metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-aqua-octa­aqua­bis­(μ-4-chloro­pyridine-2,6-di­carboxyl­ato)bis­­(4-chloro­pyridine-2,6-di­carboxyl­ato)tri­cobalt(II)disodium(I) bis­­[tri­aqua­bis­(4-chloro­pyridine-2,6-di­carboxyl­ato)cobalt(II)] hexa­hydrate

aDepartment of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406-0001, USA, bThe University of Trinidad and Tobago, O'Meara Campus, Lots 74-98, O'Meara Industrial Park, Arima, Trinidad and Tobago, and cChemistry Department, Clemson University, Clemson SC 29634-0973, USA
*Correspondence e-mail: alvin.holder@usm.edu

(Received 29 November 2007; accepted 15 December 2007; online 21 December 2007)

The title compound, [Co3Na2(C7H2ClNO4)4(H2O)12][Co(C7H2ClNO4)(H2O)3]2·6H2O, consists of a centrosymmetric dimer of [CoII(dipicCl)2]2− complex dianions [dipicCl is 4-chloro­pyridine-2,6-dicarboxyl­ate] bridged by an [Na2CoII(H2O)12]4+ tetra­cationic cluster, two independent [Co(dipicCl)(H2O)3] complexes, and six water mol­ecules of crystallization. The metals are all six-coordinate with distorted octahedral geometries. The [CoII(dipicCl)(H2O)3] complexes are neutral, with one tridentate ligand and three water molecules. The [CoII(dipicCl)2]2− complexes each have two tridentate ligands. The [Na2CoII(H2O)12]4+ cluster has a central CoII ion which is coordinated to six water molecules and lies on a crystallographic inversion center. Four of the water molecules bridge to two sodium ions, each of which have three other water molecules coordinated along with an O atom from the [CoII(dipicCl)2]2− complex. In the crystal structure, the various units are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. Two water molecules are disordered equally over two positions.

Related literature

For related literature, see: Anagnostopoulos (1975[Anagnostopoulos, A. (1975). J. Coord. Chem. 4, 231-233.]); Cassellato & Vigato (1978[Cassellato, U. & Vigato, P. A. (1978). Coord. Chem. Rev. 26, 85-159.]); Chatterjee, Ghosh, Wu & Mak (1998[Chatterjee, M., Ghosh, S., Wu, B.-M. & Mak, T. C. W. (1998). Polyhedron, 17, 1369-1374.]); Chatterjee, Maji, Ghosh & Mak (1998[Chatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641-3646.]); Hartkamp (1962[Hartkamp, H. (1962). Z. Anal. Chem. 187, 16-29.]); Lukes & Jurecek (1948[Lukes, R. & Jurecek, M. (1948). Collect. Czech. Chem. Commun. 13, 131-160.]); Chatterjee et al. (1997[Chatterjee, M., Ghosh, S. & Nandi, A. K. (1997). Polyhedron, 16, 2917-2923.]); Crans et al. (2000[Crans, D. C., Yang, L., Jakusch, T. & Kiss, T. (2000). Inorg. Chem. 39, 4409-4416.], 2003[Crans, D. C., Mahroof-Tahir, M., Johnson, M. D., Wilkins, P. C., Yang, L., Robbins, K., Johnson, A., Alfano, J. A., Godzala, M. E., Austin, L. T. & Willsky, G. R. (2003). Inorg. Chim. Acta, 356, 365-378.], 2006[Crans, D. C., Rithner, C. D., Baruah, B., Gourley, B. L. & Levinger, N. E. (2006). J. Am. Chem. Soc. 128, 4437-4445.]); D'Ascenzo, Marino, Sabbatini & Bica (1978[D'Ascenzo, G., Marino, A., Sabbatini, M. & Bica, T. (1978). Thermochim. Acta, 25, 325-332.]); Du et al. (2006[Du, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta, 359, 673-679.]); Furst et al. (1978[Furst, W., Gouzerch, P. & Jeannin, Y. (1978). J. Coord. Chem. 8, 237-243.]); Ghosh et al. (1978[Ghosh, S., Banerjee, T. K. & Ray, P. K. (1978). J. Indian Chem. Soc. 55, 610-611.]); Lamture et al. (1995[Lamture, J. B., Zhou, Z. H., Kumar, A. S. & Wensel, T. G. (1995). Inorg. Chem. 34, 864-869.]); Liu et al. (2006[Liu, Y., Dou, J., Wang, D., Li, D. & Gao, Z. (2006). J. Chem. Crystallogr. 36, 613-618.]); Su et al. (2005[Su, H., Wen, Y. H. & Feng, Y. L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 560-562.]); Yang et al. (2002[Yang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E., Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859-4871.]); Zhou et al. (2004[Zhou, G.-W., Guo, G.-C., Liu, B., Wang, M.-S., Cai, L.-Z. & Huang, J.-S. (2004). Bull. Korean Chem. Soc. 25, 676-680.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3Na2(C7H2ClNO4)4(H2O)12][Co(C7H2ClNO4)(H2O)3]2·6H2O

  • Mr = 1970.29

  • Triclinic, [P \overline 1]

  • a = 9.1539 (18) Å

  • b = 14.475 (3) Å

  • c = 15.476 (3) Å

  • α = 62.54 (3)°

  • β = 83.32 (3)°

  • γ = 80.19 (3)°

  • V = 1791.4 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 153 (2) K

  • 0.34 × 0.19 × 0.11 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku/MSC 2006[Rigaku/MSC (2006). CrystalClear. Version 1.3. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.633, Tmax = 0.854

  • 12735 measured reflections

  • 6520 independent reflections

  • 5060 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.04

  • 6520 reflections

  • 583 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O9i 0.869 (18) 1.95 (2) 2.778 (3) 160 (3)
O13—H13B⋯O4ii 0.873 (19) 1.82 (2) 2.687 (3) 174 (3)
O14—H14A⋯O11iii 0.879 (19) 1.88 (2) 2.747 (3) 171 (4)
O14—H14B⋯O7iv 0.866 (19) 1.84 (2) 2.688 (3) 167 (4)
O15—H15A⋯O24′v 0.854 (19) 1.83 (2) 2.650 (6) 161 (4)
O15—H15A⋯O24v 0.854 (19) 2.13 (2) 2.939 (5) 158 (4)
O15—H15B⋯O4vi 0.858 (19) 1.885 (19) 2.743 (3) 178 (4)
O16—H16A⋯O12 0.884 (19) 1.91 (2) 2.791 (3) 172 (4)
O16—H16B⋯O21vii 0.833 (19) 1.95 (2) 2.761 (3) 165 (3)
O17—H17A⋯O10v 0.866 (19) 1.89 (2) 2.752 (3) 170 (3)
O17—H17B⋯O20viii 0.855 (18) 1.776 (19) 2.628 (3) 174 (4)
O18—H18A⋯O19 0.862 (19) 1.89 (2) 2.701 (3) 157 (4)
O18—H18B⋯O23′viii 0.883 (19) 1.84 (2) 2.703 (7) 165 (4)
O18—H18B⋯O23viii 0.883 (19) 1.90 (2) 2.753 (6) 162 (3)
O19—H19B⋯O6 0.861 (19) 1.89 (3) 2.679 (3) 151 (4)
O20—H20A⋯O7ix 0.857 (19) 1.89 (2) 2.732 (3) 170 (4)
O21—H21A⋯O3x 0.862 (19) 1.96 (2) 2.816 (3) 170 (4)
O20—H20B⋯O1x 0.872 (19) 1.94 (2) 2.802 (3) 171 (4)
O21—H21B⋯O12xi 0.860 (19) 2.01 (2) 2.837 (3) 161 (4)
O22—H22A⋯O7xii 0.872 (19) 2.33 (3) 3.136 (4) 154 (4)
O22—H22B⋯O21xiii 0.87 (2) 2.02 (2) 2.862 (4) 164 (4)
O22—H22A⋯O20xiii 0.872 (19) 2.69 (5) 3.127 (3) 112 (4)
O23—H23A⋯O13x 0.872 (19) 1.99 (2) 2.825 (6) 159 (4)
O23′—H23B⋯O3x 0.97 (3) 2.14 (3) 2.854 (6) 129 (3)
O24—H24A⋯O11xiv 0.874 (18) 1.95 (2) 2.820 (5) 176 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x+1, y-1, z; (v) -x+1, -y+1, -z; (vi) x, y-1, z; (vii) -x+1, -y+1, -z-1; (viii) x, y, z+1; (ix) -x, -y+2, -z-1; (x) x, y, z-1; (xi) x-1, y, z-1; (xii) -x+1, -y+2, -z; (xiii) x+1, y, z+1; (xiv) x, y+1, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Version 1.3. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many transition metal complexes involving dipicolinic acid and different cations have been reported (Anagnostopoulos, 1975, Cassellato & Vigato, 1978, D'Ascenzo et al., 1978, Ghosh et al., 1978, Furst et al., 1978). Other examples include metal ions such as chromium (Hartkamp, 1962), copper,(Lukes & Jurecek, 1948), and vanadium (Chatterjee et al., 1997; Chatterjee, Ghosh et al., 1998; Chatterjee, Maji et al., 1998; Crans et al., 2003; Crans et al., 2006, Crans et al., 2000). Examples of cobalt complexes with dipicolinic acid have been reported (Du et al., 2006; Liu et al., 2006; Su et al., 2005; Yang et al., 2002), but none with analogues of dipicolinic acid, except the structure of Co(dipicOH)3H2O.H2O.0.25MeCN reported by (Zhou et al., 2004). As part of our interest in the coordination chemistry of analogues of dipicolinic acid, we now extend this chemistry to include the structural elucidation of the title compound, (I), that was produced in conjunction with an unidentified violet complex.

In compound (I), the cobalt atoms appear in three different coordination environments. These include independent [CoII(dipicCl)(H2O)3] complexes (Fig. 1), and two [CoII(dipicCl)2]2- complex dianions bridged by a [Na2CoII(H2O)12]4+ tetra-cationic cluster (Fig. 2). In the latter the central cobalt atom, Co2, occupies a crystallographic inversion center.

In the crystal structure of compound (I) the different complexes and the water molecules of crystallization are linked by O—H···O hydrogen bonds to form a three dimensional network (Fig. 3).

Related literature top

For related literature, see: Anagnostopoulos (1975); Cassellato & Vigato (1978); Chatterjee, Ghosh, Wu & Mak (1998); Chatterjee, Maji, Ghosh & Mak (1998); Hartkamp (1962); Lukes & Jurecek (1948); Chatterjee et al. (1997); Crans et al. (2000, 2003, 2006); D'Ascenzo, Marino, Sabbatini & Bica (1978); Du et al. (2006); Furst et al. (1978); Ghosh et al. (1978); Lamture et al. (1995); Liu et al. (2006); Su et al. (2005); Yang et al. (2002); Zhou et al. (2004).

Experimental top

H2dipic Cl was synthesized according to the literature procedure (Lamture et al., 1995). [H2dipic Cl (4.03 g, 20.0 mmol) was added in small portions to a 100 cm3 beaker, which contained a mixture of Na2CO3 (2.12 g, 20.0 mmol) and warm H2O (50 cm3). The resulting solution was added dropwise to a stirred solution of CoCl2.6H2O (4.76 g, 20.0 mmol) in H2O (15 cm3) over a 30 minute period in a 250 cm3 round-bottom flask. The resulting mixture was refluxed for 5 h with stirring. It was then left to stand for 12 h, whereby a violet product formed. The product was filtered off, then washed with water, followed by acetone, and air dried. The filtrate was kept and the mass of the product was recorded. Yield = 3.0 g. This unidentified violet compound is very insoluble in water. The filtrate was allowed to evaporate over six weeks, after which the title complex appeared as brown crystals. For the unidentified violet complex, FT IR (cm-1): 3445 (br, ν(OH)), 1668 (s, νas(CO2-)), 1615 (very strong, νas(CO2-)),and1388 (s, ν(CO2-)). For [Co(dipic Cl)2].Na2[Co(dipic Cl)2] [Co(dipic Cl)(H2O)3], FT IR (cm-1): 3362 (br, ν(OH)), 1614 (very strong, νas(CO2-)),and1373 (s, ν(CO2-)).

Refinement top

Two water molecules (O23 and O24) are each disordered over two positions (O23/O23' and O24/O24') with occupancies of 0.5/0.5. The positions of the water H atoms were located from difference Fourier maps. The O—H distances were restrained to 0.88 (2) Å, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were geometrically placed and treated as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Many transition metal complexes involving dipicolinic acid and different cations have been reported (Anagnostopoulos, 1975, Cassellato & Vigato, 1978, D'Ascenzo et al., 1978, Ghosh et al., 1978, Furst et al., 1978). Other examples include metal ions such as chromium (Hartkamp, 1962), copper,(Lukes & Jurecek, 1948), and vanadium (Chatterjee et al., 1997; Chatterjee, Ghosh et al., 1998; Chatterjee, Maji et al., 1998; Crans et al., 2003; Crans et al., 2006, Crans et al., 2000). Examples of cobalt complexes with dipicolinic acid have been reported (Du et al., 2006; Liu et al., 2006; Su et al., 2005; Yang et al., 2002), but none with analogues of dipicolinic acid, except the structure of Co(dipicOH)3H2O.H2O.0.25MeCN reported by (Zhou et al., 2004). As part of our interest in the coordination chemistry of analogues of dipicolinic acid, we now extend this chemistry to include the structural elucidation of the title compound, (I), that was produced in conjunction with an unidentified violet complex.

In compound (I), the cobalt atoms appear in three different coordination environments. These include independent [CoII(dipicCl)(H2O)3] complexes (Fig. 1), and two [CoII(dipicCl)2]2- complex dianions bridged by a [Na2CoII(H2O)12]4+ tetra-cationic cluster (Fig. 2). In the latter the central cobalt atom, Co2, occupies a crystallographic inversion center.

In the crystal structure of compound (I) the different complexes and the water molecules of crystallization are linked by O—H···O hydrogen bonds to form a three dimensional network (Fig. 3).

For related literature, see: Anagnostopoulos (1975); Cassellato & Vigato (1978); Chatterjee, Ghosh, Wu & Mak (1998); Chatterjee, Maji, Ghosh & Mak (1998); Hartkamp (1962); Lukes & Jurecek (1948); Chatterjee et al. (1997); Crans et al. (2000, 2003, 2006); D'Ascenzo, Marino, Sabbatini & Bica (1978); Du et al. (2006); Furst et al. (1978); Ghosh et al. (1978); Lamture et al. (1995); Liu et al. (2006); Su et al. (2005); Yang et al. (2002); Zhou et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Co(dipicCl)(H2O)3], with the thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of [Co(dipicCl)2]2. Na2Co(H2O)12, with the thermal ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing diagram of the title complex viewed along the c axis.
tetra-µ-aqua-octaaquabis(µ-4-chloropyridine-2,6-dicarboxylato)bis(4- chloropyridine-2,6-dicarboxylato)tricobalt(II)disodium(I) bis[triaquabis(4-chloropyridine-2,6-dicarboxylato)cobalt(II)] hexahydrate top
Crystal data top
[Co3Na2(C7H2ClNO4)4(H2O)12][Co(C7H2ClNO4)(H2O)3]2·6H2OZ = 1
Mr = 1970.29F(000) = 997
Triclinic, P1Dx = 1.826 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1539 (18) ÅCell parameters from 5409 reflections
b = 14.475 (3) Åθ = 3.7–26.4°
c = 15.476 (3) ŵ = 1.48 mm1
α = 62.54 (3)°T = 153 K
β = 83.32 (3)°Rod, purple
γ = 80.19 (3)°0.34 × 0.19 × 0.11 mm
V = 1791.4 (6) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
6520 independent reflections
Radiation source: Sealed Tube5060 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.024
Detector resolution: 14.6306 pixels mm-1θmax = 25.5°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(REQAB; Rigaku/MSC 2006)
k = 1517
Tmin = 0.633, Tmax = 0.854l = 1618
12735 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1717P]
where P = (Fo2 + 2Fc2)/3
6520 reflections(Δ/σ)max = 0.001
583 parametersΔρmax = 0.58 e Å3
24 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co3Na2(C7H2ClNO4)4(H2O)12][Co(C7H2ClNO4)(H2O)3]2·6H2Oγ = 80.19 (3)°
Mr = 1970.29V = 1791.4 (6) Å3
Triclinic, P1Z = 1
a = 9.1539 (18) ÅMo Kα radiation
b = 14.475 (3) ŵ = 1.48 mm1
c = 15.476 (3) ÅT = 153 K
α = 62.54 (3)°0.34 × 0.19 × 0.11 mm
β = 83.32 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
6520 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku/MSC 2006)
5060 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.854Rint = 0.024
12735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03424 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.58 e Å3
6520 reflectionsΔρmin = 0.38 e Å3
583 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.27302 (4)0.83775 (3)0.19235 (3)0.01340 (10)
Cl10.34541 (10)0.46841 (7)0.63440 (6)0.0316 (2)
Cl20.21294 (9)1.22256 (6)0.24098 (6)0.02708 (19)
N10.3011 (3)0.71984 (18)0.32895 (18)0.0138 (5)
N20.2483 (3)0.95501 (18)0.05598 (18)0.0138 (5)
O10.1696 (2)0.71166 (16)0.19327 (16)0.0188 (5)
O20.3910 (2)0.90072 (16)0.26077 (16)0.0186 (5)
O30.1353 (2)0.54304 (16)0.28689 (17)0.0220 (5)
O40.4945 (2)0.86338 (17)0.39863 (16)0.0230 (5)
O50.0749 (2)0.93466 (16)0.20562 (16)0.0194 (5)
O60.4625 (2)0.80119 (15)0.11290 (15)0.0169 (4)
O70.0654 (2)1.08848 (16)0.12304 (16)0.0203 (5)
O80.5652 (2)0.85418 (16)0.03851 (16)0.0210 (5)
C10.1770 (3)0.6265 (2)0.2730 (2)0.0163 (6)
C20.2456 (3)0.6301 (2)0.3554 (2)0.0165 (6)
C30.2570 (4)0.5501 (2)0.4498 (2)0.0212 (7)
H30.21620.48610.46930.025*
C40.3296 (3)0.5654 (2)0.5155 (2)0.0203 (7)
C50.3905 (3)0.6572 (2)0.4871 (2)0.0185 (7)
H50.44340.66690.53170.022*
C60.3722 (3)0.7337 (2)0.3927 (2)0.0151 (6)
C70.4242 (3)0.8415 (2)0.3475 (2)0.0156 (6)
C80.0404 (3)1.0182 (2)0.1294 (2)0.0151 (6)
C90.1373 (3)1.0341 (2)0.0390 (2)0.0143 (6)
C100.1218 (3)1.1194 (2)0.0532 (2)0.0159 (6)
H100.04351.17680.06580.019*
C110.2245 (3)1.1174 (2)0.1258 (2)0.0165 (6)
C120.3385 (3)1.0352 (2)0.1082 (2)0.0165 (6)
H120.40851.03400.15900.020*
C130.3468 (3)0.9550 (2)0.0140 (2)0.0144 (6)
C140.4697 (3)0.8627 (2)0.0210 (2)0.0153 (6)
Co30.67155 (4)0.11941 (3)0.36043 (3)0.01259 (10)
Cl31.12718 (10)0.29703 (7)0.52031 (6)0.0343 (2)
N30.8057 (2)0.17914 (18)0.41349 (18)0.0125 (5)
O90.7150 (2)0.00397 (15)0.50786 (15)0.0156 (4)
O100.6749 (2)0.27965 (16)0.24966 (15)0.0164 (4)
O110.8694 (2)0.05463 (16)0.62997 (16)0.0185 (5)
O120.8157 (2)0.41056 (16)0.19307 (16)0.0195 (5)
O130.4629 (2)0.16346 (16)0.42191 (16)0.0165 (4)
H13A0.395 (3)0.124 (2)0.432 (3)0.025*
H13B0.477 (4)0.159 (3)0.4786 (17)0.025*
O140.8596 (2)0.06266 (18)0.30523 (17)0.0208 (5)
H14A0.950 (2)0.061 (3)0.320 (3)0.031*
H14B0.870 (4)0.074 (3)0.2449 (16)0.031*
O150.5546 (2)0.06640 (18)0.29292 (17)0.0225 (5)
H15A0.477 (3)0.103 (3)0.263 (3)0.034*
H15B0.538 (4)0.0025 (17)0.326 (3)0.034*
C150.8112 (3)0.0107 (2)0.5519 (2)0.0144 (6)
C160.8614 (3)0.1193 (2)0.5014 (2)0.0135 (6)
C170.9592 (3)0.1542 (2)0.5388 (2)0.0177 (6)
H170.99560.11270.60310.021*
C181.0013 (3)0.2528 (2)0.4775 (2)0.0177 (7)
C190.9472 (3)0.3142 (2)0.3847 (2)0.0181 (7)
H190.97780.38180.34300.022*
C200.8469 (3)0.2737 (2)0.3550 (2)0.0146 (6)
C210.7745 (3)0.3273 (2)0.2569 (2)0.0138 (6)
Co20.50000.50000.00000.01317 (13)
O160.7253 (2)0.51517 (17)0.00124 (16)0.0170 (4)
H16A0.758 (4)0.477 (2)0.0607 (16)0.025*
H16B0.778 (4)0.497 (3)0.037 (2)0.025*
O170.4626 (2)0.66360 (16)0.08005 (16)0.0156 (4)
H17A0.424 (4)0.674 (3)0.1328 (18)0.023*
H17B0.394 (3)0.689 (3)0.051 (2)0.023*
O180.4605 (2)0.51588 (17)0.12724 (16)0.0203 (5)
H18A0.528 (3)0.540 (3)0.142 (3)0.030*
H18B0.439 (4)0.464 (2)0.1846 (18)0.030*
Na10.69526 (12)0.70953 (9)0.05481 (9)0.0185 (3)
O190.6582 (3)0.63560 (18)0.12553 (18)0.0242 (5)
H19A0.740 (3)0.621 (3)0.154 (3)0.036*
H19B0.614 (4)0.686 (2)0.137 (3)0.036*
O200.2393 (2)0.73840 (18)0.99731 (17)0.0240 (5)
H20A0.183 (4)0.795 (2)1.031 (3)0.036*
H20B0.225 (4)0.724 (3)0.9359 (16)0.036*
O210.0629 (3)0.52400 (19)0.87565 (18)0.0259 (5)
H21A0.083 (4)0.538 (3)0.830 (2)0.039*
H21B0.001 (4)0.479 (3)0.845 (3)0.039*
O220.9464 (3)0.6958 (2)0.0502 (2)0.0404 (7)
H22A0.994 (5)0.749 (3)0.084 (3)0.061*
H22B0.997 (5)0.650 (3)0.000 (2)0.061*
O230.3333 (6)0.3650 (4)0.7100 (4)0.0199 (11)0.50
H23A0.376 (4)0.311 (2)0.661 (2)0.030*
H23B0.278 (4)0.398 (3)0.680 (3)0.030*
O23'0.3847 (7)0.3859 (5)0.6866 (5)0.0347 (14)0.50
O240.7164 (5)0.7828 (4)0.2286 (3)0.0232 (10)0.50
H24A0.766 (4)0.833 (2)0.270 (3)0.035*
H24B0.685 (6)0.826 (4)0.203 (4)0.035*
O24'0.7025 (6)0.8604 (4)0.2068 (4)0.0271 (12)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01611 (19)0.0112 (2)0.0106 (2)0.00180 (15)0.00031 (15)0.00306 (16)
Cl10.0474 (5)0.0228 (4)0.0135 (4)0.0051 (4)0.0029 (4)0.0016 (3)
Cl20.0288 (4)0.0243 (4)0.0135 (4)0.0013 (3)0.0002 (3)0.0029 (3)
N10.0164 (12)0.0101 (12)0.0146 (14)0.0010 (9)0.0002 (10)0.0056 (10)
N20.0147 (11)0.0126 (13)0.0147 (14)0.0022 (9)0.0016 (10)0.0063 (10)
O10.0228 (11)0.0158 (11)0.0169 (12)0.0044 (8)0.0016 (9)0.0059 (9)
O20.0230 (10)0.0168 (11)0.0157 (12)0.0073 (9)0.0009 (9)0.0056 (9)
O30.0290 (11)0.0156 (11)0.0225 (13)0.0086 (9)0.0014 (10)0.0074 (9)
O40.0306 (12)0.0241 (12)0.0176 (12)0.0115 (9)0.0010 (10)0.0096 (10)
O50.0193 (10)0.0170 (11)0.0159 (12)0.0027 (8)0.0021 (9)0.0047 (9)
O60.0172 (10)0.0153 (11)0.0144 (12)0.0004 (8)0.0011 (8)0.0046 (9)
O70.0197 (10)0.0205 (12)0.0151 (12)0.0059 (9)0.0005 (9)0.0062 (9)
O80.0194 (10)0.0206 (12)0.0209 (13)0.0007 (9)0.0062 (9)0.0099 (10)
C10.0173 (14)0.0166 (16)0.0170 (17)0.0027 (12)0.0009 (12)0.0095 (13)
C20.0210 (14)0.0129 (15)0.0161 (17)0.0028 (11)0.0012 (12)0.0073 (12)
C30.0330 (17)0.0128 (16)0.0166 (17)0.0070 (13)0.0004 (14)0.0046 (13)
C40.0292 (16)0.0146 (16)0.0104 (16)0.0008 (12)0.0014 (13)0.0012 (13)
C50.0214 (15)0.0188 (16)0.0153 (17)0.0029 (12)0.0000 (13)0.0078 (13)
C60.0184 (14)0.0167 (16)0.0112 (15)0.0025 (11)0.0007 (12)0.0075 (12)
C70.0173 (14)0.0160 (16)0.0149 (17)0.0039 (11)0.0032 (12)0.0085 (13)
C80.0162 (14)0.0160 (15)0.0141 (16)0.0026 (12)0.0018 (12)0.0071 (13)
C90.0157 (14)0.0146 (15)0.0134 (16)0.0039 (11)0.0012 (12)0.0064 (12)
C100.0169 (14)0.0134 (15)0.0162 (16)0.0020 (11)0.0013 (12)0.0057 (12)
C110.0189 (14)0.0152 (15)0.0110 (16)0.0076 (12)0.0027 (12)0.0001 (12)
C120.0153 (14)0.0197 (16)0.0144 (16)0.0070 (12)0.0023 (12)0.0066 (13)
C130.0140 (13)0.0168 (15)0.0161 (16)0.0036 (11)0.0006 (12)0.0104 (13)
C140.0141 (13)0.0162 (16)0.0167 (17)0.0028 (11)0.0008 (12)0.0081 (13)
Co30.01322 (19)0.0124 (2)0.0116 (2)0.00269 (14)0.00176 (15)0.00440 (16)
Cl30.0461 (5)0.0309 (5)0.0254 (5)0.0225 (4)0.0155 (4)0.0033 (4)
N30.0096 (11)0.0129 (12)0.0136 (13)0.0003 (9)0.0001 (9)0.0055 (10)
O90.0152 (10)0.0157 (11)0.0147 (11)0.0038 (8)0.0029 (8)0.0047 (9)
O100.0165 (10)0.0153 (11)0.0153 (11)0.0036 (8)0.0033 (8)0.0040 (9)
O110.0189 (10)0.0166 (11)0.0148 (12)0.0026 (8)0.0051 (9)0.0016 (9)
O120.0219 (10)0.0173 (11)0.0140 (12)0.0070 (9)0.0028 (9)0.0007 (9)
O130.0151 (10)0.0163 (11)0.0160 (12)0.0039 (8)0.0001 (9)0.0050 (9)
O140.0167 (10)0.0305 (13)0.0165 (12)0.0007 (9)0.0026 (9)0.0125 (10)
O150.0251 (11)0.0213 (13)0.0236 (13)0.0082 (10)0.0036 (10)0.0098 (10)
C150.0167 (13)0.0134 (15)0.0121 (16)0.0013 (11)0.0009 (12)0.0055 (12)
C160.0109 (13)0.0156 (15)0.0132 (16)0.0012 (11)0.0008 (11)0.0059 (12)
C170.0194 (14)0.0175 (16)0.0140 (16)0.0033 (12)0.0036 (12)0.0044 (13)
C180.0194 (14)0.0188 (16)0.0172 (17)0.0078 (12)0.0032 (12)0.0076 (13)
C190.0202 (15)0.0144 (15)0.0191 (17)0.0058 (12)0.0017 (13)0.0056 (13)
C200.0141 (13)0.0139 (15)0.0125 (16)0.0019 (11)0.0001 (11)0.0033 (12)
C210.0135 (13)0.0143 (15)0.0137 (16)0.0014 (11)0.0005 (12)0.0065 (12)
Co20.0134 (3)0.0121 (3)0.0124 (3)0.0013 (2)0.0015 (2)0.0041 (2)
O160.0163 (10)0.0193 (12)0.0137 (12)0.0009 (8)0.0021 (9)0.0062 (9)
O170.0171 (10)0.0149 (11)0.0134 (12)0.0013 (8)0.0037 (9)0.0058 (9)
O180.0285 (12)0.0184 (12)0.0125 (12)0.0052 (9)0.0003 (10)0.0054 (9)
Na10.0182 (6)0.0175 (6)0.0186 (7)0.0023 (5)0.0006 (5)0.0072 (5)
O190.0289 (12)0.0181 (12)0.0245 (14)0.0041 (10)0.0058 (10)0.0101 (10)
O200.0261 (12)0.0253 (13)0.0157 (12)0.0068 (9)0.0024 (10)0.0081 (10)
O210.0260 (12)0.0349 (14)0.0227 (14)0.0129 (10)0.0017 (10)0.0155 (11)
O220.0240 (13)0.0384 (17)0.0504 (19)0.0080 (11)0.0110 (12)0.0095 (14)
O230.023 (3)0.016 (3)0.019 (3)0.003 (2)0.001 (2)0.008 (2)
O23'0.035 (3)0.022 (3)0.035 (4)0.001 (2)0.011 (3)0.006 (3)
O240.024 (2)0.028 (3)0.018 (3)0.012 (2)0.0065 (19)0.009 (2)
O24'0.027 (3)0.027 (3)0.020 (3)0.005 (2)0.005 (2)0.006 (2)
Geometric parameters (Å, º) top
Co1—N22.016 (3)O14—H14A0.879 (19)
Co1—N12.024 (3)O14—H14B0.866 (19)
Co1—O62.143 (2)O15—H15A0.854 (19)
Co1—O22.147 (2)O15—H15B0.858 (19)
Co1—O52.147 (2)C15—C161.524 (4)
Co1—O12.188 (2)C16—C171.391 (4)
Cl1—C41.729 (3)C17—C181.392 (4)
Cl2—C111.730 (3)C17—H170.9600
N1—C21.341 (4)C18—C191.391 (4)
N1—C61.347 (4)C19—C201.388 (4)
N2—C131.326 (4)C19—H190.9600
N2—C91.341 (4)C20—C211.523 (4)
O1—C11.279 (4)Co2—O18i2.070 (2)
O2—C71.255 (4)Co2—O182.070 (2)
O3—C11.244 (4)Co2—O172.092 (2)
O4—C71.248 (4)Co2—O17i2.092 (2)
O5—C81.263 (4)Co2—O16i2.114 (2)
O6—C141.285 (4)Co2—O162.114 (2)
O7—C81.256 (4)Co2—Na1i3.4979 (15)
O8—C141.228 (4)Co2—Na13.4979 (15)
O8—Na12.331 (3)O16—Na12.507 (3)
C1—C21.511 (4)O16—H16A0.884 (19)
C2—C31.386 (4)O16—H16B0.833 (19)
C3—C41.392 (5)O17—Na12.459 (2)
C3—H30.9600O17—H17A0.866 (19)
C4—C51.388 (4)O17—H17B0.855 (18)
C5—C61.375 (4)O18—H18A0.862 (19)
C5—H50.9600O18—H18B0.883 (19)
C6—C71.523 (4)Na1—O222.280 (3)
C8—C91.510 (4)Na1—O24'2.362 (6)
C9—C101.394 (4)Na1—O242.390 (5)
C10—C111.386 (4)Na1—O192.490 (3)
C10—H100.9600Na1—H24B2.13 (6)
C11—C121.387 (4)O19—H19A0.852 (19)
C12—C131.383 (4)O19—H19B0.861 (19)
C12—H120.9600O20—H20A0.857 (19)
C13—C141.519 (4)O20—H20B0.872 (19)
Co3—O152.026 (2)O21—H21A0.862 (19)
Co3—N32.045 (2)O21—H21B0.860 (19)
Co3—O142.047 (2)O22—H22A0.872 (19)
Co3—O102.160 (2)O22—H22B0.87 (2)
Co3—O132.164 (2)O23—O23'0.795 (7)
Co3—O92.183 (2)O23—H23A0.872 (19)
Cl3—C181.732 (3)O23—H23B0.877 (19)
N3—C161.337 (4)O23'—H23A0.98 (3)
N3—C201.337 (4)O23'—H23B0.97 (3)
O9—C151.273 (4)O24—O24'1.297 (7)
O10—C211.276 (3)O24—H24A0.874 (18)
O11—C151.250 (4)O24—H24B0.88 (2)
O12—C211.241 (3)O24'—H24A1.27 (4)
O13—H13A0.869 (18)O24'—H24B0.52 (4)
O13—H13B0.873 (19)
N2—Co1—N1179.17 (9)N3—C20—C19120.9 (3)
N2—Co1—O676.81 (9)N3—C20—C21113.2 (2)
N1—Co1—O6102.47 (9)C19—C20—C21125.9 (3)
N2—Co1—O2103.45 (9)O12—C21—O10126.6 (3)
N1—Co1—O276.18 (9)O12—C21—C20118.8 (2)
O6—Co1—O295.69 (8)O10—C21—C20114.6 (2)
N2—Co1—O576.44 (10)O18i—Co2—O18180.00 (12)
N1—Co1—O5104.26 (10)O18i—Co2—O1790.81 (9)
O6—Co1—O5153.20 (8)O18—Co2—O1789.19 (9)
O2—Co1—O588.90 (9)O18i—Co2—O17i89.19 (9)
N2—Co1—O1104.41 (9)O18—Co2—O17i90.81 (9)
N1—Co1—O175.95 (9)O17—Co2—O17i180.000 (1)
O6—Co1—O189.72 (8)O18i—Co2—O16i88.93 (9)
O2—Co1—O1152.13 (8)O18—Co2—O16i91.07 (9)
O5—Co1—O198.48 (8)O17—Co2—O16i92.68 (9)
C2—N1—C6121.0 (3)O17i—Co2—O16i87.32 (9)
C2—N1—Co1119.6 (2)O18i—Co2—O1691.07 (9)
C6—N1—Co1119.39 (19)O18—Co2—O1688.93 (9)
C13—N2—C9121.4 (3)O17—Co2—O1687.32 (9)
C13—N2—Co1119.1 (2)O17i—Co2—O1692.68 (9)
C9—N2—Co1119.4 (2)O16i—Co2—O16180.00 (14)
C1—O1—Co1115.42 (19)O18i—Co2—Na1i79.08 (7)
C7—O2—Co1116.71 (18)O18—Co2—Na1i100.92 (7)
C8—O5—Co1115.56 (18)O17—Co2—Na1i136.21 (6)
C14—O6—Co1115.74 (19)O17i—Co2—Na1i43.79 (6)
C14—O8—Na1132.80 (19)O16i—Co2—Na1i45.20 (7)
O3—C1—O1125.9 (3)O16—Co2—Na1i134.80 (7)
O3—C1—C2118.8 (3)O18i—Co2—Na1100.92 (7)
O1—C1—C2115.2 (2)O18—Co2—Na179.08 (7)
N1—C2—C3120.8 (3)O17—Co2—Na143.79 (6)
N1—C2—C1113.5 (3)O17i—Co2—Na1136.21 (6)
C3—C2—C1125.7 (3)O16i—Co2—Na1134.80 (7)
C2—C3—C4117.9 (3)O16—Co2—Na145.20 (7)
C2—C3—H3121.1Na1i—Co2—Na1180.0
C4—C3—H3121.1Co2—O16—Na198.04 (9)
C5—C4—C3121.2 (3)Co2—O16—H16A110 (2)
C5—C4—Cl1119.2 (3)Na1—O16—H16A114 (2)
C3—C4—Cl1119.6 (2)Co2—O16—H16B111 (3)
C6—C5—C4117.5 (3)Na1—O16—H16B113 (2)
C6—C5—H5121.2H16A—O16—H16B110 (3)
C4—C5—H5121.2Co2—O17—Na1100.14 (9)
N1—C6—C5121.6 (3)Co2—O17—H17A104 (2)
N1—C6—C7112.0 (3)Na1—O17—H17A131 (2)
C5—C6—C7126.3 (3)Co2—O17—H17B110 (2)
O4—C7—O2126.0 (3)Na1—O17—H17B106 (2)
O4—C7—C6118.4 (3)H17A—O17—H17B105 (3)
O2—C7—C6115.7 (3)Co2—O18—H18A116 (3)
O7—C8—O5125.7 (3)Co2—O18—H18B124 (3)
O7—C8—C9118.1 (3)H18A—O18—H18B101 (3)
O5—C8—C9116.2 (3)O22—Na1—O8114.12 (11)
N2—C9—C10121.0 (3)O22—Na1—O24'89.33 (16)
N2—C9—C8112.2 (3)O8—Na1—O24'71.02 (15)
C10—C9—C8126.8 (3)O22—Na1—O2489.85 (14)
C11—C10—C9116.9 (3)O8—Na1—O2499.61 (14)
C11—C10—H10121.6O24'—Na1—O2431.68 (18)
C9—C10—H10121.6O22—Na1—O17155.17 (11)
C10—C11—C12122.0 (3)O8—Na1—O1790.42 (8)
C10—C11—Cl2118.9 (2)O24'—Na1—O1795.61 (15)
C12—C11—Cl2119.1 (2)O24—Na1—O1782.00 (12)
C13—C12—C11117.0 (3)O22—Na1—O1993.27 (11)
C13—C12—H12121.5O8—Na1—O1978.70 (9)
C11—C12—H12121.5O24'—Na1—O19147.79 (15)
N2—C13—C12121.7 (3)O24—Na1—O19176.85 (13)
N2—C13—C14113.6 (3)O17—Na1—O1995.32 (9)
C12—C13—C14124.6 (3)O22—Na1—O1687.95 (10)
O8—C14—O6126.6 (3)O8—Na1—O16147.57 (9)
O8—C14—C13118.8 (3)O24'—Na1—O16135.71 (16)
O6—C14—C13114.6 (3)O24—Na1—O16104.09 (14)
O15—Co3—N3173.05 (9)O17—Na1—O1671.57 (8)
O15—Co3—O1487.23 (9)O19—Na1—O1676.49 (9)
N3—Co3—O1487.62 (9)O22—Na1—Co2124.68 (9)
O15—Co3—O1099.86 (9)O8—Na1—Co2117.26 (6)
N3—Co3—O1075.88 (9)O24'—Na1—Co2125.49 (14)
O14—Co3—O1094.18 (9)O24—Na1—Co2100.42 (12)
O15—Co3—O1387.85 (9)O17—Na1—Co236.07 (5)
N3—Co3—O1397.62 (9)O19—Na1—Co278.16 (7)
O14—Co3—O13173.53 (8)O16—Na1—Co236.76 (5)
O10—Co3—O1390.79 (9)O22—Na1—H24B94.7 (14)
O15—Co3—O9109.07 (9)O8—Na1—H24B78.5 (7)
N3—Co3—O975.73 (9)O24'—Na1—H24B11.9 (10)
O14—Co3—O991.55 (9)O24—Na1—H24B21.5 (6)
O10—Co3—O9150.74 (8)O17—Na1—H24B86.3 (14)
O13—Co3—O986.10 (9)O19—Na1—H24B157.2 (6)
C16—N3—C20121.5 (3)O16—Na1—H24B125.2 (6)
C16—N3—Co3119.51 (19)Co2—Na1—H24B114.0 (12)
C20—N3—Co3118.6 (2)Na1—O19—H19A112 (3)
C15—O9—Co3115.55 (17)Na1—O19—H19B107 (3)
C21—O10—Co3115.63 (18)H19A—O19—H19B102 (4)
Co3—O13—H13A114 (2)H20A—O20—H20B109 (4)
Co3—O13—H13B110 (2)H21A—O21—H21B100 (4)
H13A—O13—H13B106 (3)Na1—O22—H22A122 (3)
Co3—O14—H14A124 (3)Na1—O22—H22B123 (3)
Co3—O14—H14B122 (3)H22A—O22—H22B110 (4)
H14A—O14—H14B104 (3)O23'—O23—H23A72 (3)
Co3—O15—H15A121 (3)O23'—O23—H23B70 (3)
Co3—O15—H15B115 (3)H23A—O23—H23B101 (4)
H15A—O15—H15B109 (4)O23—O23'—H23A57.8 (18)
O11—C15—O9126.9 (3)O23—O23'—H23B58.8 (18)
O11—C15—C16117.6 (3)H23A—O23'—H23B88 (3)
O9—C15—C16115.4 (3)O24'—O24—Na173.0 (3)
N3—C16—C17121.8 (3)O24'—O24—H24A68 (3)
N3—C16—C15113.0 (2)Na1—O24—H24A129 (3)
C17—C16—C15125.2 (3)O24'—O24—H24B17 (3)
C16—C17—C18116.2 (3)Na1—O24—H24B62 (4)
C16—C17—H17121.9H24A—O24—H24B85 (4)
C18—C17—H17121.9O24—O24'—Na175.3 (3)
C19—C18—C17122.3 (3)O24—O24'—H24A39.8 (10)
C19—C18—Cl3120.3 (2)Na1—O24'—H24A108.9 (13)
C17—C18—Cl3117.4 (2)O24—O24'—H24B29 (4)
C20—C19—C18117.2 (3)Na1—O24'—H24B58 (7)
C20—C19—H19121.4H24A—O24'—H24B69 (5)
C18—C19—H19121.4
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O9ii0.87 (2)1.95 (2)2.778 (3)160 (3)
O13—H13B···O4iii0.87 (2)1.82 (2)2.687 (3)174 (3)
O14—H14A···O11iv0.88 (2)1.88 (2)2.747 (3)171 (4)
O14—H14B···O7v0.87 (2)1.84 (2)2.688 (3)167 (4)
O15—H15A···O24i0.85 (2)1.83 (2)2.650 (6)161 (4)
O15—H15A···O24i0.85 (2)2.13 (2)2.939 (5)158 (4)
O15—H15B···O4vi0.86 (2)1.89 (2)2.743 (3)178 (4)
O16—H16A···O120.88 (2)1.91 (2)2.791 (3)172 (4)
O16—H16B···O21vii0.83 (2)1.95 (2)2.761 (3)165 (3)
O17—H17A···O10i0.87 (2)1.89 (2)2.752 (3)170 (3)
O17—H17B···O20viii0.86 (2)1.78 (2)2.628 (3)174 (4)
O18—H18A···O190.86 (2)1.89 (2)2.701 (3)157 (4)
O18—H18B···O23viii0.88 (2)1.84 (2)2.703 (7)165 (4)
O18—H18B···O23viii0.88 (2)1.90 (2)2.753 (6)162 (3)
O19—H19B···O60.86 (2)1.89 (3)2.679 (3)151 (4)
O20—H20A···O7ix0.86 (2)1.89 (2)2.732 (3)170 (4)
O21—H21A···O3x0.86 (2)1.96 (2)2.816 (3)170 (4)
O20—H20B···O1x0.87 (2)1.94 (2)2.802 (3)171 (4)
O21—H21B···O12xi0.86 (2)2.01 (2)2.837 (3)161 (4)
O22—H22A···O7xii0.87 (2)2.33 (3)3.136 (4)154 (4)
O22—H22B···O21xiii0.87 (2)2.02 (2)2.862 (4)164 (4)
O22—H22A···O20xiii0.87 (2)2.69 (5)3.127 (3)112 (4)
O23—H23A···O13x0.87 (2)1.99 (2)2.825 (6)159 (4)
O23—H23B···O3x0.97 (3)2.14 (3)2.854 (6)129 (3)
O24—H24A···O11xiv0.87 (2)1.95 (2)2.820 (5)176 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y1, z; (vi) x, y1, z; (vii) x+1, y+1, z1; (viii) x, y, z+1; (ix) x, y+2, z1; (x) x, y, z1; (xi) x1, y, z1; (xii) x+1, y+2, z; (xiii) x+1, y, z+1; (xiv) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[Co3Na2(C7H2ClNO4)4(H2O)12][Co(C7H2ClNO4)(H2O)3]2·6H2O
Mr1970.29
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)9.1539 (18), 14.475 (3), 15.476 (3)
α, β, γ (°)62.54 (3), 83.32 (3), 80.19 (3)
V3)1791.4 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.34 × 0.19 × 0.11
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Rigaku/MSC 2006)
Tmin, Tmax0.633, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
12735, 6520, 5060
Rint0.024
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.04
No. of reflections6520
No. of parameters583
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O9i0.869 (18)1.95 (2)2.778 (3)160 (3)
O13—H13B···O4ii0.873 (19)1.82 (2)2.687 (3)174 (3)
O14—H14A···O11iii0.879 (19)1.88 (2)2.747 (3)171 (4)
O14—H14B···O7iv0.866 (19)1.84 (2)2.688 (3)167 (4)
O15—H15A···O24'v0.854 (19)1.83 (2)2.650 (6)161 (4)
O15—H15A···O24v0.854 (19)2.13 (2)2.939 (5)158 (4)
O15—H15B···O4vi0.858 (19)1.885 (19)2.743 (3)178 (4)
O16—H16A···O120.884 (19)1.91 (2)2.791 (3)172 (4)
O16—H16B···O21vii0.833 (19)1.95 (2)2.761 (3)165 (3)
O17—H17A···O10v0.866 (19)1.89 (2)2.752 (3)170 (3)
O17—H17B···O20viii0.855 (18)1.776 (19)2.628 (3)174 (4)
O18—H18A···O190.862 (19)1.89 (2)2.701 (3)157 (4)
O18—H18B···O23'viii0.883 (19)1.84 (2)2.703 (7)165 (4)
O18—H18B···O23viii0.883 (19)1.90 (2)2.753 (6)162 (3)
O19—H19B···O60.861 (19)1.89 (3)2.679 (3)151 (4)
O20—H20A···O7ix0.857 (19)1.89 (2)2.732 (3)170 (4)
O21—H21A···O3x0.862 (19)1.96 (2)2.816 (3)170 (4)
O20—H20B···O1x0.872 (19)1.94 (2)2.802 (3)171 (4)
O21—H21B···O12xi0.860 (19)2.01 (2)2.837 (3)161 (4)
O22—H22A···O7xii0.872 (19)2.33 (3)3.136 (4)154 (4)
O22—H22B···O21xiii0.87 (2)2.02 (2)2.862 (4)164 (4)
O22—H22A···O20xiii0.872 (19)2.69 (5)3.127 (3)112 (4)
O23—H23A···O13x0.872 (19)1.99 (2)2.825 (6)159 (4)
O23'—H23B···O3x0.97 (3)2.14 (3)2.854 (6)129 (3)
O24—H24A···O11xiv0.874 (18)1.95 (2)2.820 (5)176 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y1, z; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z1; (viii) x, y, z+1; (ix) x, y+2, z1; (x) x, y, z1; (xi) x1, y, z1; (xii) x+1, y+2, z; (xiii) x+1, y, z+1; (xiv) x, y+1, z1.
 

Acknowledgements

AAH thanks the University of Southern Mississippi for its start-up grant, (project grant DE00977), which was very valuable in making this structural elucidation possible. SS thanks Alliance for Graduate Education in Mississippi (AGEM) for supporting her summer research based on this work in 2007.

References

First citationAnagnostopoulos, A. (1975). J. Coord. Chem. 4, 231–233.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassellato, U. & Vigato, P. A. (1978). Coord. Chem. Rev. 26, 85–159.  CrossRef Web of Science Google Scholar
First citationChatterjee, M., Ghosh, S. & Nandi, A. K. (1997). Polyhedron, 16, 2917–2923.  CSD CrossRef CAS Web of Science Google Scholar
First citationChatterjee, M., Ghosh, S., Wu, B.-M. & Mak, T. C. W. (1998). Polyhedron, 17, 1369–1374.  Web of Science CSD CrossRef CAS Google Scholar
First citationChatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641–3646.  Web of Science CSD CrossRef Google Scholar
First citationCrans, D. C., Mahroof-Tahir, M., Johnson, M. D., Wilkins, P. C., Yang, L., Robbins, K., Johnson, A., Alfano, J. A., Godzala, M. E., Austin, L. T. & Willsky, G. R. (2003). Inorg. Chim. Acta, 356, 365–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrans, D. C., Rithner, C. D., Baruah, B., Gourley, B. L. & Levinger, N. E. (2006). J. Am. Chem. Soc. 128, 4437–4445.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrans, D. C., Yang, L., Jakusch, T. & Kiss, T. (2000). Inorg. Chem. 39, 4409–4416.  Web of Science CrossRef CAS Google Scholar
First citationD'Ascenzo, G., Marino, A., Sabbatini, M. & Bica, T. (1978). Thermochim. Acta, 25, 325–332.  CrossRef CAS Web of Science Google Scholar
First citationDu, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta, 359, 673–679.  Web of Science CrossRef CAS Google Scholar
First citationFurst, W., Gouzerch, P. & Jeannin, Y. (1978). J. Coord. Chem. 8, 237–243.  CrossRef Web of Science Google Scholar
First citationGhosh, S., Banerjee, T. K. & Ray, P. K. (1978). J. Indian Chem. Soc. 55, 610–611.  CAS Google Scholar
First citationHartkamp, H. (1962). Z. Anal. Chem. 187, 16–29.  CrossRef CAS Web of Science Google Scholar
First citationLamture, J. B., Zhou, Z. H., Kumar, A. S. & Wensel, T. G. (1995). Inorg. Chem. 34, 864–869.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Y., Dou, J., Wang, D., Li, D. & Gao, Z. (2006). J. Chem. Crystallogr. 36, 613–618.  Web of Science CSD CrossRef CAS Google Scholar
First citationLukes, R. & Jurecek, M. (1948). Collect. Czech. Chem. Commun. 13, 131–160.  CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Version 1.3. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSu, H., Wen, Y. H. & Feng, Y. L. (2005). Z. Kristallogr. New Cryst. Struct. 220, 560–562.  CAS Google Scholar
First citationYang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E., Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859–4871.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, G.-W., Guo, G.-C., Liu, B., Wang, M.-S., Cai, L.-Z. & Huang, J.-S. (2004). Bull. Korean Chem. Soc. 25, 676-680.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds