metal-organic compounds
Di-μ-thiocyanato-bis({2,4-dichloro-6-[2-(diethylamino)ethyliminomethyl]phenolato}copper(II))
aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China, and bDepartment of Chemistry and Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
*Correspondence e-mail: xianwenfz@163.com
The title compound, [Cu2(NCS)2(C13H17Cl2N2O)2], was obtained by the reaction of 3,5-dichlorosalicylaldehyde, N,N-diethylethane-1,2-diamine, sodium thiocyanate, and copper(II) acetate in an ethanol solution. It crystallizes as a centrosymmetric dimer with a very long Cu⋯S axial bond [2.972 (3) Å]. The Cu atom is five-coordinated by the three donor atoms of the Schiff base ligand, 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of a symmetry-related thiocyanate group, forming a slightly distorted square-pyramidal geometry.
Related literature
For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006). For related literature, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807063325/su2031sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063325/su2031Isup2.hkl
The title compound was obtained by the reaction of equimolar amounts of 3,5-dichlorosalicylaldehyde, N,N-diethylethane-1,2-diamine, sodium thiocyanate, and copper acetate in an ethanol solution. Blue block-like single crystals were obtained by slow evaporation of the filtrate in air.
H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).
Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). Metal complexes derived from the
have also been shown to have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As part of our investigations of the structures of metal complexes derived from we report herein the of the title copper complex, (I).Compound (I) is a centrosymmetric dinuclear copper(II) complex (Fig. 1). The Cu atom is five-coordinated by the three donor atoms (O1, N1 and N2) of the Schiff base ligand 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of the centrosymmetrically related thiocyanate group, so forming a slightly distorted square-pyramidal geometry. The Cu atom is displaced out of the best least-squares plane defined by the four basal donor atoms by 0.123 (2) Å. Apart from the long Cu···S axial bond [2.972 (3) Å], the other coordination bond distances and angles are within normal ranges (Allen et al., 1987).
For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006). For related literature, see: Allen et al. (1987).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).Fig. 1. The molecular structure of complex (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. |
[Cu2(NCS)2(C13H17Cl2N2O)2] | F(000) = 836 |
Mr = 409.81 | Dx = 1.596 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.632 (2) Å | Cell parameters from 6502 reflections |
b = 14.115 (3) Å | θ = 2.4–27.7° |
c = 14.002 (3) Å | µ = 1.72 mm−1 |
β = 90.491 (4)° | T = 293 K |
V = 1706.0 (6) Å3 | Block, blue |
Z = 4 | 0.20 × 0.17 × 0.16 mm |
Bruker SMART 1K CCD area-detector diffractometer | 3516 independent reflections |
Radiation source: fine-focus sealed tube | 3046 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→10 |
Tmin = 0.725, Tmax = 0.771 | k = −17→17 |
13451 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.058P)2 + 2.2599P] where P = (Fo2 + 2Fc2)/3 |
3516 reflections | (Δ/σ)max = 0.001 |
201 parameters | Δρmax = 1.34 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Cu2(NCS)2(C13H17Cl2N2O)2] | V = 1706.0 (6) Å3 |
Mr = 409.81 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.632 (2) Å | µ = 1.72 mm−1 |
b = 14.115 (3) Å | T = 293 K |
c = 14.002 (3) Å | 0.20 × 0.17 × 0.16 mm |
β = 90.491 (4)° |
Bruker SMART 1K CCD area-detector diffractometer | 3516 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3046 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.771 | Rint = 0.024 |
13451 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.34 e Å−3 |
3516 reflections | Δρmin = −0.67 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.13607 (4) | 0.16622 (3) | 0.06969 (3) | 0.03794 (14) | |
O1 | −0.0063 (3) | 0.22330 (17) | −0.01736 (16) | 0.0489 (6) | |
N1 | 0.1165 (3) | 0.2683 (2) | 0.16144 (18) | 0.0410 (6) | |
N2 | 0.3213 (3) | 0.1254 (2) | 0.1558 (2) | 0.0444 (6) | |
N3 | 0.1658 (4) | 0.0673 (2) | −0.0253 (2) | 0.0477 (7) | |
Cl1 | −0.21684 (12) | 0.25400 (7) | −0.17482 (6) | 0.0585 (3) | |
Cl2 | −0.33491 (14) | 0.58481 (8) | −0.00046 (9) | 0.0716 (3) | |
S1 | 0.10771 (10) | −0.05935 (7) | −0.17261 (6) | 0.0476 (2) | |
C1 | −0.0792 (4) | 0.3018 (2) | −0.0076 (2) | 0.0396 (7) | |
C2 | −0.0634 (4) | 0.3643 (2) | 0.0713 (2) | 0.0419 (7) | |
C3 | −0.1427 (4) | 0.4516 (3) | 0.0723 (3) | 0.0498 (8) | |
H3 | −0.1293 | 0.4927 | 0.1236 | 0.060* | |
C4 | −0.2389 (4) | 0.4760 (3) | −0.0013 (3) | 0.0510 (9) | |
C5 | −0.2616 (4) | 0.4157 (3) | −0.0785 (3) | 0.0490 (8) | |
H5 | −0.3279 | 0.4327 | −0.1283 | 0.059* | |
C6 | −0.1850 (4) | 0.3311 (2) | −0.0802 (2) | 0.0435 (7) | |
C7 | 0.0343 (4) | 0.3430 (2) | 0.1518 (2) | 0.0450 (8) | |
H7 | 0.0382 | 0.3872 | 0.2010 | 0.054* | |
C8 | 0.2109 (5) | 0.2585 (3) | 0.2480 (3) | 0.0621 (11) | |
H8A | 0.2939 | 0.3048 | 0.2477 | 0.075* | |
H8B | 0.1477 | 0.2698 | 0.3038 | 0.075* | |
C9 | 0.2742 (7) | 0.1654 (3) | 0.2521 (3) | 0.0741 (14) | |
H9A | 0.1983 | 0.1234 | 0.2803 | 0.089* | |
H9B | 0.3644 | 0.1662 | 0.2939 | 0.089* | |
C10 | 0.4629 (6) | 0.1738 (4) | 0.1273 (4) | 0.0883 (17) | |
H10A | 0.4497 | 0.2409 | 0.1395 | 0.106* | |
H10B | 0.5466 | 0.1518 | 0.1683 | 0.106* | |
C11 | 0.5099 (6) | 0.1626 (5) | 0.0307 (4) | 0.114 (3) | |
H11A | 0.5219 | 0.0964 | 0.0168 | 0.171* | |
H11B | 0.6069 | 0.1945 | 0.0214 | 0.171* | |
H11C | 0.4328 | 0.1893 | −0.0111 | 0.171* | |
C12 | 0.3232 (5) | 0.0217 (3) | 0.1662 (3) | 0.0581 (10) | |
H12A | 0.3370 | −0.0057 | 0.1034 | 0.070* | |
H12B | 0.2221 | 0.0020 | 0.1886 | 0.070* | |
C13 | 0.4448 (5) | −0.0206 (3) | 0.2326 (3) | 0.0661 (11) | |
H13A | 0.5456 | 0.0009 | 0.2140 | 0.099* | |
H13B | 0.4406 | −0.0884 | 0.2288 | 0.099* | |
H13C | 0.4249 | −0.0010 | 0.2970 | 0.099* | |
C14 | 0.1388 (3) | 0.0159 (2) | −0.0861 (2) | 0.0361 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0441 (2) | 0.0384 (2) | 0.0312 (2) | −0.00149 (16) | −0.00774 (16) | −0.00402 (15) |
O1 | 0.0670 (16) | 0.0426 (13) | 0.0368 (12) | 0.0082 (11) | −0.0161 (11) | −0.0057 (10) |
N1 | 0.0423 (15) | 0.0514 (16) | 0.0293 (13) | −0.0062 (12) | −0.0044 (11) | −0.0049 (11) |
N2 | 0.0438 (15) | 0.0452 (16) | 0.0441 (15) | −0.0062 (12) | −0.0110 (12) | 0.0016 (12) |
N3 | 0.0522 (17) | 0.0497 (17) | 0.0410 (15) | 0.0019 (13) | −0.0060 (13) | −0.0096 (13) |
Cl1 | 0.0706 (6) | 0.0653 (6) | 0.0392 (5) | 0.0004 (5) | −0.0145 (4) | 0.0011 (4) |
Cl2 | 0.0714 (7) | 0.0571 (6) | 0.0867 (8) | 0.0217 (5) | 0.0217 (6) | 0.0136 (5) |
S1 | 0.0468 (5) | 0.0543 (5) | 0.0417 (5) | −0.0034 (4) | 0.0008 (4) | −0.0165 (4) |
C1 | 0.0425 (17) | 0.0404 (17) | 0.0358 (16) | −0.0053 (14) | 0.0011 (13) | 0.0028 (13) |
C2 | 0.0423 (17) | 0.0428 (17) | 0.0406 (17) | −0.0016 (14) | 0.0037 (13) | 0.0003 (14) |
C3 | 0.052 (2) | 0.048 (2) | 0.050 (2) | 0.0001 (16) | 0.0146 (16) | −0.0041 (16) |
C4 | 0.0471 (19) | 0.047 (2) | 0.059 (2) | 0.0088 (15) | 0.0167 (17) | 0.0094 (17) |
C5 | 0.0420 (18) | 0.056 (2) | 0.049 (2) | 0.0045 (15) | 0.0060 (15) | 0.0153 (16) |
C6 | 0.0444 (17) | 0.050 (2) | 0.0359 (16) | −0.0046 (14) | 0.0023 (13) | 0.0064 (14) |
C7 | 0.0479 (19) | 0.049 (2) | 0.0379 (17) | −0.0054 (15) | 0.0026 (14) | −0.0117 (14) |
C8 | 0.056 (2) | 0.094 (3) | 0.0361 (18) | 0.006 (2) | −0.0135 (16) | −0.0129 (19) |
C9 | 0.111 (4) | 0.066 (3) | 0.045 (2) | 0.014 (2) | −0.031 (2) | −0.0106 (19) |
C10 | 0.057 (3) | 0.117 (5) | 0.091 (4) | −0.022 (3) | −0.014 (3) | 0.028 (3) |
C11 | 0.057 (3) | 0.187 (7) | 0.100 (5) | −0.016 (4) | 0.020 (3) | −0.061 (5) |
C12 | 0.052 (2) | 0.045 (2) | 0.077 (3) | 0.0055 (16) | −0.0224 (19) | −0.0060 (19) |
C13 | 0.058 (2) | 0.061 (2) | 0.079 (3) | 0.015 (2) | −0.020 (2) | 0.000 (2) |
C14 | 0.0315 (15) | 0.0419 (17) | 0.0350 (15) | 0.0029 (12) | −0.0002 (12) | −0.0001 (13) |
Cu1—O1 | 1.903 (2) | C4—C5 | 1.389 (6) |
Cu1—N1 | 1.939 (3) | C5—C6 | 1.365 (5) |
Cu1—N3 | 1.947 (3) | C5—H5 | 0.9300 |
Cu1—N2 | 2.076 (3) | C7—H7 | 0.9300 |
Cu1—S1i | 2.972 (3) | C8—C9 | 1.423 (6) |
O1—C1 | 1.282 (4) | C8—H8A | 0.9700 |
N1—C7 | 1.278 (4) | C8—H8B | 0.9700 |
N1—C8 | 1.461 (4) | C9—H9A | 0.9700 |
N2—C10 | 1.459 (5) | C9—H9B | 0.9700 |
N2—C12 | 1.470 (5) | C10—C11 | 1.424 (8) |
N2—C9 | 1.520 (5) | C10—H10A | 0.9700 |
N3—C14 | 1.141 (4) | C10—H10B | 0.9700 |
Cl1—C6 | 1.734 (4) | C11—H11A | 0.9600 |
Cl2—C4 | 1.745 (4) | C11—H11B | 0.9600 |
S1—C14 | 1.632 (3) | C11—H11C | 0.9600 |
C1—C2 | 1.420 (5) | C12—C13 | 1.518 (5) |
C1—C6 | 1.422 (5) | C12—H12A | 0.9700 |
C2—C3 | 1.410 (5) | C12—H12B | 0.9700 |
C2—C7 | 1.434 (5) | C13—H13A | 0.9600 |
C3—C4 | 1.362 (5) | C13—H13B | 0.9600 |
C3—H3 | 0.9300 | C13—H13C | 0.9600 |
O1—Cu1—N1 | 92.89 (11) | N1—C7—H7 | 117.3 |
O1—Cu1—N3 | 87.38 (11) | C2—C7—H7 | 117.3 |
N1—Cu1—N3 | 176.78 (12) | C9—C8—N1 | 109.4 (3) |
O1—Cu1—N2 | 168.48 (11) | C9—C8—H8A | 109.8 |
N1—Cu1—N2 | 83.82 (12) | N1—C8—H8A | 109.8 |
N3—Cu1—N2 | 95.29 (12) | C9—C8—H8B | 109.8 |
O1—Cu1—S1i | 93.98 (12) | N1—C8—H8B | 109.8 |
N1—Cu1—S1i | 89.43 (12) | H8A—C8—H8B | 108.2 |
N2—Cu1—S1i | 97.02 (12) | C8—C9—N2 | 114.4 (4) |
N3—Cu1—S1i | 93.75 (12) | C8—C9—H9A | 108.7 |
C1—O1—Cu1 | 127.8 (2) | N2—C9—H9A | 108.7 |
C7—N1—C8 | 118.1 (3) | C8—C9—H9B | 108.7 |
C7—N1—Cu1 | 126.5 (2) | N2—C9—H9B | 108.7 |
C8—N1—Cu1 | 115.4 (2) | H9A—C9—H9B | 107.6 |
C10—N2—C12 | 119.0 (4) | C11—C10—N2 | 117.0 (5) |
C10—N2—C9 | 107.4 (4) | C11—C10—H10A | 108.0 |
C12—N2—C9 | 106.6 (3) | N2—C10—H10A | 108.0 |
C10—N2—Cu1 | 110.7 (3) | C11—C10—H10B | 108.0 |
C12—N2—Cu1 | 110.0 (2) | N2—C10—H10B | 108.0 |
C9—N2—Cu1 | 101.6 (2) | H10A—C10—H10B | 107.3 |
C14—N3—Cu1 | 159.8 (3) | C10—C11—H11A | 109.5 |
O1—C1—C2 | 125.2 (3) | C10—C11—H11B | 109.5 |
O1—C1—C6 | 119.2 (3) | H11A—C11—H11B | 109.5 |
C2—C1—C6 | 115.6 (3) | C10—C11—H11C | 109.5 |
C3—C2—C1 | 120.5 (3) | H11A—C11—H11C | 109.5 |
C3—C2—C7 | 117.2 (3) | H11B—C11—H11C | 109.5 |
C1—C2—C7 | 122.3 (3) | N2—C12—C13 | 117.3 (3) |
C4—C3—C2 | 120.4 (3) | N2—C12—H12A | 108.0 |
C4—C3—H3 | 119.8 | C13—C12—H12A | 108.0 |
C2—C3—H3 | 119.8 | N2—C12—H12B | 108.0 |
C3—C4—C5 | 121.0 (3) | C13—C12—H12B | 108.0 |
C3—C4—Cl2 | 120.3 (3) | H12A—C12—H12B | 107.2 |
C5—C4—Cl2 | 118.7 (3) | C12—C13—H13A | 109.5 |
C6—C5—C4 | 119.0 (3) | C12—C13—H13B | 109.5 |
C6—C5—H5 | 120.5 | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 120.5 | C12—C13—H13C | 109.5 |
C5—C6—C1 | 123.4 (3) | H13A—C13—H13C | 109.5 |
C5—C6—Cl1 | 119.2 (3) | H13B—C13—H13C | 109.5 |
C1—C6—Cl1 | 117.4 (3) | N3—C14—S1 | 177.6 (3) |
N1—C7—C2 | 125.3 (3) |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(NCS)2(C13H17Cl2N2O)2] |
Mr | 409.81 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.632 (2), 14.115 (3), 14.002 (3) |
β (°) | 90.491 (4) |
V (Å3) | 1706.0 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.72 |
Crystal size (mm) | 0.20 × 0.17 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.725, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13451, 3516, 3046 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.118, 1.06 |
No. of reflections | 3516 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.34, −0.67 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001), SHELXTL (Bruker, 2001).
Acknowledgements
The authors thank Minjiang University for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225–229. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564. Web of Science CrossRef PubMed CAS Google Scholar
Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153. Web of Science CrossRef PubMed Google Scholar
Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402. Web of Science CrossRef PubMed CAS Google Scholar
Zhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090–1092. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). Metal complexes derived from the Schiff bases have also been shown to have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As part of our investigations of the structures of metal complexes derived from Schiff bases, we report herein the crystal structure of the title copper complex, (I).
Compound (I) is a centrosymmetric dinuclear copper(II) complex (Fig. 1). The Cu atom is five-coordinated by the three donor atoms (O1, N1 and N2) of the Schiff base ligand 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of the centrosymmetrically related thiocyanate group, so forming a slightly distorted square-pyramidal geometry. The Cu atom is displaced out of the best least-squares plane defined by the four basal donor atoms by 0.123 (2) Å. Apart from the long Cu···S axial bond [2.972 (3) Å], the other coordination bond distances and angles are within normal ranges (Allen et al., 1987).