metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-anthracene-9-carboxyl­ato)bis­­[(anthracene-9-carboxyl­ato)(2,2′-bipyrid­yl)lanthanum(III)]

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

(Received 16 November 2007; accepted 22 November 2007; online 6 December 2007)

The title complex, [La2(C15H9O2)6(C10H8N2)2], has a centrosymmetric binuclear cage structure in which two LaIII atoms are both nine-coordinated and bridged by four anthracene-9-carboxyl­ate ligands, with an La⋯La separation of 4.0880 (4) Å. The remaining coordination sites are occupied by two N atoms of a 2,2′-bipyridine (bipy) and two O atoms of an anthracene-9-carboxyl­ate ligand. The six anthracene-9-carboxyl­ate groups coordinate each LaIII atom in three different ways. Adjacent discrete dinuclear units are arranged into a one-dimensional chain along the [111] direction by inter­molecular ππ stacking inter­actions, with a centroid–centroid separation of 3.704 (7) Å.

Related literature

For related literature, see: Bünzli (2006[Bünzli, J.-C. G. (2006). Acc. Chem. Res. 39, 53-61.]); Fu et al. (2005[Fu, L.-M., Wen, X.-F., Ai, X.-C., Sun, Y., Wu, Y.-S., Zhang, J.-P. & Wang, Y. (2005). Angew. Chem. Int. Ed. 44, 747-750.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Roh et al. (2005[Roh, S.-G., Nah, M.-K., Oh, J. B., Baek, N. S., Park, K.-M. & Kim, H. K. (2005). Polyhedron, 24, 137-142.]); Shi et al. (2001[Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122-m123.]); Suárez et al. (2004[Suárez, S., Imbert, D., Gumy, F., Piguet, C. & Bünzli, J.-C. G. (2004). Chem. Mater. 16, 3257-3266.]); Wan et al. (2003[Wan, Y., Zhang, L., Jin, L., Gao, S. & Lu, S. (2003). Inorg. Chem. 42, 4985-4994.]); Wang et al. (1999[Wang, R., Jin, L., Li, L., Lu, S. & Zhang, J. (1999). J. Coord. Chem. 47, 279-287.], 2006[Wang, S.-P., Gao, Z.-H., Xu, L.-J. & Wang, R.-F. (2006). Acta Cryst. E62, m1853-m1855.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C15H9O2)6(C10H8N2)2]

  • Mr = 1917.52

  • Triclinic, [P \overline 1]

  • a = 12.1038 (7) Å

  • b = 13.4887 (8) Å

  • c = 15.4568 (14) Å

  • α = 113.036 (4)°

  • β = 103.257 (4)°

  • γ = 102.913 (3)°

  • V = 2117.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 273 (2) K

  • 0.20 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.883

  • 32552 measured reflections

  • 7432 independent reflections

  • 6474 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.05

  • 7432 reflections

  • 577 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)

La1—O2 2.4561 (18)
La1—O5 2.4574 (19)
La1—O1 2.4974 (18)
La1—O6 2.522 (2)
La1—O4 2.535 (2)
La1—O2i 2.6750 (19)
La1—O3i 2.687 (2)
La1—N1 2.730 (2)
La1—N2 2.741 (2)
O2—La1—O5 73.16 (7)
O2—La1—O1 73.15 (6)
O5—La1—O1 135.97 (6)
O2—La1—O6 151.98 (7)
O5—La1—O6 90.68 (7)
O1—La1—O6 130.65 (7)
O2—La1—O4 151.37 (7)
O5—La1—O4 135.00 (7)
O1—La1—O4 79.76 (6)
O6—La1—O4 51.39 (7)
O2—La1—O2i 74.44 (6)
O5—La1—O2i 71.53 (6)
O1—La1—O2i 72.74 (6)
O6—La1—O2i 122.70 (7)
O4—La1—O2i 106.39 (7)
O2—La1—O3i 121.09 (6)
O5—La1—O3i 77.60 (8)
O1—La1—O3i 96.65 (8)
O6—La1—O3i 75.51 (8)
O4—La1—O3i 70.62 (7)
O2i—La1—O3i 47.91 (6)
O2—La1—N1 91.57 (7)
O5—La1—N1 134.60 (7)
O1—La1—N1 73.52 (7)
O6—La1—N1 83.64 (8)
O4—La1—N1 71.68 (7)
O2i—La1—N1 145.95 (7)
O3i—La1—N1 142.16 (7)
O2—La1—N2 78.12 (7)
O5—La1—N2 75.60 (7)
O1—La1—N2 123.19 (7)
O6—La1—N2 75.71 (7)
O4—La1—N2 110.34 (7)
O2i—La1—N2 141.93 (7)
O3i—La1—N2 140.02 (8)
N1—La1—N2 59.30 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, the rational design and synthesis of functional rare-earth (RE) coordination complexes with various N– and/or O-donor ligands has attracted great interest not only because of their fascinating structural diversities but also becasue of their potential applications as functional materials, for example, optical materials, electronic materials, catalytic materials, and molecular-based magnets (Bünzli, 2006; Fu et al., 2005; Suárez et al., 2004). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups (building blocks), with metal ions or metal clusters as nodes (Ye et al., 2005). Among such ligands, versatile carboxylic acids exhibiting diverse coordination modes have been well used in the preparations of various functional rare-earth (RE) complexes (Roh et al., 2005; Shi et al., 2001; Wan et al., 2003; Wang et al., 1999; Wang et al., 2006). Besides, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules (2,2'-bipyridine or 1,10-phenanthroline) into the reaction systems, the use of various carboxylic acid ligands, as auxiliary ligands, can generate some interesting coordination architectures (Ye et al., 2005). We report here the crystal structure of the title complex (I), a LaIII complex with anthracene-9-carboxylate (L) and chelating 2,2'-bipyridine (bipy) as ligands.

The structure of complex (I) consists of a centrosymmetric dinuclear unit [La2(L)6(bipy)2] with central LaIII ions nine-coordinated by two N-atom donors from one chelating bipy ligand and seven O atoms from five distinct L ligands (Fig. 1). The La–O distances are in the range of 2.4561 (18) - 2.687 (2) Å, which are normal and in agreement with those found in other carboxylato-containing LaIII complexes (Shi et al., 2001). The ligand bipy acts as a typical chelating ligand coordinating to the LaIII ion with La–N bond distances of 2.730 (2) and 2.741 (2) Å, and an N–La–N angle of 59.30 (7)°. For L, there exists three different kinds of carboxylic coordination modes with the LaIII center, namely syn-syn bridging (µ2-η1:η1-bridging), symmetric bidentate chelate ((µ1-η1:η1-chelating), and tridentate chelating/bridging (η-O,O'-µ-O,O). In this manner two LaIII ions are connected to form an eight-membered ring [La(1)–O(1)–C(31)–O(5 A)–La(1 A)–O(1 A)–C(31 A)–O(5)], as well as a four-membered ring [La(1)–O(2)–La(1 A)–O(2 A)]. The non-bonding La(1)···La(1 A) separation is 4.0880 (4) Å (symmetry operation (A) = 1 - x, 1 - y, 1 - z).

In the crystal adjacent dinuclear [La2(L)6(bipy)2] units are arranged into one-dimensional chains, along the [111] direction, by the intermolecular π···π stacking interactions (symmetry operation: 2 - x, 2 - y, 2 - z; dashed solid lines in Fig. 2) between the completely parallel anthracene rings of different L ligands, with a centroid-centroid separation of 3.704 (7) Å (Janiak et al., 2000).

Related literature top

For related literature, see: Bünzli (2006); Fu et al. (2005); Janiak (2000); Roh et al. (2005); Shi et al. (2001); Suárez et al. (2004); Wan et al. (2003); Wang et al. (1999, 2006); Ye et al. (2005).

Experimental top

A mixed solution of anthracene-9-carboxylic acid (0.05 mmol) and 2,2'-bipyridine (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value to basic condition) was carefully layered on top of a H2O solution (15 ml) of La(NO3)3 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis of the title complex (I) appeared at the tube wall after ca two weeks at room temperature. Yield: ~40% based on anthracene-9-carboxylic acid. Elemental analysis calculated for C110H70La2O12N4: C 68.90, H 3.68, N 2.92%; found: C 68.69, H 3.77, N 3.03%.

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, the rational design and synthesis of functional rare-earth (RE) coordination complexes with various N– and/or O-donor ligands has attracted great interest not only because of their fascinating structural diversities but also becasue of their potential applications as functional materials, for example, optical materials, electronic materials, catalytic materials, and molecular-based magnets (Bünzli, 2006; Fu et al., 2005; Suárez et al., 2004). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups (building blocks), with metal ions or metal clusters as nodes (Ye et al., 2005). Among such ligands, versatile carboxylic acids exhibiting diverse coordination modes have been well used in the preparations of various functional rare-earth (RE) complexes (Roh et al., 2005; Shi et al., 2001; Wan et al., 2003; Wang et al., 1999; Wang et al., 2006). Besides, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules (2,2'-bipyridine or 1,10-phenanthroline) into the reaction systems, the use of various carboxylic acid ligands, as auxiliary ligands, can generate some interesting coordination architectures (Ye et al., 2005). We report here the crystal structure of the title complex (I), a LaIII complex with anthracene-9-carboxylate (L) and chelating 2,2'-bipyridine (bipy) as ligands.

The structure of complex (I) consists of a centrosymmetric dinuclear unit [La2(L)6(bipy)2] with central LaIII ions nine-coordinated by two N-atom donors from one chelating bipy ligand and seven O atoms from five distinct L ligands (Fig. 1). The La–O distances are in the range of 2.4561 (18) - 2.687 (2) Å, which are normal and in agreement with those found in other carboxylato-containing LaIII complexes (Shi et al., 2001). The ligand bipy acts as a typical chelating ligand coordinating to the LaIII ion with La–N bond distances of 2.730 (2) and 2.741 (2) Å, and an N–La–N angle of 59.30 (7)°. For L, there exists three different kinds of carboxylic coordination modes with the LaIII center, namely syn-syn bridging (µ2-η1:η1-bridging), symmetric bidentate chelate ((µ1-η1:η1-chelating), and tridentate chelating/bridging (η-O,O'-µ-O,O). In this manner two LaIII ions are connected to form an eight-membered ring [La(1)–O(1)–C(31)–O(5 A)–La(1 A)–O(1 A)–C(31 A)–O(5)], as well as a four-membered ring [La(1)–O(2)–La(1 A)–O(2 A)]. The non-bonding La(1)···La(1 A) separation is 4.0880 (4) Å (symmetry operation (A) = 1 - x, 1 - y, 1 - z).

In the crystal adjacent dinuclear [La2(L)6(bipy)2] units are arranged into one-dimensional chains, along the [111] direction, by the intermolecular π···π stacking interactions (symmetry operation: 2 - x, 2 - y, 2 - z; dashed solid lines in Fig. 2) between the completely parallel anthracene rings of different L ligands, with a centroid-centroid separation of 3.704 (7) Å (Janiak et al., 2000).

For related literature, see: Bünzli (2006); Fu et al. (2005); Janiak (2000); Roh et al. (2005); Shi et al. (2001); Suárez et al. (2004); Wan et al. (2003); Wang et al. (1999, 2006); Ye et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (1 - x, 1 - y, 1 - z). For the sake of clarity, all H atoms have been omitted.
[Figure 2] Fig. 2. Part of the crystal packing in complex (I), showing a π···π stacking (dashed solid lines) chain. All H atoms have been omitted for clarity.
Tetrakis(µ-anthracene-9-carboxylato)bis[(anthracene-9- carboxylato)(2,2'-bipyridyl)lanthanum(III)] top
Crystal data top
[La2(C15H9O2)6(C10H8N2)2]Z = 1
Mr = 1917.52F(000) = 968
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1038 (7) ÅCell parameters from 6220 reflections
b = 13.4887 (8) Åθ = 2.4–28.2°
c = 15.4568 (14) ŵ = 1.07 mm1
α = 113.036 (4)°T = 273 K
β = 103.257 (4)°Block, yellow
γ = 102.913 (3)°0.20 × 0.14 × 0.12 mm
V = 2117.7 (3) Å3
Data collection top
CCD area-detector
diffractometer
7432 independent reflections
Radiation source: fine-focus sealed tube6474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.815, Tmax = 0.883k = 1613
32552 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.7206P]
where P = (Fo2 + 2Fc2)/3
7432 reflections(Δ/σ)max = 0.008
577 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[La2(C15H9O2)6(C10H8N2)2]γ = 102.913 (3)°
Mr = 1917.52V = 2117.7 (3) Å3
Triclinic, P1Z = 1
a = 12.1038 (7) ÅMo Kα radiation
b = 13.4887 (8) ŵ = 1.07 mm1
c = 15.4568 (14) ÅT = 273 K
α = 113.036 (4)°0.20 × 0.14 × 0.12 mm
β = 103.257 (4)°
Data collection top
CCD area-detector
diffractometer
7432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6474 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.883Rint = 0.045
32552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.79 e Å3
7432 reflectionsΔρmin = 0.86 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.676202 (12)0.570648 (12)0.595266 (10)0.03410 (7)
C10.4637 (3)0.2753 (2)0.4356 (2)0.0417 (6)
C20.5386 (2)0.2008 (2)0.4404 (2)0.0413 (6)
C30.5804 (3)0.1540 (2)0.3612 (2)0.0470 (7)
C40.5564 (3)0.1751 (3)0.2769 (3)0.0621 (9)
H4A0.50980.22040.27240.074*
C50.6003 (4)0.1301 (4)0.2026 (3)0.0801 (12)
H5A0.58450.14550.14830.096*
C60.6698 (4)0.0602 (4)0.2080 (3)0.0879 (14)
H6A0.69920.02950.15670.105*
C70.6943 (4)0.0371 (3)0.2856 (3)0.0772 (11)
H7A0.73980.00980.28690.093*
C80.6519 (3)0.0833 (3)0.3665 (3)0.0553 (8)
C90.6768 (3)0.0623 (3)0.4482 (3)0.0614 (9)
H9A0.72220.01550.45040.074*
C100.6364 (3)0.1086 (3)0.5273 (3)0.0524 (8)
C110.6596 (3)0.0849 (3)0.6105 (3)0.0678 (10)
H11A0.70370.03720.61290.081*
C120.6187 (4)0.1304 (4)0.6856 (3)0.0742 (11)
H12A0.63460.11370.73920.089*
C130.5520 (4)0.2029 (3)0.6833 (3)0.0685 (10)
H13A0.52540.23500.73610.082*
C140.5261 (3)0.2266 (3)0.6052 (2)0.0549 (8)
H14A0.48110.27420.60510.066*
C150.5660 (2)0.1803 (2)0.5236 (2)0.0438 (7)
C160.8859 (2)0.7626 (2)0.7512 (2)0.0419 (7)
C170.9949 (3)0.8618 (2)0.8350 (2)0.0442 (7)
C181.0854 (3)0.8381 (3)0.8901 (2)0.0494 (7)
C191.0865 (3)0.7256 (3)0.8641 (3)0.0663 (10)
H19A1.02510.66360.80790.080*
C201.1754 (4)0.7066 (4)0.9198 (4)0.0891 (13)
H20A1.17520.63200.90050.107*
C211.2676 (4)0.7984 (4)1.0063 (4)0.0918 (14)
H21A1.32720.78401.04450.110*
C221.2707 (3)0.9062 (4)1.0342 (3)0.0714 (11)
H22A1.33280.96581.09160.086*
C231.1809 (3)0.9318 (3)0.9780 (2)0.0505 (8)
C241.1819 (3)1.0422 (3)1.0058 (2)0.0502 (8)
H24A1.24211.10201.06440.060*
C251.0950 (3)1.0675 (2)0.9486 (2)0.0449 (7)
C261.0969 (3)1.1815 (3)0.9768 (2)0.0562 (8)
H26A1.15791.24221.03440.067*
C271.0122 (4)1.2028 (3)0.9217 (3)0.0664 (10)
H27A1.01441.27810.94180.080*
C280.9189 (3)1.1124 (3)0.8327 (3)0.0662 (9)
H28A0.86231.12930.79420.079*
C290.9114 (3)1.0020 (3)0.8034 (2)0.0518 (8)
H29A0.84880.94340.74580.062*
C300.9994 (3)0.9749 (2)0.8606 (2)0.0441 (7)
C310.4199 (3)0.4836 (2)0.6572 (2)0.0398 (6)
C320.3754 (2)0.4597 (2)0.7333 (2)0.0405 (6)
C330.4244 (3)0.5438 (3)0.8357 (2)0.0432 (7)
C340.5145 (3)0.6538 (3)0.8742 (2)0.0510 (7)
H34A0.54380.67360.83040.061*
C350.5585 (3)0.7305 (3)0.9737 (2)0.0606 (9)
H35A0.61690.80170.99630.073*
C360.5174 (3)0.7041 (3)1.0432 (3)0.0646 (9)
H36A0.54970.75661.11120.078*
C370.4315 (3)0.6030 (3)1.0101 (3)0.0620 (9)
H37A0.40400.58641.05600.074*
C380.3804 (3)0.5196 (3)0.9068 (2)0.0506 (7)
C390.2918 (3)0.4143 (3)0.8735 (3)0.0610 (9)
H39A0.26360.39920.91980.073*
C400.2441 (3)0.3311 (3)0.7739 (3)0.0548 (8)
C410.1542 (4)0.2229 (4)0.7433 (4)0.0769 (11)
H41A0.12730.20880.79050.092*
C420.1084 (4)0.1412 (4)0.6463 (4)0.0841 (13)
H42A0.04960.07140.62690.101*
C430.1487 (3)0.1611 (3)0.5753 (3)0.0732 (11)
H43A0.11660.10350.50900.088*
C440.2334 (3)0.2621 (3)0.6001 (3)0.0572 (8)
H44A0.25810.27230.55050.069*
C450.2853 (3)0.3533 (3)0.7012 (2)0.0466 (7)
C460.8254 (3)0.4121 (3)0.4462 (2)0.0567 (8)
H46A0.78740.44050.40670.068*
C470.8931 (3)0.3470 (3)0.4104 (3)0.0637 (9)
H47A0.89970.33130.34800.076*
C480.9498 (4)0.3063 (3)0.4680 (3)0.0731 (11)
H48A0.99770.26370.44640.088*
C490.9358 (3)0.3287 (3)0.5586 (3)0.0682 (10)
H49A0.97280.29990.59820.082*
C500.8664 (3)0.3944 (2)0.5909 (2)0.0478 (7)
C510.8494 (3)0.4215 (2)0.6884 (2)0.0482 (7)
C520.9075 (4)0.3890 (4)0.7559 (3)0.0806 (12)
H52A0.95790.34720.74000.097*
C530.8904 (4)0.4186 (4)0.8458 (3)0.0865 (13)
H53A0.92990.39790.89150.104*
C540.8158 (4)0.4782 (3)0.8680 (3)0.0648 (9)
H54A0.80260.49850.92860.078*
C550.7601 (3)0.5081 (3)0.7987 (2)0.0530 (8)
H55A0.70890.54920.81400.064*
N10.7758 (2)0.4809 (2)0.71062 (18)0.0458 (6)
N20.8112 (2)0.4367 (2)0.53454 (18)0.0477 (6)
O10.53299 (17)0.53114 (18)0.68098 (14)0.0478 (5)
O20.51838 (17)0.38292 (15)0.47574 (14)0.0429 (5)
O30.3521 (2)0.23338 (18)0.3940 (2)0.0691 (7)
O40.79298 (19)0.73251 (18)0.77239 (15)0.0539 (5)
O50.65790 (17)0.54654 (17)0.42597 (14)0.0463 (5)
O60.88922 (19)0.7120 (2)0.66595 (16)0.0647 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02422 (9)0.03431 (10)0.03495 (10)0.00919 (7)0.00716 (7)0.01018 (7)
C10.0407 (16)0.0328 (14)0.0416 (15)0.0117 (13)0.0086 (13)0.0118 (12)
C20.0337 (15)0.0296 (13)0.0490 (16)0.0089 (11)0.0086 (13)0.0120 (12)
C30.0426 (16)0.0338 (14)0.0514 (17)0.0087 (13)0.0115 (14)0.0127 (13)
C40.064 (2)0.056 (2)0.057 (2)0.0152 (17)0.0173 (17)0.0218 (17)
C50.090 (3)0.077 (3)0.062 (2)0.018 (2)0.032 (2)0.025 (2)
C60.097 (3)0.075 (3)0.080 (3)0.025 (3)0.052 (3)0.016 (2)
C70.075 (3)0.065 (2)0.093 (3)0.035 (2)0.046 (2)0.023 (2)
C80.0467 (18)0.0410 (16)0.070 (2)0.0174 (14)0.0216 (16)0.0167 (15)
C90.0497 (19)0.0471 (18)0.086 (3)0.0260 (16)0.0185 (18)0.0275 (18)
C100.0399 (17)0.0426 (16)0.066 (2)0.0122 (14)0.0061 (15)0.0253 (15)
C110.053 (2)0.062 (2)0.081 (3)0.0163 (18)0.0016 (19)0.040 (2)
C120.069 (3)0.078 (3)0.065 (2)0.009 (2)0.005 (2)0.042 (2)
C130.070 (2)0.068 (2)0.055 (2)0.012 (2)0.0168 (18)0.0258 (18)
C140.0515 (19)0.0472 (17)0.0571 (19)0.0133 (15)0.0149 (16)0.0205 (15)
C150.0345 (15)0.0336 (14)0.0507 (17)0.0076 (12)0.0062 (13)0.0148 (13)
C160.0257 (14)0.0412 (15)0.0504 (17)0.0108 (12)0.0085 (12)0.0166 (13)
C170.0319 (15)0.0437 (16)0.0445 (16)0.0089 (12)0.0115 (13)0.0123 (13)
C180.0317 (15)0.0540 (18)0.0555 (18)0.0139 (14)0.0116 (14)0.0216 (15)
C190.0448 (19)0.056 (2)0.079 (2)0.0209 (16)0.0081 (17)0.0194 (18)
C200.074 (3)0.080 (3)0.110 (3)0.048 (2)0.018 (3)0.038 (3)
C210.061 (3)0.097 (3)0.101 (3)0.046 (2)0.005 (2)0.034 (3)
C220.0365 (18)0.086 (3)0.069 (2)0.0188 (18)0.0009 (17)0.027 (2)
C230.0316 (15)0.059 (2)0.0506 (17)0.0093 (14)0.0103 (13)0.0217 (15)
C240.0334 (15)0.0551 (19)0.0411 (16)0.0009 (14)0.0056 (13)0.0144 (14)
C250.0396 (16)0.0440 (16)0.0381 (15)0.0003 (13)0.0121 (13)0.0155 (13)
C260.057 (2)0.0443 (17)0.0518 (18)0.0040 (15)0.0138 (16)0.0183 (15)
C270.080 (3)0.0425 (18)0.070 (2)0.0149 (18)0.019 (2)0.0273 (17)
C280.062 (2)0.066 (2)0.071 (2)0.0210 (18)0.0108 (19)0.0391 (19)
C290.0437 (17)0.0533 (18)0.0469 (17)0.0085 (14)0.0063 (14)0.0225 (15)
C300.0372 (15)0.0477 (16)0.0400 (15)0.0062 (13)0.0111 (13)0.0195 (13)
C310.0392 (16)0.0403 (15)0.0402 (15)0.0177 (13)0.0162 (13)0.0157 (12)
C320.0314 (14)0.0476 (16)0.0484 (16)0.0188 (13)0.0147 (13)0.0250 (13)
C330.0378 (15)0.0534 (17)0.0501 (16)0.0233 (14)0.0197 (13)0.0288 (14)
C340.0517 (18)0.0562 (18)0.0481 (17)0.0194 (15)0.0232 (15)0.0239 (15)
C350.055 (2)0.064 (2)0.0520 (19)0.0182 (17)0.0194 (16)0.0186 (16)
C360.063 (2)0.080 (3)0.0449 (18)0.031 (2)0.0173 (17)0.0215 (18)
C370.067 (2)0.086 (3)0.0514 (19)0.036 (2)0.0290 (18)0.0400 (19)
C380.0497 (18)0.064 (2)0.0537 (18)0.0286 (16)0.0238 (15)0.0348 (16)
C390.062 (2)0.076 (2)0.070 (2)0.0271 (19)0.0358 (18)0.050 (2)
C400.0447 (17)0.0577 (19)0.076 (2)0.0205 (15)0.0251 (17)0.0416 (18)
C410.063 (2)0.073 (3)0.108 (3)0.015 (2)0.036 (2)0.057 (3)
C420.064 (3)0.058 (2)0.117 (4)0.003 (2)0.022 (3)0.042 (3)
C430.056 (2)0.054 (2)0.082 (3)0.0096 (18)0.008 (2)0.0211 (19)
C440.0427 (18)0.0528 (19)0.068 (2)0.0162 (15)0.0133 (16)0.0241 (16)
C450.0339 (15)0.0495 (17)0.0608 (18)0.0194 (13)0.0159 (14)0.0276 (15)
C460.0452 (18)0.067 (2)0.0551 (19)0.0247 (16)0.0202 (15)0.0216 (16)
C470.053 (2)0.069 (2)0.065 (2)0.0260 (18)0.0319 (18)0.0183 (18)
C480.065 (2)0.075 (2)0.099 (3)0.046 (2)0.048 (2)0.037 (2)
C490.066 (2)0.073 (2)0.090 (3)0.047 (2)0.042 (2)0.041 (2)
C500.0342 (15)0.0405 (16)0.0613 (19)0.0153 (13)0.0123 (14)0.0181 (14)
C510.0399 (16)0.0421 (16)0.0556 (18)0.0166 (13)0.0095 (14)0.0193 (14)
C520.097 (3)0.090 (3)0.077 (3)0.066 (3)0.029 (2)0.043 (2)
C530.113 (4)0.097 (3)0.072 (3)0.064 (3)0.025 (3)0.051 (2)
C540.072 (2)0.068 (2)0.0527 (19)0.0237 (19)0.0171 (18)0.0290 (17)
C550.0466 (18)0.0565 (19)0.0508 (18)0.0193 (15)0.0131 (15)0.0218 (15)
N10.0374 (13)0.0460 (14)0.0504 (14)0.0164 (11)0.0131 (11)0.0195 (11)
N20.0338 (13)0.0489 (14)0.0506 (14)0.0163 (11)0.0147 (11)0.0129 (12)
O10.0324 (11)0.0619 (13)0.0439 (11)0.0120 (9)0.0152 (9)0.0212 (10)
O20.0362 (10)0.0302 (10)0.0521 (11)0.0110 (8)0.0116 (9)0.0120 (9)
O30.0373 (13)0.0405 (12)0.0923 (18)0.0074 (10)0.0081 (12)0.0162 (12)
O40.0465 (12)0.0508 (12)0.0424 (11)0.0008 (10)0.0138 (10)0.0106 (9)
O50.0364 (11)0.0573 (12)0.0421 (11)0.0165 (9)0.0117 (9)0.0214 (10)
O60.0363 (12)0.0677 (14)0.0507 (13)0.0010 (10)0.0174 (10)0.0016 (11)
Geometric parameters (Å, º) top
La1—O22.4561 (18)C26—C271.335 (5)
La1—O52.4574 (19)C26—H26A0.9300
La1—O12.4974 (18)C27—C281.419 (5)
La1—O62.522 (2)C27—H27A0.9300
La1—O42.535 (2)C28—C291.350 (5)
La1—O2i2.6750 (19)C28—H28A0.9300
La1—O3i2.687 (2)C29—C301.429 (4)
La1—N12.730 (2)C29—H29A0.9300
La1—N22.741 (2)C31—O5i1.254 (3)
La1—C162.886 (3)C31—O11.270 (3)
La1—C1i3.064 (3)C31—C321.512 (4)
La1—La1i4.0880 (4)C32—C451.411 (4)
C1—O31.238 (3)C32—C331.416 (4)
C1—O21.268 (3)C33—C341.426 (4)
C1—C21.508 (4)C33—C381.439 (4)
C1—La1i3.064 (3)C34—C351.360 (4)
C2—C151.400 (4)C34—H34A0.9300
C2—C31.406 (4)C35—C361.413 (5)
C3—C41.421 (5)C35—H35A0.9300
C3—C81.435 (4)C36—C371.334 (5)
C4—C51.358 (5)C36—H36A0.9300
C4—H4A0.9300C37—C381.423 (5)
C5—C61.411 (7)C37—H37A0.9300
C5—H5A0.9300C38—C391.388 (5)
C6—C71.339 (6)C39—C401.383 (5)
C6—H6A0.9300C39—H39A0.9300
C7—C81.430 (5)C40—C411.432 (5)
C7—H7A0.9300C40—C451.433 (4)
C8—C91.382 (5)C41—C421.350 (6)
C9—C101.392 (5)C41—H41A0.9300
C9—H9A0.9300C42—C431.389 (6)
C10—C111.423 (5)C42—H42A0.9300
C10—C151.434 (4)C43—C441.358 (5)
C11—C121.345 (6)C43—H43A0.9300
C11—H11A0.9300C44—C451.432 (4)
C12—C131.406 (6)C44—H44A0.9300
C12—H12A0.9300C46—N21.334 (4)
C13—C141.352 (5)C46—C471.378 (5)
C13—H13A0.9300C46—H46A0.9300
C14—C151.419 (4)C47—C481.355 (5)
C14—H14A0.9300C47—H47A0.9300
C16—O61.240 (3)C48—C491.371 (5)
C16—O41.267 (3)C48—H48A0.9300
C16—C171.510 (4)C49—C501.386 (4)
C17—C181.403 (4)C49—H49A0.9300
C17—C301.403 (4)C50—N21.350 (4)
C18—C191.414 (5)C50—C511.481 (4)
C18—C231.436 (4)C51—N11.341 (4)
C19—C201.355 (5)C51—C521.391 (5)
C19—H19A0.9300C52—C531.366 (6)
C20—C211.403 (6)C52—H52A0.9300
C20—H20A0.9300C53—C541.353 (6)
C21—C221.333 (6)C53—H53A0.9300
C21—H21A0.9300C54—C551.376 (5)
C22—C231.424 (5)C54—H54A0.9300
C22—H22A0.9300C55—N11.336 (4)
C23—C241.375 (5)C55—H55A0.9300
C24—C251.405 (4)O2—La1i2.6750 (19)
C24—H24A0.9300O3—La1i2.687 (2)
C25—C261.418 (4)O5—C31i1.254 (3)
C25—C301.433 (4)
O2—La1—O573.16 (7)C20—C19—C18121.2 (3)
O2—La1—O173.15 (6)C20—C19—H19A119.4
O5—La1—O1135.97 (6)C18—C19—H19A119.4
O2—La1—O6151.98 (7)C19—C20—C21120.6 (4)
O5—La1—O690.68 (7)C19—C20—H20A119.7
O1—La1—O6130.65 (7)C21—C20—H20A119.7
O2—La1—O4151.37 (7)C22—C21—C20120.7 (4)
O5—La1—O4135.00 (7)C22—C21—H21A119.7
O1—La1—O479.76 (6)C20—C21—H21A119.7
O6—La1—O451.39 (7)C21—C22—C23121.4 (4)
O2—La1—O2i74.44 (6)C21—C22—H22A119.3
O5—La1—O2i71.53 (6)C23—C22—H22A119.3
O1—La1—O2i72.74 (6)C24—C23—C22122.3 (3)
O6—La1—O2i122.70 (7)C24—C23—C18119.4 (3)
O4—La1—O2i106.39 (7)C22—C23—C18118.2 (3)
O2—La1—O3i121.09 (6)C23—C24—C25122.2 (3)
O5—La1—O3i77.60 (8)C23—C24—H24A118.9
O1—La1—O3i96.65 (8)C25—C24—H24A118.9
O6—La1—O3i75.51 (8)C24—C25—C26122.1 (3)
O4—La1—O3i70.62 (7)C24—C25—C30119.0 (3)
O2i—La1—O3i47.91 (6)C26—C25—C30118.9 (3)
O2—La1—N191.57 (7)C27—C26—C25120.8 (3)
O5—La1—N1134.60 (7)C27—C26—H26A119.6
O1—La1—N173.52 (7)C25—C26—H26A119.6
O6—La1—N183.64 (8)C26—C27—C28121.0 (3)
O4—La1—N171.68 (7)C26—C27—H27A119.5
O2i—La1—N1145.95 (7)C28—C27—H27A119.5
O3i—La1—N1142.16 (7)C29—C28—C27120.7 (3)
O2—La1—N278.12 (7)C29—C28—H28A119.7
O5—La1—N275.60 (7)C27—C28—H28A119.7
O1—La1—N2123.19 (7)C28—C29—C30120.3 (3)
O6—La1—N275.71 (7)C28—C29—H29A119.8
O4—La1—N2110.34 (7)C30—C29—H29A119.8
O2i—La1—N2141.93 (7)C17—C30—C29122.9 (3)
O3i—La1—N2140.02 (8)C17—C30—C25118.8 (3)
N1—La1—N259.30 (7)C29—C30—C25118.3 (3)
O2—La1—C16167.67 (7)O5i—C31—O1124.4 (3)
O5—La1—C16113.22 (8)O5i—C31—C32117.3 (2)
O1—La1—C16105.56 (7)O1—C31—C32118.3 (2)
O6—La1—C1625.37 (7)C45—C32—C33120.7 (3)
O4—La1—C1626.01 (7)C45—C32—C31119.4 (3)
O2i—La1—C16117.24 (7)C33—C32—C31119.9 (2)
O3i—La1—C1671.17 (7)C32—C33—C34124.3 (3)
N1—La1—C1676.45 (8)C32—C33—C38119.1 (3)
N2—La1—C1693.00 (8)C34—C33—C38116.6 (3)
O2—La1—C1i98.51 (7)C35—C34—C33121.4 (3)
O5—La1—C1i74.95 (7)C35—C34—H34A119.3
O1—La1—C1i82.90 (7)C33—C34—H34A119.3
O6—La1—C1i99.13 (8)C34—C35—C36121.4 (3)
O4—La1—C1i87.00 (8)C34—C35—H35A119.3
O2i—La1—C1i24.33 (6)C36—C35—H35A119.3
O3i—La1—C1i23.71 (7)C37—C36—C35119.1 (3)
N1—La1—C1i150.44 (7)C37—C36—H36A120.4
N2—La1—C1i150.03 (8)C35—C36—H36A120.4
C16—La1—C1i93.44 (8)C36—C37—C38122.3 (3)
O2—La1—La1i39.08 (4)C36—C37—H37A118.8
O5—La1—La1i67.58 (5)C38—C37—H37A118.8
O1—La1—La1i68.39 (4)C39—C38—C37121.7 (3)
O6—La1—La1i152.12 (6)C39—C38—C33119.2 (3)
O4—La1—La1i135.40 (5)C37—C38—C33119.1 (3)
O2i—La1—La1i35.37 (4)C40—C39—C38122.3 (3)
O3i—La1—La1i82.63 (4)C40—C39—H39A118.9
N1—La1—La1i123.96 (5)C38—C39—H39A118.9
N2—La1—La1i113.04 (5)C39—C40—C41120.3 (3)
C16—La1—La1i152.43 (6)C39—C40—C45119.7 (3)
C1i—La1—La1i59.52 (5)C41—C40—C45119.9 (3)
O3—C1—O2120.6 (3)C42—C41—C40120.4 (4)
O3—C1—C2121.4 (2)C42—C41—H41A119.8
O2—C1—C2118.0 (2)C40—C41—H41A119.8
O3—C1—La1i60.80 (16)C41—C42—C43120.2 (4)
O2—C1—La1i60.37 (14)C41—C42—H42A119.9
C2—C1—La1i172.5 (2)C43—C42—H42A119.9
C15—C2—C3121.4 (3)C44—C43—C42121.9 (4)
C15—C2—C1119.7 (3)C44—C43—H43A119.1
C3—C2—C1119.0 (3)C42—C43—H43A119.1
C2—C3—C4122.8 (3)C43—C44—C45121.1 (3)
C2—C3—C8118.6 (3)C43—C44—H44A119.5
C4—C3—C8118.6 (3)C45—C44—H44A119.5
C5—C4—C3121.1 (4)C32—C45—C44124.5 (3)
C5—C4—H4A119.4C32—C45—C40119.0 (3)
C3—C4—H4A119.4C44—C45—C40116.5 (3)
C4—C5—C6120.0 (4)N2—C46—C47123.7 (3)
C4—C5—H5A120.0N2—C46—H46A118.2
C6—C5—H5A120.0C47—C46—H46A118.2
C7—C6—C5121.2 (4)C48—C47—C46118.6 (3)
C7—C6—H6A119.4C48—C47—H47A120.7
C5—C6—H6A119.4C46—C47—H47A120.7
C6—C7—C8121.2 (4)C47—C48—C49119.2 (3)
C6—C7—H7A119.4C47—C48—H48A120.4
C8—C7—H7A119.4C49—C48—H48A120.4
C9—C8—C7122.7 (3)C48—C49—C50119.8 (4)
C9—C8—C3119.5 (3)C48—C49—H49A120.1
C7—C8—C3117.9 (3)C50—C49—H49A120.1
C8—C9—C10122.5 (3)N2—C50—C49121.2 (3)
C8—C9—H9A118.8N2—C50—C51117.1 (3)
C10—C9—H9A118.8C49—C50—C51121.7 (3)
C9—C10—C11122.6 (3)N1—C51—C52120.4 (3)
C9—C10—C15118.6 (3)N1—C51—C50117.1 (3)
C11—C10—C15118.8 (3)C52—C51—C50122.5 (3)
C12—C11—C10121.2 (4)C53—C52—C51119.9 (4)
C12—C11—H11A119.4C53—C52—H52A120.1
C10—C11—H11A119.4C51—C52—H52A120.1
C11—C12—C13120.2 (4)C54—C53—C52119.7 (4)
C11—C12—H12A119.9C54—C53—H53A120.2
C13—C12—H12A119.9C52—C53—H53A120.2
C14—C13—C12120.9 (4)C53—C54—C55118.3 (4)
C14—C13—H13A119.6C53—C54—H54A120.8
C12—C13—H13A119.6C55—C54—H54A120.8
C13—C14—C15121.4 (3)N1—C55—C54123.2 (3)
C13—C14—H14A119.3N1—C55—H55A118.4
C15—C14—H14A119.3C54—C55—H55A118.4
C2—C15—C14123.0 (3)C55—N1—C51118.5 (3)
C2—C15—C10119.4 (3)C55—N1—La1117.7 (2)
C14—C15—C10117.6 (3)C51—N1—La1123.5 (2)
O6—C16—O4122.0 (2)C46—N2—C50117.5 (3)
O6—C16—C17120.7 (3)C46—N2—La1119.7 (2)
O4—C16—C17117.3 (3)C50—N2—La1122.81 (19)
O6—C16—La160.64 (14)C31—O1—La1137.62 (17)
O4—C16—La161.34 (14)C1—O2—La1157.44 (19)
C17—C16—La1178.3 (2)C1—O2—La1i95.30 (17)
C18—C17—C30121.5 (3)La1—O2—La1i105.56 (6)
C18—C17—C16118.8 (3)C1—O3—La1i95.49 (17)
C30—C17—C16119.5 (3)C16—O4—La192.64 (16)
C17—C18—C19123.1 (3)C31i—O5—La1141.40 (18)
C17—C18—C23118.9 (3)C16—O6—La193.99 (16)
C19—C18—C23118.0 (3)
O3—C1—C2—C1592.3 (4)C49—C50—C51—N1176.9 (3)
O2—C1—C2—C1587.7 (3)N2—C50—C51—C52175.9 (3)
O3—C1—C2—C388.3 (4)C49—C50—C51—C524.0 (5)
O2—C1—C2—C391.8 (3)N1—C51—C52—C530.5 (6)
C15—C2—C3—C4178.7 (3)C50—C51—C52—C53178.5 (4)
C1—C2—C3—C40.8 (4)C51—C52—C53—C540.7 (7)
C15—C2—C3—C80.4 (4)C52—C53—C54—C550.6 (7)
C1—C2—C3—C8179.9 (3)C53—C54—C55—N10.1 (6)
C2—C3—C4—C5178.7 (3)C54—C55—N1—C510.1 (5)
C8—C3—C4—C50.4 (5)C54—C55—N1—La1173.1 (3)
C3—C4—C5—C60.8 (6)C52—C51—N1—C550.1 (5)
C4—C5—C6—C70.3 (7)C50—C51—N1—C55179.0 (3)
C5—C6—C7—C80.6 (7)C52—C51—N1—La1172.9 (3)
C6—C7—C8—C9179.2 (4)C50—C51—N1—La16.2 (4)
C6—C7—C8—C30.9 (6)O2—La1—N1—C55107.2 (2)
C2—C3—C8—C90.5 (4)O5—La1—N1—C55174.87 (19)
C4—C3—C8—C9179.7 (3)O1—La1—N1—C5535.3 (2)
C2—C3—C8—C7179.6 (3)O6—La1—N1—C55100.5 (2)
C4—C3—C8—C70.5 (4)O4—La1—N1—C5549.1 (2)
C7—C8—C9—C10179.3 (3)O2i—La1—N1—C5543.2 (3)
C3—C8—C9—C100.9 (5)O3i—La1—N1—C5544.1 (3)
C8—C9—C10—C11178.5 (3)N2—La1—N1—C55177.6 (2)
C8—C9—C10—C150.2 (5)C16—La1—N1—C5575.7 (2)
C9—C10—C11—C12179.6 (3)C1i—La1—N1—C553.2 (3)
C15—C10—C11—C121.3 (5)La1i—La1—N1—C5583.8 (2)
C10—C11—C12—C130.2 (6)O2—La1—N1—C5179.9 (2)
C11—C12—C13—C141.2 (6)O5—La1—N1—C5112.2 (3)
C12—C13—C14—C150.6 (5)O1—La1—N1—C51151.8 (2)
C3—C2—C15—C14179.6 (3)O6—La1—N1—C5172.4 (2)
C1—C2—C15—C140.1 (4)O4—La1—N1—C51123.8 (2)
C3—C2—C15—C101.1 (4)O2i—La1—N1—C51143.9 (2)
C1—C2—C15—C10179.5 (2)O3i—La1—N1—C51128.8 (2)
C13—C14—C15—C2178.5 (3)N2—La1—N1—C514.7 (2)
C13—C14—C15—C100.8 (4)C16—La1—N1—C5197.2 (2)
C9—C10—C15—C20.8 (4)C1i—La1—N1—C51169.7 (2)
C11—C10—C15—C2177.6 (3)La1i—La1—N1—C51103.3 (2)
C9—C10—C15—C14179.9 (3)C47—C46—N2—C500.3 (5)
C11—C10—C15—C141.8 (4)C47—C46—N2—La1179.0 (3)
O2—La1—C16—O690.1 (4)C49—C50—N2—C460.5 (4)
O5—La1—C16—O629.0 (2)C51—C50—N2—C46179.6 (3)
O1—La1—C16—O6172.30 (19)C49—C50—N2—La1178.8 (2)
O4—La1—C16—O6179.9 (3)C51—C50—N2—La11.1 (3)
O2i—La1—C16—O6109.4 (2)O2—La1—N2—C4678.9 (2)
O3i—La1—C16—O695.9 (2)O5—La1—N2—C463.4 (2)
N1—La1—C16—O6104.0 (2)O1—La1—N2—C46139.4 (2)
N2—La1—C16—O646.6 (2)O6—La1—N2—C4691.0 (2)
C1i—La1—C16—O6104.1 (2)O4—La1—N2—C46129.7 (2)
La1i—La1—C16—O6114.7 (2)O2i—La1—N2—C4634.3 (3)
O2—La1—C16—O489.8 (4)O3i—La1—N2—C4645.9 (3)
O5—La1—C16—O4151.05 (17)N1—La1—N2—C46177.9 (2)
O1—La1—C16—O47.62 (19)C16—La1—N2—C46109.8 (2)
O6—La1—C16—O4179.9 (3)C1i—La1—N2—C467.6 (3)
O2i—La1—C16—O470.66 (19)La1i—La1—N2—C4661.0 (2)
O3i—La1—C16—O484.21 (18)O2—La1—N2—C50101.9 (2)
N1—La1—C16—O475.91 (18)O5—La1—N2—C50177.3 (2)
N2—La1—C16—O4133.33 (18)O1—La1—N2—C5041.3 (2)
C1i—La1—C16—O475.96 (18)O6—La1—N2—C5088.2 (2)
La1i—La1—C16—O465.3 (2)O4—La1—N2—C5049.6 (2)
O6—C16—C17—C1884.6 (4)O2i—La1—N2—C50146.37 (19)
O4—C16—C17—C1894.2 (3)O3i—La1—N2—C50133.4 (2)
O6—C16—C17—C3099.8 (4)N1—La1—N2—C502.8 (2)
O4—C16—C17—C3081.4 (4)C16—La1—N2—C5069.5 (2)
C30—C17—C18—C19177.4 (3)C1i—La1—N2—C50171.70 (19)
C16—C17—C18—C197.1 (5)La1i—La1—N2—C50119.8 (2)
C30—C17—C18—C233.7 (4)O5i—C31—O1—La110.6 (5)
C16—C17—C18—C23171.8 (3)C32—C31—O1—La1168.53 (18)
C17—C18—C19—C20179.6 (4)O2—La1—O1—C3135.7 (3)
C23—C18—C19—C200.7 (6)O5—La1—O1—C315.8 (3)
C18—C19—C20—C211.4 (7)O6—La1—O1—C31161.4 (3)
C19—C20—C21—C221.2 (8)O4—La1—O1—C31153.7 (3)
C20—C21—C22—C230.2 (7)O2i—La1—O1—C3142.8 (3)
C21—C22—C23—C24179.6 (4)O3i—La1—O1—C3184.8 (3)
C21—C22—C23—C180.5 (6)N1—La1—O1—C31132.6 (3)
C17—C18—C23—C240.4 (5)N2—La1—O1—C3198.6 (3)
C19—C18—C23—C24179.4 (3)C16—La1—O1—C31157.1 (3)
C17—C18—C23—C22178.7 (3)C1i—La1—O1—C3165.4 (3)
C19—C18—C23—C220.3 (5)La1i—La1—O1—C315.5 (3)
C22—C23—C24—C25178.2 (3)O3—C1—O2—La1149.3 (4)
C18—C23—C24—C252.7 (5)C2—C1—O2—La130.6 (6)
C23—C24—C25—C26179.3 (3)La1i—C1—O2—La1157.7 (5)
C23—C24—C25—C302.6 (4)O3—C1—O2—La1i8.4 (3)
C24—C25—C26—C27179.1 (3)C2—C1—O2—La1i171.7 (2)
C30—C25—C26—C271.0 (5)O5—La1—O2—C1128.1 (5)
C25—C26—C27—C280.8 (6)O1—La1—O2—C180.7 (5)
C26—C27—C28—C292.1 (6)O6—La1—O2—C171.0 (5)
C27—C28—C29—C301.4 (5)O4—La1—O2—C161.1 (5)
C18—C17—C30—C29177.2 (3)O2i—La1—O2—C1156.9 (5)
C16—C17—C30—C297.4 (4)O3i—La1—O2—C1168.3 (5)
C18—C17—C30—C253.8 (4)N1—La1—O2—C18.4 (5)
C16—C17—C30—C25171.7 (3)N2—La1—O2—C149.7 (5)
C28—C29—C30—C17178.7 (3)C16—La1—O2—C15.1 (7)
C28—C29—C30—C250.4 (5)C1i—La1—O2—C1160.5 (4)
C24—C25—C30—C170.6 (4)La1i—La1—O2—C1156.9 (5)
C26—C25—C30—C17177.5 (3)O5—La1—O2—La1i74.97 (7)
C24—C25—C30—C29179.7 (3)O1—La1—O2—La1i76.26 (7)
C26—C25—C30—C291.6 (4)O6—La1—O2—La1i132.12 (15)
O5i—C31—C32—C4542.2 (4)O4—La1—O2—La1i95.82 (15)
O1—C31—C32—C45137.0 (3)O2i—La1—O2—La1i0.0
O5i—C31—C32—C33138.0 (3)O3i—La1—O2—La1i11.37 (11)
O1—C31—C32—C3342.8 (4)N1—La1—O2—La1i148.51 (8)
C45—C32—C33—C34179.2 (3)N2—La1—O2—La1i153.33 (9)
C31—C32—C33—C340.9 (4)C16—La1—O2—La1i162.1 (3)
C45—C32—C33—C380.4 (4)C1i—La1—O2—La1i3.61 (8)
C31—C32—C33—C38179.8 (3)O2—C1—O3—La1i8.3 (3)
C32—C33—C34—C35179.5 (3)C2—C1—O3—La1i171.7 (2)
C38—C33—C34—C351.6 (5)O6—C16—O4—La10.1 (3)
C33—C34—C35—C360.4 (5)C17—C16—O4—La1178.8 (2)
C34—C35—C36—C371.6 (5)O2—La1—O4—C16153.53 (17)
C35—C36—C37—C380.8 (6)O5—La1—O4—C1639.0 (2)
C36—C37—C38—C39179.4 (3)O1—La1—O4—C16172.54 (19)
C36—C37—C38—C331.3 (5)O6—La1—O4—C160.04 (17)
C32—C33—C38—C390.5 (4)O2i—La1—O4—C16119.02 (18)
C34—C33—C38—C39179.4 (3)O3i—La1—O4—C1686.61 (18)
C32—C33—C38—C37178.6 (3)N1—La1—O4—C1696.65 (18)
C34—C33—C38—C372.4 (4)N2—La1—O4—C1650.78 (19)
C37—C38—C39—C40178.0 (3)C1i—La1—O4—C16104.14 (18)
C33—C38—C39—C400.1 (5)La1i—La1—O4—C16143.20 (15)
C38—C39—C40—C41178.9 (3)O2—La1—O5—C31i46.3 (3)
C38—C39—C40—C450.8 (5)O1—La1—O5—C31i4.8 (3)
C39—C40—C41—C42179.4 (4)O6—La1—O5—C31i156.9 (3)
C45—C40—C41—C420.3 (6)O4—La1—O5—C31i127.5 (3)
C40—C41—C42—C430.5 (7)O2i—La1—O5—C31i32.5 (3)
C41—C42—C43—C440.6 (7)O3i—La1—O5—C31i81.9 (3)
C42—C43—C44—C450.0 (6)N1—La1—O5—C31i121.3 (3)
C33—C32—C45—C44178.0 (3)N2—La1—O5—C31i128.0 (3)
C31—C32—C45—C441.8 (4)C16—La1—O5—C31i144.9 (3)
C33—C32—C45—C400.2 (4)C1i—La1—O5—C31i57.7 (3)
C31—C32—C45—C40179.6 (3)La1i—La1—O5—C31i5.1 (3)
C43—C44—C45—C32178.6 (3)O4—C16—O6—La10.1 (3)
C43—C44—C45—C400.8 (5)C17—C16—O6—La1178.8 (2)
C39—C40—C45—C320.8 (5)O2—La1—O6—C16152.95 (17)
C41—C40—C45—C32178.9 (3)O5—La1—O6—C16153.5 (2)
C39—C40—C45—C44178.8 (3)O1—La1—O6—C169.8 (2)
C41—C40—C45—C440.9 (5)O4—La1—O6—C160.04 (17)
N2—C46—C47—C480.7 (5)O2i—La1—O6—C1685.2 (2)
C46—C47—C48—C491.5 (6)O3i—La1—O6—C1676.5 (2)
C47—C48—C49—C501.4 (6)N1—La1—O6—C1671.6 (2)
C48—C49—C50—N20.3 (5)N2—La1—O6—C16131.5 (2)
C48—C49—C50—C51179.6 (3)C1i—La1—O6—C1678.7 (2)
N2—C50—C51—N13.2 (4)La1i—La1—O6—C16115.99 (18)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[La2(C15H9O2)6(C10H8N2)2]
Mr1917.52
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)12.1038 (7), 13.4887 (8), 15.4568 (14)
α, β, γ (°)113.036 (4), 103.257 (4), 102.913 (3)
V3)2117.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.20 × 0.14 × 0.12
Data collection
DiffractometerCCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.815, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
32552, 7432, 6474
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.05
No. of reflections7432
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.86

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
La1—O22.4561 (18)La1—O2i2.6750 (19)
La1—O52.4574 (19)La1—O3i2.687 (2)
La1—O12.4974 (18)La1—N12.730 (2)
La1—O62.522 (2)La1—N22.741 (2)
La1—O42.535 (2)
O2—La1—O573.16 (7)O6—La1—O3i75.51 (8)
O2—La1—O173.15 (6)O4—La1—O3i70.62 (7)
O5—La1—O1135.97 (6)O2i—La1—O3i47.91 (6)
O2—La1—O6151.98 (7)O2—La1—N191.57 (7)
O5—La1—O690.68 (7)O5—La1—N1134.60 (7)
O1—La1—O6130.65 (7)O1—La1—N173.52 (7)
O2—La1—O4151.37 (7)O6—La1—N183.64 (8)
O5—La1—O4135.00 (7)O4—La1—N171.68 (7)
O1—La1—O479.76 (6)O2i—La1—N1145.95 (7)
O6—La1—O451.39 (7)O3i—La1—N1142.16 (7)
O2—La1—O2i74.44 (6)O2—La1—N278.12 (7)
O5—La1—O2i71.53 (6)O5—La1—N275.60 (7)
O1—La1—O2i72.74 (6)O1—La1—N2123.19 (7)
O6—La1—O2i122.70 (7)O6—La1—N275.71 (7)
O4—La1—O2i106.39 (7)O4—La1—N2110.34 (7)
O2—La1—O3i121.09 (6)O2i—La1—N2141.93 (7)
O5—La1—O3i77.60 (8)O3i—La1—N2140.02 (8)
O1—La1—O3i96.65 (8)N1—La1—N259.30 (7)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Startup Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2008 to CSL). The authors also gratefully thank Nankai University and Henan Provincial Key Laboratory of Surface and Interface Science for supporting this research.

References

First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J.-C. G. (2006). Acc. Chem. Res. 39, 53–61.  Web of Science PubMed Google Scholar
First citationFu, L.-M., Wen, X.-F., Ai, X.-C., Sun, Y., Wu, Y.-S., Zhang, J.-P. & Wang, Y. (2005). Angew. Chem. Int. Ed. 44, 747–750.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationRoh, S.-G., Nah, M.-K., Oh, J. B., Baek, N. S., Park, K.-M. & Kim, H. K. (2005). Polyhedron, 24, 137–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationShi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122–m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuárez, S., Imbert, D., Gumy, F., Piguet, C. & Bünzli, J.-C. G. (2004). Chem. Mater. 16, 3257–3266.  Google Scholar
First citationWan, Y., Zhang, L., Jin, L., Gao, S. & Lu, S. (2003). Inorg. Chem. 42, 4985–4994.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S.-P., Gao, Z.-H., Xu, L.-J. & Wang, R.-F. (2006). Acta Cryst. E62, m1853–m1855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, R., Jin, L., Li, L., Lu, S. & Zhang, J. (1999). J. Coord. Chem. 47, 279–287.  Web of Science CrossRef CAS Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds