12)0.0434 (10)0.0360 (10)0.0218 (10)0.0251 (9)0.0181 (9)
C50.0530 (12)0.0553 (12)0.0423 (11)0.0178 (10)0.0330 (10)0.0128 (10)
C60.0481 (12)0.0639 (14)0.0501 (13)0.0302 (11)0.0289 (10)0.0108 (11)
C70.0504 (11)0.0519 (11)0.0425 (11)0.0327 (10)0.0239 (9)0.0181 (9)
C80.0467 (10)0.0328 (9)0.0447 (11)0.0256 (8)0.0222 (9)0.0134 (8)
C90.0427 (10)0.0347 (9)0.0366 (10)0.0208 (8)0.0155 (8)0.0037 (8)
C100.0393 (10)0.0368 (9)0.0458 (11)0.0156 (8)0.0226 (8)0.0144 (8)
C110.0425 (11)0.0496 (12)0.0512 (12)0.0181 (9)0.0280 (9)0.0087 (10)
C120.0377 (10)0.0491 (11)0.0437 (11)0.0267 (9)0.0077 (8)0.0057 (9)
C130.0378 (10)0.0454 (10)0.0320 (9)0.0229 (8)0.0104 (8)0.0086 (8)
Geometric parameters (Å, º) top
Co1—O1i2.0897 (13)C3—C41.378 (3)
Co1—O12.0897 (13)C4—C51.380 (3)
Co1—N2i2.1101 (16)C4—H40.9300
Co1—N22.1101 (16)C5—C61.385 (4)
Co1—N32.3589 (16)C5—H50.9300
Co1—N3i2.3589 (16)C6—C71.379 (3)
S1—O21.4274 (15)C6—H60.9300
S1—O31.4376 (16)C7—H70.9300
S1—N11.6214 (16)C8—C91.504 (3)
S1—C31.763 (2)C8—H8A0.9700
O1—C11.257 (2)C8—H8B0.9700
N1—C11.326 (3)C9—H9A0.9700
N2—C81.474 (2)C9—H9B0.9700
N2—H2A0.91 (3)C10—C111.515 (3)
N2—H2B0.85 (3)C10—H10A0.9700
N3—C101.478 (3)C10—H10B0.9700
N3—C91.482 (2)C11—H11A0.9700
N3—C131.485 (2)C11—H11B0.9700
N4—C121.454 (3)C12—C131.512 (3)
N4—C111.463 (3)C12—H12A0.9700
N4—H4A0.838 (17)C12—H12B0.9700
C1—C21.490 (3)C13—H13A0.9700
C2—C71.373 (3)C13—H13B0.9700
C2—C31.380 (2)
O1i—Co1—O1180.000 (1)C3—C4—H4121.5
O1i—Co1—N2i88.47 (6)C5—C4—H4121.5
O1—Co1—N2i91.53 (6)C4—C5—C6121.7 (2)
O1i—Co1—N291.53 (6)C4—C5—H5119.2
O1—Co1—N288.47 (6)C6—C5—H5119.2
N2i—Co1—N2180.000 (1)C7—C6—C5120.3 (2)
O1i—Co1—N392.94 (6)C7—C6—H6119.9
O1—Co1—N387.06 (6)C5—C6—H6119.9
N2i—Co1—N399.38 (6)C2—C7—C6118.75 (19)
N2—Co1—N380.62 (6)C2—C7—H7120.6
O1i—Co1—N3i87.06 (5)C6—C7—H7120.6
O1—Co1—N3i92.94 (6)N2—C8—C9109.12 (15)
N2i—Co1—N3i80.62 (6)N2—C8—H8A109.9
N2—Co1—N3i99.38 (6)C9—C8—H8A109.9
N3—Co1—N3i180.0N2—C8—H8B109.9
O2—S1—O3114.88 (11)C9—C8—H8B109.9
O2—S1—N1111.71 (10)H8A—C8—H8B108.3
O3—S1—N1110.32 (10)N3—C9—C8112.44 (16)
O2—S1—C3110.86 (10)N3—C9—H9A109.1
O3—S1—C3110.47 (10)C8—C9—H9A109.1
N1—S1—C397.23 (9)N3—C9—H9B109.1
C1—O1—Co1136.88 (13)C8—C9—H9B109.1
C1—N1—S1110.72 (14)H9A—C9—H9B107.8
C8—N2—Co1112.04 (11)N3—C10—C11111.99 (17)
C8—N2—H2A105.0 (14)N3—C10—H10A109.2
Co1—N2—H2A110.7 (16)C11—C10—H10A109.2
C8—N2—H2B110.3 (16)N3—C10—H10B109.2
Co1—N2—H2B110.0 (16)C11—C10—H10B109.2
H2A—N2—H2B109 (2)H10A—C10—H10B107.9
C10—N3—C9109.30 (15)N4—C11—C10113.47 (19)
C10—N3—C13107.64 (15)N4—C11—H11A108.9
C9—N3—C13107.08 (15)C10—C11—H11A108.9
C10—N3—Co1115.28 (12)N4—C11—H11B108.9
C9—N3—Co199.17 (11)C10—C11—H11B108.9
C13—N3—Co1117.56 (11)H11A—C11—H11B107.7
C12—N4—C11109.61 (16)N4—C12—C13115.08 (18)
C12—N4—H4A108 (2)N4—C12—H12A108.5
C11—N4—H4A109 (2)C13—C12—H12A108.5
O1—C1—N1125.08 (18)N4—C12—H12B108.5
O1—C1—C2120.27 (17)C13—C12—H12B108.5
N1—C1—C2114.64 (15)H12A—C12—H12B107.5
C7—C2—C3120.25 (19)N3—C13—C12113.48 (17)
C7—C2—C1128.66 (17)N3—C13—H13A108.9
C3—C2—C1111.08 (17)C12—C13—H13A108.9
C4—C3—C2122.14 (19)N3—C13—H13B108.9
C4—C3—S1131.55 (16)C12—C13—H13B108.9
C2—C3—S1106.31 (14)H13A—C13—H13B107.7
C3—C4—C5116.93 (19)
N2i—Co1—O1—C10.70 (18)C1—C2—C3—C4178.03 (17)
N2—Co1—O1—C1179.30 (18)C7—C2—C3—S1179.55 (15)
N3—Co1—O1—C198.62 (18)C1—C2—C3—S11.80 (18)
N3i—Co1—O1—C181.38 (18)O2—S1—C3—C464.8 (2)
O2—S1—N1—C1115.72 (15)O3—S1—C3—C463.7 (2)
O3—S1—N1—C1115.20 (15)N1—S1—C3—C4178.58 (19)
C3—S1—N1—C10.18 (15)O2—S1—C3—C2115.35 (14)
O1i—Co1—N2—C886.23 (13)O3—S1—C3—C2116.12 (14)
O1—Co1—N2—C893.77 (13)N1—S1—C3—C21.22 (14)
N3—Co1—N2—C86.49 (13)C2—C3—C4—C50.3 (3)
N3i—Co1—N2—C8173.51 (13)S1—C3—C4—C5179.46 (17)
O1i—Co1—N3—C103.65 (13)C3—C4—C5—C61.3 (3)
O1—Co1—N3—C10176.35 (13)C4—C5—C6—C71.3 (4)
N2i—Co1—N3—C1085.29 (13)C3—C2—C7—C60.6 (3)
N2—Co1—N3—C1094.71 (13)C1—C2—C7—C6177.80 (19)
O1i—Co1—N3—C9112.87 (11)C5—C6—C7—C20.4 (3)
O1—Co1—N3—C967.13 (11)Co1—N2—C8—C934.5 (2)
N2i—Co1—N3—C9158.19 (11)C10—N3—C9—C872.7 (2)
N2—Co1—N3—C921.81 (11)C13—N3—C9—C8170.98 (16)
O1i—Co1—N3—C13132.30 (13)Co1—N3—C9—C848.30 (17)
O1—Co1—N3—C1347.70 (13)N2—C8—C9—N359.5 (2)
N2i—Co1—N3—C1343.36 (14)C9—N3—C10—C11172.09 (16)
N2—Co1—N3—C13136.64 (14)C13—N3—C10—C1156.1 (2)
Co1—O1—C1—N124.4 (3)Co1—N3—C10—C1177.30 (18)
Co1—O1—C1—C2154.52 (14)C12—N4—C11—C1052.0 (2)
S1—N1—C1—O1178.10 (15)N3—C10—C11—N458.3 (2)
S1—N1—C1—C20.9 (2)C11—N4—C12—C1349.1 (2)
O1—C1—C2—C71.3 (3)C10—N3—C13—C1253.1 (2)
N1—C1—C2—C7179.63 (19)C9—N3—C13—C12170.55 (17)
O1—C1—C2—C3177.19 (16)Co1—N3—C13—C1279.06 (19)
N1—C1—C2—C31.9 (2)N4—C12—C13—N352.0 (2)
C7—C2—C3—C40.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4ii0.85 (3)2.38 (3)3.172 (3)154 (2)
N2—H2A···N1i0.91 (3)2.25 (3)2.982 (2)137 (2)
N4—H4A···O3iii0.84 (2)2.22 (2)3.054 (3)173 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C7H4NO3S)2(C6H15N3)2]
Mr681.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4294 (7), 9.3742 (10), 11.5618 (10)
α, β, γ (°)93.651 (8), 110.473 (6), 116.486 (13)
V3)739.31 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.58 × 0.41 × 0.25
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.721, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
9652, 2913, 2635
Rint0.103
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.07
No. of reflections2913
No. of parameters208
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.64

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co1—O12.0897 (13)Co1—N32.3589 (16)
Co1—N22.1101 (16)
O1—Co1—N2i91.53 (6)N2—Co1—N380.62 (6)
O1—Co1—N288.47 (6)O1—Co1—N3i92.94 (6)
O1—Co1—N387.06 (6)N2—Co1—N3i99.38 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4ii0.85 (3)2.38 (3)3.172 (3)154 (2)
N2—H2A···N1i0.91 (3)2.25 (3)2.982 (2)137 (2)
N4—H4A···O3iii0.838 (17)2.221 (18)3.054 (3)173 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

References

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuney, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). J. Coord. Chem. 58, 1667–1674.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA (Version 1.18) and X-RED (Version 1.04). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYilmaz, V. T., Guney, S. & Harrison, W. T. A. (2005). Z. Naturforsch. Teil B, 60, 403–407.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds