organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Bi­phenyl-4-carbon­yl)-N′-(4-chloro­phen­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: mayaasyikin_ns@yahoo.com

(Received 16 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, C20H15ClN2OS, the benzene rings of the biphenyl group are at an angle of 44.23 (12)°. The C4N2OS central thio­urea fragment makes dihedral angles with the benzene carbonyl and chloro­benzene rings of 55.96 (9) and 64.09 (9)°, respectively. The transcis geometry of the thio­urea group is stabilized by the intra­molecular hydrogen bond between the carbonyl O atom and the H atom of the cis-thio­amide. In the crystal structure, mol­ecules are linked by N—H⋯S and N—H⋯O inter­molecular hydrogen bonds to form one-dimensional chains along the c axis. C—H⋯π inter­actions also contribute to the stability of the mol­ecule.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Arif & Yamin (2007[Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15ClN2OS

  • Mr = 366.85

  • Monoclinic, P 2/c

  • a = 16.039 (7) Å

  • b = 6.087 (3) Å

  • c = 18.096 (8) Å

  • β = 94.780 (8)°

  • V = 1760.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 (2) K

  • 0.49 × 0.46 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.966

  • 9371 measured reflections

  • 3475 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.02

  • 3475 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.00 2.683 (3) 135
N1—H1⋯S1i 0.86 2.55 3.362 (3) 157
N2—H2⋯O1ii 0.86 2.58 3.210 (3) 131
C1—H1ACg3ii 0.93 2.98 3.586 (3) 124
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y, -z+{\script{1\over 2}}]. Cg3 is the centroid of atoms C15–C20.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (Fig. 1) is an isomeric analog of the previously reported N-(biphenyl-4-carbonyl)-N'-(2-chlorophenyl) thiourea (II) (Arif and Yamin, 2007). The dihedral angle between the two benzene rings in the biphenyl fragment is 44.23 (12)°, which is double the value of 20.71 (17)° in (II). The examination on the planarity of the central thiourea fragment S1/N1/N2/C14 and the chlorophenyl plane (C15—C20)/Cl1, indicates that they are planar. The central thiourea fragment makes dihedral angles with the benzene carbonyl and chlorobenzene rings of 55.96 (9) and 64.09 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O1 intramolecular hydrogen bond (Table 1).

In the crystal structure symmetry related molecules are linked by N1—H1···S1i and N2—H2···O1ii intermolecular hydrogen bonds to form one-dimensional chains along the c axis (Fig. 2 and Table 1). The molecule is also stabilized by a C1—H1A···π interaction; the distance between H1A and the (C15—C20) ring centroid is 2.98 Å, and the angle about the hydrogen atom is 124°.

Related literature top

For related literature, see: Allen et al. (1987); Arif & Yamin (2007).

Experimental top

A solution of 4-chloroaniline (0.63 g, 2.5 mmol) in 20 ml acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar amount of biphenylcarbomoylisothiocyanate (0.60 g, 2.5 mmol) in 20 ml of acetone. The mixture was refluxed for about 3 h. The light yellow solution was filtered and the filtrate allowed to evaporate at room temperature. Colourless crystals were obtained after five days (yield 0.71 g, 85%, m.p.: 164–166°C).

Refinement top

H atoms on C and N atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Structure description top

The title compound (Fig. 1) is an isomeric analog of the previously reported N-(biphenyl-4-carbonyl)-N'-(2-chlorophenyl) thiourea (II) (Arif and Yamin, 2007). The dihedral angle between the two benzene rings in the biphenyl fragment is 44.23 (12)°, which is double the value of 20.71 (17)° in (II). The examination on the planarity of the central thiourea fragment S1/N1/N2/C14 and the chlorophenyl plane (C15—C20)/Cl1, indicates that they are planar. The central thiourea fragment makes dihedral angles with the benzene carbonyl and chlorobenzene rings of 55.96 (9) and 64.09 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O1 intramolecular hydrogen bond (Table 1).

In the crystal structure symmetry related molecules are linked by N1—H1···S1i and N2—H2···O1ii intermolecular hydrogen bonds to form one-dimensional chains along the c axis (Fig. 2 and Table 1). The molecule is also stabilized by a C1—H1A···π interaction; the distance between H1A and the (C15—C20) ring centroid is 2.98 Å, and the angle about the hydrogen atom is 124°.

For related literature, see: Allen et al. (1987); Arif & Yamin (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (I), with displacement ellipsoid drawn at the 50% probablity level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of compound (I). The dashed line indicates the intermolecular N—H···S and N—H···O hydrogen bonds (see Table 1 for details).
N-(Biphenyl-4-carbonyl)-N'-(4-chlorophenyl)thiourea top
Crystal data top
C20H15ClN2OSF(000) = 760
Mr = 366.85Dx = 1.384 Mg m3
Monoclinic, P2/cMelting point: 164-166°C K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.039 (7) ÅCell parameters from 1713 reflections
b = 6.087 (3) Åθ = 2.2–26.0°
c = 18.096 (8) ŵ = 0.35 mm1
β = 94.780 (8)°T = 298 K
V = 1760.5 (14) Å3Block, colourless
Z = 40.49 × 0.46 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1918
Tmin = 0.848, Tmax = 0.966k = 77
9371 measured reflectionsl = 2212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0946P]
where P = (Fo2 + 2Fc2)/3
3475 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H15ClN2OSV = 1760.5 (14) Å3
Mr = 366.85Z = 4
Monoclinic, P2/cMo Kα radiation
a = 16.039 (7) ŵ = 0.35 mm1
b = 6.087 (3) ÅT = 298 K
c = 18.096 (8) Å0.49 × 0.46 × 0.10 mm
β = 94.780 (8)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2278 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.966Rint = 0.037
9371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
3475 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.37861 (5)0.39472 (17)0.18867 (5)0.1065 (4)
S11.08379 (4)0.38002 (11)0.42312 (3)0.0553 (2)
O10.95079 (10)0.9893 (3)0.32501 (9)0.0591 (5)
N10.97515 (11)0.7034 (3)0.40513 (10)0.0483 (5)
H10.95640.64400.44350.058*
N21.07779 (10)0.7027 (3)0.32382 (10)0.0487 (5)
H21.05370.81940.30570.058*
C10.79626 (14)0.7695 (4)0.42417 (12)0.0505 (6)
H1A0.80260.63330.40200.061*
C20.72746 (13)0.8084 (4)0.46287 (13)0.0504 (6)
H2A0.68720.69930.46560.060*
C30.71742 (13)1.0086 (4)0.49788 (12)0.0445 (6)
C40.64556 (14)1.0439 (4)0.54340 (13)0.0481 (6)
C50.62285 (15)0.8839 (4)0.59148 (14)0.0601 (7)
H50.65320.75380.59570.072*
C60.55587 (17)0.9127 (5)0.63367 (16)0.0752 (9)
H60.54160.80320.66610.090*
C70.51023 (17)1.1049 (6)0.62738 (16)0.0749 (9)
H70.46451.12460.65500.090*
C80.53267 (16)1.2669 (5)0.58009 (16)0.0759 (9)
H80.50261.39760.57630.091*
C90.59943 (15)1.2364 (5)0.53843 (15)0.0627 (7)
H90.61391.34680.50640.075*
C100.77729 (14)1.1700 (4)0.49070 (13)0.0525 (6)
H100.77131.30580.51320.063*
C110.84582 (14)1.1326 (4)0.45067 (13)0.0519 (6)
H110.88501.24320.44580.062*
C120.85579 (13)0.9293 (4)0.41789 (12)0.0431 (5)
C130.93135 (13)0.8825 (4)0.37742 (12)0.0451 (6)
C141.04533 (13)0.6039 (4)0.38029 (12)0.0425 (5)
C151.15067 (13)0.6247 (4)0.29167 (11)0.0426 (5)
C161.22033 (14)0.7565 (5)0.29525 (12)0.0572 (7)
H161.21990.89270.31850.069*
C171.29127 (15)0.6842 (5)0.26385 (15)0.0679 (8)
H171.33890.77190.26550.081*
C181.29059 (15)0.4827 (5)0.23047 (14)0.0605 (7)
C191.22169 (16)0.3514 (4)0.22703 (14)0.0594 (7)
H191.22260.21410.20460.071*
C201.15066 (15)0.4242 (4)0.25714 (13)0.0530 (6)
H201.10270.33760.25410.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0737 (5)0.1498 (9)0.1022 (7)0.0428 (5)0.0449 (5)0.0262 (6)
S10.0576 (4)0.0604 (4)0.0499 (4)0.0152 (3)0.0171 (3)0.0127 (3)
O10.0684 (11)0.0584 (11)0.0528 (10)0.0138 (9)0.0183 (8)0.0152 (9)
N10.0496 (11)0.0554 (13)0.0417 (11)0.0119 (10)0.0137 (9)0.0092 (9)
N20.0495 (11)0.0530 (12)0.0454 (11)0.0088 (9)0.0138 (9)0.0096 (10)
C10.0504 (14)0.0455 (15)0.0549 (15)0.0053 (12)0.0007 (11)0.0092 (12)
C20.0434 (13)0.0483 (15)0.0594 (15)0.0066 (11)0.0039 (11)0.0050 (12)
C30.0415 (12)0.0462 (15)0.0456 (13)0.0027 (11)0.0029 (10)0.0012 (11)
C40.0419 (13)0.0507 (15)0.0519 (14)0.0052 (11)0.0046 (10)0.0057 (12)
C50.0554 (15)0.0614 (18)0.0644 (17)0.0039 (13)0.0110 (13)0.0014 (14)
C60.0655 (18)0.090 (2)0.0726 (19)0.0176 (17)0.0198 (15)0.0045 (17)
C70.0504 (16)0.100 (3)0.077 (2)0.0100 (17)0.0222 (14)0.0116 (19)
C80.0542 (17)0.084 (2)0.091 (2)0.0153 (15)0.0165 (15)0.0057 (18)
C90.0575 (16)0.0625 (18)0.0699 (18)0.0081 (14)0.0166 (13)0.0053 (14)
C100.0577 (15)0.0411 (14)0.0606 (16)0.0008 (12)0.0165 (12)0.0076 (12)
C110.0524 (14)0.0462 (15)0.0590 (15)0.0046 (12)0.0157 (11)0.0034 (12)
C120.0420 (12)0.0461 (14)0.0411 (13)0.0065 (11)0.0038 (10)0.0020 (11)
C130.0470 (13)0.0482 (15)0.0399 (13)0.0018 (11)0.0017 (10)0.0025 (12)
C140.0403 (12)0.0489 (14)0.0390 (12)0.0017 (11)0.0066 (9)0.0001 (11)
C150.0441 (12)0.0497 (14)0.0347 (12)0.0004 (11)0.0077 (9)0.0060 (11)
C160.0613 (16)0.0607 (18)0.0505 (15)0.0115 (13)0.0101 (12)0.0079 (13)
C170.0453 (15)0.098 (2)0.0610 (17)0.0151 (15)0.0092 (12)0.0054 (17)
C180.0505 (15)0.083 (2)0.0497 (15)0.0137 (15)0.0154 (12)0.0120 (15)
C190.0757 (18)0.0522 (16)0.0529 (15)0.0090 (14)0.0196 (13)0.0009 (13)
C200.0537 (15)0.0583 (17)0.0487 (14)0.0076 (12)0.0138 (11)0.0026 (13)
Geometric parameters (Å, º) top
Cl1—C181.741 (2)C6—H60.9300
S1—C141.661 (2)C7—C81.374 (4)
O1—C131.212 (3)C7—H70.9300
N1—C131.369 (3)C8—C91.372 (3)
N1—C141.386 (3)C8—H80.9300
N1—H10.8600C9—H90.9300
N2—C141.329 (3)C10—C111.385 (3)
N2—C151.430 (3)C10—H100.9300
N2—H20.8600C11—C121.387 (3)
C1—C121.374 (3)C11—H110.9300
C1—C21.376 (3)C12—C131.495 (3)
C1—H1A0.9300C15—C201.371 (3)
C2—C31.389 (3)C15—C161.373 (3)
C2—H2A0.9300C16—C171.385 (3)
C3—C101.387 (3)C16—H160.9300
C3—C41.487 (3)C17—C181.367 (4)
C4—C51.375 (3)C17—H170.9300
C4—C91.385 (3)C18—C191.361 (4)
C5—C61.380 (3)C19—C201.376 (3)
C5—H50.9300C19—H190.9300
C6—C71.380 (4)C20—H200.9300
C13—N1—C14129.43 (18)C11—C10—C3121.2 (2)
C13—N1—H1115.3C11—C10—H10119.4
C14—N1—H1115.3C3—C10—H10119.4
C14—N2—C15123.29 (19)C10—C11—C12119.7 (2)
C14—N2—H2118.4C10—C11—H11120.2
C15—N2—H2118.4C12—C11—H11120.2
C12—C1—C2120.8 (2)C1—C12—C11119.4 (2)
C12—C1—H1A119.6C1—C12—C13120.2 (2)
C2—C1—H1A119.6C11—C12—C13120.4 (2)
C1—C2—C3120.8 (2)O1—C13—N1123.8 (2)
C1—C2—H2A119.6O1—C13—C12123.6 (2)
C3—C2—H2A119.6N1—C13—C12112.62 (19)
C10—C3—C2118.1 (2)N2—C14—N1115.62 (19)
C10—C3—C4121.6 (2)N2—C14—S1125.19 (16)
C2—C3—C4120.3 (2)N1—C14—S1119.17 (16)
C5—C4—C9118.2 (2)C20—C15—C16120.7 (2)
C5—C4—C3120.5 (2)C20—C15—N2120.8 (2)
C9—C4—C3121.4 (2)C16—C15—N2118.5 (2)
C4—C5—C6121.3 (3)C15—C16—C17119.2 (3)
C4—C5—H5119.3C15—C16—H16120.4
C6—C5—H5119.3C17—C16—H16120.4
C7—C6—C5119.6 (3)C18—C17—C16119.3 (2)
C7—C6—H6120.2C18—C17—H17120.3
C5—C6—H6120.2C16—C17—H17120.3
C8—C7—C6119.7 (3)C19—C18—C17121.6 (2)
C8—C7—H7120.1C19—C18—Cl1119.0 (2)
C6—C7—H7120.1C17—C18—Cl1119.4 (2)
C9—C8—C7120.1 (3)C18—C19—C20119.3 (3)
C9—C8—H8119.9C18—C19—H19120.4
C7—C8—H8119.9C20—C19—H19120.4
C8—C9—C4121.1 (3)C15—C20—C19119.9 (2)
C8—C9—H9119.5C15—C20—H20120.1
C4—C9—H9119.5C19—C20—H20120.1
C12—C1—C2—C31.4 (3)C14—N1—C13—O12.3 (4)
C1—C2—C3—C102.0 (3)C14—N1—C13—C12176.5 (2)
C1—C2—C3—C4176.2 (2)C1—C12—C13—O1123.0 (3)
C10—C3—C4—C5134.7 (3)C11—C12—C13—O158.3 (3)
C2—C3—C4—C543.4 (3)C1—C12—C13—N155.8 (3)
C10—C3—C4—C945.7 (3)C11—C12—C13—N1122.9 (2)
C2—C3—C4—C9136.2 (2)C15—N2—C14—N1179.21 (19)
C9—C4—C5—C60.2 (4)C15—N2—C14—S11.0 (3)
C3—C4—C5—C6179.4 (2)C13—N1—C14—N24.0 (3)
C4—C5—C6—C70.4 (4)C13—N1—C14—S1177.63 (18)
C5—C6—C7—C81.0 (4)C14—N2—C15—C2063.7 (3)
C6—C7—C8—C91.0 (5)C14—N2—C15—C16117.2 (3)
C7—C8—C9—C40.4 (4)C20—C15—C16—C170.4 (4)
C5—C4—C9—C80.2 (4)N2—C15—C16—C17179.5 (2)
C3—C4—C9—C8179.4 (2)C15—C16—C17—C180.5 (4)
C2—C3—C10—C110.8 (4)C16—C17—C18—C190.3 (4)
C4—C3—C10—C11177.3 (2)C16—C17—C18—Cl1178.19 (19)
C3—C10—C11—C120.9 (4)C17—C18—C19—C200.7 (4)
C2—C1—C12—C110.4 (3)Cl1—C18—C19—C20177.18 (19)
C2—C1—C12—C13178.3 (2)C16—C15—C20—C191.4 (4)
C10—C11—C12—C11.6 (3)N2—C15—C20—C19179.5 (2)
C10—C11—C12—C13177.2 (2)C18—C19—C20—C151.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.002.683 (3)135
N1—H1···S1i0.862.553.362 (3)157
N2—H2···O1ii0.862.583.210 (3)131
C1—H1A···Cg3ii0.932.983.586 (3)124
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15ClN2OS
Mr366.85
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)16.039 (7), 6.087 (3), 18.096 (8)
β (°) 94.780 (8)
V3)1760.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.49 × 0.46 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.848, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
9371, 3475, 2278
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.02
No. of reflections3475
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.002.683 (3)135
N1—H1···S1i0.862.553.362 (3)157
N2—H2···O1ii0.862.583.210 (3)131
C1—H1A···Cg3ii0.932.983.586 (3)124
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education for research grant No. UKM-ST-01-FRGS-0003-2006, and the Universiti Kebangsaan Malaysia and the Universiti Malaysia Sarawak for the facilities and scholarship to MAMA.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds