organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4-(4-formyl­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-dicar­boxyl­ate

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: liuqj@sdnu.edu.cn

(Received 22 November 2007; accepted 26 November 2007; online 18 December 2007)

The title compound, C18H19NO5, is a product of the Hantzsch reaction of p-phthalaldehyde, methyl acetoacetate, and ammonium acetate. The 1,4-dihydro­pyridine ring of the mol­ecule adopts a flattened boat conformation. The benzene ring is almost perpendicular to the 1,4-dihydro­pyridine ring; the plane through the six C atoms of the benzene ring and the plane through the four C atoms that form the base of the boat-shaped 1,4-dihydro­pyridine ring (excluding the ring N atom and the opposite ring C atom) make a dihedral angle of 87.60 (3)°. Inter­molecular N—H⋯O hydrogen bonds result in the formation of extended chains along the a axis.

Related literature

For a related 1,4-dihydro­pyridine structure, see: Fossheim et al. (1982[Fossheim, R., Svarteng, K. & Mostad, A. (1982). J. Med. Chem. 25, 126-131.]). For the synthesis of 1,4-dihydro­pyridines, see: Hantzsch & Liebigs (1882[Hantzsch, A. & Liebigs, J. (1882). Ann. Chem. 215, 1-82.]). For the biological activity of 1,4-dihydro­pyridines, see: Janis & Triggle (1983[Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 25, 775-785.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO5

  • Mr = 329.34

  • Triclinic, [P \overline 1]

  • a = 8.219 (2) Å

  • b = 10.432 (3) Å

  • c = 10.979 (3) Å

  • α = 111.364 (3)°

  • β = 102.799 (3)°

  • γ = 101.150 (4)°

  • V = 815.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.48 × 0.34 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.990

  • 4173 measured reflections

  • 2855 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 1.04

  • 2855 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 2.27 3.107 (2) 163
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2001[Bruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that 1,4-dihydropyridines (DHPs) exhibit a wide range of biological activities, acting as potent vasodilators and antihypertensives (Janis & Triggle, 1983). The classical preparation method of 1,4-dihydropyridines is the Hantzsch reaction (Hantzsch & Liebigs, 1882). We have synthesized a series of 1,4-dihydropyridine compounds by the Hantzsch protocol in water. The structure of (I) was fully characterized by NMR (1H,13C), MS, IR, and elemental analysis and was confirmed by single-crystal X-ray crystallographic analysis (Figure 1).

The bond lengths and angles in (I) show normal values (Table 1) except for the geometry of the 1,4-dihydropyridine ring which adopts a flattened boat conformation with ring distortions at the nitrogen (Nl) and the tetrahedral carbon (C11). Both atoms are displaced to the same side of the ring with distances of 0.17Å and 0.39 Å, respectively, from the plane defined by C3, C4, C7, and C8, and thus form the apices of a boat-type conformation (Fossheim et al., 1982). The phenyl ring is almost perpendicular to the 1,4-dihydropyridine ring (N1—C4—C3—C11—C8—C7) with a dihedral angle of 92.40 (1)°. The bisect plane of the 1,4-dihydropyridine ring defined by N1, C11, and C12 makes a dihedral angle of 35.40 (7)° with the phenyl ring. The intermolecular hydrogen bonds N1—H1···O5i [symmetry code (i): -x + 1, -y + 2, -z + 2] between the pyridine N atom and a neighboring formyl O atom result in the formation of extended chains along the a axis (Figure 2).

Related literature top

For a related 1,4-dihydropyridine structure, see: Fossheim et al. (1982). For the synthesis of 1,4-dihydropyridines, see: Hantzsch & Liebigs (1882). For the biological activity of 1,4-dihydropyridines, see: Janis & Triggle (1983).

Experimental top

The title compound,(I), was prepared by refluxing a mixture of p-phthaldehyde (0.67 g, 5.0 mmol), methyl acetoacetate (1.19 g, 10.25 mmol), and ammonium acetate (0.58 g, 7.5 mmol) for 6 h in water (10 ml), and purified by recrystallization, m.p.479–481 K. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.93Å and Uiso(H) = 1.2*Ueq(C) (aromatic); C—H = 0.96Å and Uiso(H) = 1.5*Ueq(C) (methyl); C—H = 0.98Å and Uiso(H) = 1.2*Ueq(C) (tertiary CH).

Structure description top

It is well known that 1,4-dihydropyridines (DHPs) exhibit a wide range of biological activities, acting as potent vasodilators and antihypertensives (Janis & Triggle, 1983). The classical preparation method of 1,4-dihydropyridines is the Hantzsch reaction (Hantzsch & Liebigs, 1882). We have synthesized a series of 1,4-dihydropyridine compounds by the Hantzsch protocol in water. The structure of (I) was fully characterized by NMR (1H,13C), MS, IR, and elemental analysis and was confirmed by single-crystal X-ray crystallographic analysis (Figure 1).

The bond lengths and angles in (I) show normal values (Table 1) except for the geometry of the 1,4-dihydropyridine ring which adopts a flattened boat conformation with ring distortions at the nitrogen (Nl) and the tetrahedral carbon (C11). Both atoms are displaced to the same side of the ring with distances of 0.17Å and 0.39 Å, respectively, from the plane defined by C3, C4, C7, and C8, and thus form the apices of a boat-type conformation (Fossheim et al., 1982). The phenyl ring is almost perpendicular to the 1,4-dihydropyridine ring (N1—C4—C3—C11—C8—C7) with a dihedral angle of 92.40 (1)°. The bisect plane of the 1,4-dihydropyridine ring defined by N1, C11, and C12 makes a dihedral angle of 35.40 (7)° with the phenyl ring. The intermolecular hydrogen bonds N1—H1···O5i [symmetry code (i): -x + 1, -y + 2, -z + 2] between the pyridine N atom and a neighboring formyl O atom result in the formation of extended chains along the a axis (Figure 2).

For a related 1,4-dihydropyridine structure, see: Fossheim et al. (1982). For the synthesis of 1,4-dihydropyridines, see: Hantzsch & Liebigs (1882). For the biological activity of 1,4-dihydropyridines, see: Janis & Triggle (1983).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The crystal structure drawing for (I) with the atom-numbering scheme and ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Dimethyl 4-(4-formylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C18H19NO5Z = 2
Mr = 329.34F(000) = 348
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Melting point: 479 K
a = 8.219 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.432 (3) ÅCell parameters from 1572 reflections
c = 10.979 (3) Åθ = 2.2–26.7°
α = 111.364 (3)°µ = 0.10 mm1
β = 102.799 (3)°T = 298 K
γ = 101.150 (4)°Plate, colourless
V = 815.0 (4) Å30.48 × 0.34 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2855 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS: Sheldrick, 2004)
h = 79
Tmin = 0.954, Tmax = 0.990k = 1212
4173 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.2263P]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H19NO5γ = 101.150 (4)°
Mr = 329.34V = 815.0 (4) Å3
Triclinic, P1Z = 2
a = 8.219 (2) ÅMo Kα radiation
b = 10.432 (3) ŵ = 0.10 mm1
c = 10.979 (3) ÅT = 298 K
α = 111.364 (3)°0.48 × 0.34 × 0.10 mm
β = 102.799 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2855 independent reflections
Absorption correction: multi-scan
(SADABS: Sheldrick, 2004)
2352 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.990Rint = 0.015
4173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2855 reflectionsΔρmin = 0.23 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0487 (3)0.7111 (3)0.2379 (2)0.0540 (6)
H1A0.16630.75270.24290.081*
H1B0.02630.75980.20530.081*
H1C0.00870.61050.17530.081*
C20.1597 (3)0.6835 (2)0.4429 (2)0.0369 (5)
C30.1430 (2)0.7146 (2)0.58051 (19)0.0316 (4)
C40.2082 (3)0.6488 (2)0.6575 (2)0.0360 (5)
C50.3136 (3)0.5473 (2)0.6249 (3)0.0501 (6)
H5A0.29390.50480.52720.075*
H5B0.27920.47270.65380.075*
H5C0.43550.59890.67250.075*
C60.0172 (3)0.7028 (3)0.9224 (3)0.0562 (6)
H6A0.02660.79130.98530.084*
H6B0.06930.67300.97070.084*
H6C0.12820.62940.88450.084*
C70.0357 (3)0.7258 (2)0.8083 (2)0.0369 (5)
C80.0337 (2)0.7922 (2)0.73481 (19)0.0326 (4)
C90.1879 (3)0.8380 (2)0.7515 (2)0.0403 (5)
C100.3909 (3)0.9447 (3)0.6724 (3)0.0648 (7)
H10A0.48830.86090.64360.097*
H10B0.41260.99010.61100.097*
H10C0.37591.01130.76460.097*
C110.0538 (2)0.8272 (2)0.63858 (18)0.0298 (4)
H110.03690.82350.56140.036*
C120.1873 (2)0.9776 (2)0.70850 (19)0.0306 (4)
C130.2279 (3)1.0506 (2)0.6300 (2)0.0352 (5)
H130.16951.00930.53560.042*
C140.3539 (3)1.1837 (2)0.6906 (2)0.0387 (5)
H140.37971.23100.63680.046*
C150.4421 (2)1.2473 (2)0.8316 (2)0.0360 (5)
C160.5802 (3)1.3855 (2)0.8933 (2)0.0443 (5)
H160.59431.43290.83740.053*
C170.4002 (3)1.1764 (2)0.9107 (2)0.0423 (5)
H170.45761.21861.00540.051*
C180.2739 (3)1.0439 (2)0.8499 (2)0.0395 (5)
H180.24610.99810.90440.047*
O10.2601 (3)0.6284 (2)0.39502 (18)0.0686 (5)
O20.0449 (2)0.72623 (17)0.37188 (14)0.0483 (4)
O30.23540 (19)0.90263 (18)0.66944 (17)0.0504 (4)
O40.2703 (2)0.8207 (2)0.8252 (2)0.0747 (6)
O50.6775 (2)1.44321 (17)1.01131 (17)0.0562 (5)
N10.1702 (2)0.67213 (19)0.77876 (18)0.0412 (4)
H10.23350.65230.83890.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0704 (16)0.0601 (15)0.0303 (12)0.0144 (12)0.0190 (11)0.0191 (11)
C20.0353 (10)0.0365 (11)0.0348 (11)0.0084 (9)0.0136 (9)0.0106 (9)
C30.0284 (9)0.0344 (10)0.0300 (10)0.0073 (8)0.0094 (8)0.0126 (8)
C40.0324 (10)0.0351 (10)0.0359 (11)0.0063 (8)0.0084 (8)0.0136 (9)
C50.0477 (13)0.0487 (13)0.0603 (15)0.0223 (11)0.0167 (11)0.0264 (12)
C60.0671 (16)0.0706 (16)0.0500 (14)0.0234 (13)0.0269 (12)0.0401 (13)
C70.0367 (11)0.0396 (11)0.0322 (11)0.0063 (9)0.0105 (9)0.0158 (9)
C80.0303 (10)0.0386 (11)0.0272 (10)0.0072 (8)0.0098 (8)0.0134 (8)
C90.0353 (11)0.0498 (12)0.0351 (11)0.0104 (9)0.0154 (9)0.0162 (10)
C100.0452 (14)0.0819 (19)0.088 (2)0.0365 (13)0.0322 (14)0.0428 (16)
C110.0283 (9)0.0377 (10)0.0242 (9)0.0097 (8)0.0084 (8)0.0140 (8)
C120.0305 (10)0.0353 (10)0.0307 (10)0.0144 (8)0.0129 (8)0.0151 (8)
C130.0385 (11)0.0391 (11)0.0297 (10)0.0129 (9)0.0097 (8)0.0166 (9)
C140.0419 (11)0.0422 (12)0.0427 (12)0.0157 (9)0.0182 (9)0.0255 (10)
C150.0329 (10)0.0365 (11)0.0408 (11)0.0133 (8)0.0139 (9)0.0162 (9)
C160.0418 (12)0.0413 (12)0.0522 (14)0.0134 (10)0.0155 (11)0.0219 (11)
C170.0429 (12)0.0461 (12)0.0304 (11)0.0070 (9)0.0097 (9)0.0126 (9)
C180.0436 (12)0.0438 (12)0.0301 (11)0.0060 (9)0.0127 (9)0.0177 (9)
O10.0757 (12)0.0995 (15)0.0529 (11)0.0537 (12)0.0386 (10)0.0324 (10)
O20.0566 (9)0.0688 (10)0.0300 (8)0.0290 (8)0.0194 (7)0.0240 (7)
O30.0424 (9)0.0688 (11)0.0632 (11)0.0303 (8)0.0285 (8)0.0392 (9)
O40.0658 (12)0.1291 (18)0.0740 (13)0.0490 (12)0.0508 (11)0.0651 (13)
O50.0491 (9)0.0482 (9)0.0542 (11)0.0042 (8)0.0013 (8)0.0173 (8)
N10.0425 (10)0.0499 (11)0.0385 (10)0.0177 (8)0.0100 (8)0.0266 (8)
Geometric parameters (Å, º) top
C1—O21.429 (2)C9—O41.203 (2)
C1—H1A0.9600C9—O31.344 (2)
C1—H1B0.9600C10—O31.432 (3)
C1—H1C0.9600C10—H10A0.9600
C2—O11.202 (2)C10—H10B0.9600
C2—O21.337 (3)C10—H10C0.9600
C2—C31.469 (3)C11—C121.529 (3)
C3—C41.355 (3)C11—H110.9800
C3—C111.522 (3)C12—C181.390 (3)
C4—N11.381 (3)C12—C131.394 (3)
C4—C51.489 (3)C13—C141.381 (3)
C5—H5A0.9600C13—H130.9300
C5—H5B0.9600C14—C151.389 (3)
C5—H5C0.9600C14—H140.9300
C6—C71.495 (3)C15—C171.386 (3)
C6—H6A0.9600C15—C161.463 (3)
C6—H6B0.9600C16—O51.211 (3)
C6—H6C0.9600C16—H160.9300
C7—C81.346 (3)C17—C181.378 (3)
C7—N11.381 (3)C17—H170.9300
C8—C91.463 (3)C18—H180.9300
C8—C111.511 (2)N1—H10.8600
O2—C1—H1A109.5O3—C10—H10B109.5
O2—C1—H1B109.5H10A—C10—H10B109.5
H1A—C1—H1B109.5O3—C10—H10C109.5
O2—C1—H1C109.5H10A—C10—H10C109.5
H1A—C1—H1C109.5H10B—C10—H10C109.5
H1B—C1—H1C109.5C8—C11—C3110.09 (15)
O1—C2—O2121.76 (19)C8—C11—C12112.69 (15)
O1—C2—C3127.5 (2)C3—C11—C12109.55 (15)
O2—C2—C3110.72 (16)C8—C11—H11108.1
C4—C3—C2121.94 (18)C3—C11—H11108.1
C4—C3—C11119.60 (17)C12—C11—H11108.1
C2—C3—C11118.44 (16)C18—C12—C13118.16 (18)
C3—C4—N1118.15 (18)C18—C12—C11121.69 (16)
C3—C4—C5127.55 (19)C13—C12—C11120.14 (16)
N1—C4—C5114.27 (17)C14—C13—C12120.86 (18)
C4—C5—H5A109.5C14—C13—H13119.6
C4—C5—H5B109.5C12—C13—H13119.6
H5A—C5—H5B109.5C13—C14—C15120.34 (18)
C4—C5—H5C109.5C13—C14—H14119.8
H5A—C5—H5C109.5C15—C14—H14119.8
H5B—C5—H5C109.5C17—C15—C14119.14 (19)
C7—C6—H6A109.5C17—C15—C16121.20 (19)
C7—C6—H6B109.5C14—C15—C16119.65 (19)
H6A—C6—H6B109.5O5—C16—C15125.3 (2)
C7—C6—H6C109.5O5—C16—H16117.4
H6A—C6—H6C109.5C15—C16—H16117.4
H6B—C6—H6C109.5C18—C17—C15120.34 (19)
C8—C7—N1118.71 (17)C18—C17—H17119.8
C8—C7—C6126.71 (19)C15—C17—H17119.8
N1—C7—C6114.59 (18)C17—C18—C12121.13 (18)
C7—C8—C9121.16 (17)C17—C18—H18119.4
C7—C8—C11119.69 (17)C12—C18—H18119.4
C9—C8—C11119.07 (16)C2—O2—C1118.39 (17)
O4—C9—O3121.06 (19)C9—O3—C10116.16 (17)
O4—C9—C8127.2 (2)C7—N1—C4123.31 (16)
O3—C9—C8111.71 (16)C7—N1—H1118.3
O3—C10—H10A109.5C4—N1—H1118.3
O1—C2—C3—C418.6 (3)C8—C11—C12—C1827.1 (2)
O2—C2—C3—C4161.80 (17)C3—C11—C12—C1895.8 (2)
O1—C2—C3—C11159.8 (2)C8—C11—C12—C13154.35 (17)
O2—C2—C3—C1119.8 (2)C3—C11—C12—C1382.7 (2)
C2—C3—C4—N1172.96 (17)C18—C12—C13—C141.6 (3)
C11—C3—C4—N18.7 (3)C11—C12—C13—C14177.05 (17)
C2—C3—C4—C54.6 (3)C12—C13—C14—C150.2 (3)
C11—C3—C4—C5173.75 (19)C13—C14—C15—C171.0 (3)
N1—C7—C8—C9173.70 (18)C13—C14—C15—C16177.53 (18)
C6—C7—C8—C96.5 (3)C17—C15—C16—O56.6 (3)
N1—C7—C8—C119.5 (3)C14—C15—C16—O5171.9 (2)
C6—C7—C8—C11170.29 (19)C14—C15—C17—C180.7 (3)
C7—C8—C9—O41.9 (3)C16—C15—C17—C18177.79 (19)
C11—C8—C9—O4178.8 (2)C15—C17—C18—C120.7 (3)
C7—C8—C9—O3179.69 (18)C13—C12—C18—C171.8 (3)
C11—C8—C9—O32.8 (3)C11—C12—C18—C17176.73 (18)
C7—C8—C11—C331.4 (2)O1—C2—O2—C12.8 (3)
C9—C8—C11—C3151.73 (17)C3—C2—O2—C1176.83 (18)
C7—C8—C11—C1291.2 (2)O4—C9—O3—C101.8 (3)
C9—C8—C11—C1285.7 (2)C8—C9—O3—C10176.73 (19)
C4—C3—C11—C831.0 (2)C8—C7—N1—C417.3 (3)
C2—C3—C11—C8150.61 (16)C6—C7—N1—C4162.9 (2)
C4—C3—C11—C1293.5 (2)C3—C4—N1—C717.6 (3)
C2—C3—C11—C1284.9 (2)C5—C4—N1—C7160.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.273.107 (2)163
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H19NO5
Mr329.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.219 (2), 10.432 (3), 10.979 (3)
α, β, γ (°)111.364 (3), 102.799 (3), 101.150 (4)
V3)815.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.34 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS: Sheldrick, 2004)
Tmin, Tmax0.954, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4173, 2855, 2352
Rint0.015
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.04
No. of reflections2855
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
C3—C41.355 (3)C7—C81.346 (3)
C3—C111.522 (3)C7—N11.381 (3)
C4—N11.381 (3)C8—C111.511 (2)
C4—C3—C11119.60 (17)C8—C11—C3110.09 (15)
C3—C4—N1118.15 (18)C8—C11—C12112.69 (15)
C8—C7—N1118.71 (17)C3—C11—C12109.55 (15)
C7—C8—C11119.69 (17)C7—N1—C4123.31 (16)
O1—C2—C3—C418.6 (3)C7—C8—C11—C331.4 (2)
C11—C3—C4—N18.7 (3)C4—C3—C11—C831.0 (2)
N1—C7—C8—C119.5 (3)C8—C11—C12—C1827.1 (2)
C7—C8—C9—O41.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.273.107 (2)163.0
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors are grateful to Dr Jianping Ma of Shandong Normal University for his help with the crystallographic analysis.

References

First citationBruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFossheim, R., Svarteng, K. & Mostad, A. (1982). J. Med. Chem. 25, 126–131.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationHantzsch, A. & Liebigs, J. (1882). Ann. Chem. 215, 1–82.  CrossRef Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 25, 775–785.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds