organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Dihydr­­oxy-N′-(2-hy­droxy­benzyl­­idene)benzohydrazide monohydrate

aDepartment of Pharmacy, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
*Correspondence e-mail: lnzyjqh2002@hotmail.com

(Received 30 November 2007; accepted 16 December 2007; online 21 December 2007)

The title potential anti­bacterial compound, C14H12N2O4·H2O, is a Schiff base which has an intra­molecular O—H⋯N hydrogen bond and crystallizes with one uncoordinated water mol­ecule, which links three symmetry-related mol­ecules through two O—H⋯O and one N—H⋯O hydrogen bond. In the crystal structure, further inter­molecular O—H⋯O hydrogen bonds link symmetry-related mol­ecules, forming layers parallel to the bc plane.

Related literature

For related structures, see: Ali et al. (2005[Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433-m434.]); Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao, Li et al. (2007[Diao, Y.-P., Li, K., Huang, S.-S., Lu, L. & Liu, K.-X. (2007). Acta Cryst. E63, m2426.]); Diao, Shu et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Diao, Wang et al. (2007[Diao, Y.-P., Wang, Y.-Z., Wang, M.-D. & Li, K. (2007). Acta Cryst. E63, m2494.]); Jing et al. (2006[Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087-o4088.]); Qiu et al. (2006[Qiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1320-m1321.]); Wang et al. (2007[Wang, N., Li, J.-P. & Pu, Y.-L. (2007). Chin. J. Struct. Chem. 26, 547-550.]); Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4·H2O

  • Mr = 290.27

  • Monoclinic, P 21 /c

  • a = 7.773 (2) Å

  • b = 13.411 (3) Å

  • c = 13.084 (3) Å

  • β = 100.52 (3)°

  • V = 1341.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.33 × 0.32 × 0.32 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.965

  • 17195 measured reflections

  • 2918 independent reflections

  • 2062 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.03

  • 2918 reflections

  • 202 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.587 (2) 147
O5—H5B⋯O2 0.857 (9) 1.96 (1) 2.807 (2) 170 (2)
O5—H5A⋯O3i 0.856 (9) 1.96 (1) 2.806 (2) 168 (2)
N2—H2A⋯O5ii 0.899 (10) 1.96 (1) 2.852 (2) 170 (2)
O3—H3⋯O2ii 0.82 1.87 2.682 (2) 173
O4—H4⋯O1iii 0.82 2.00 2.813 (2) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds derived from the Schiff base condensation reaction of aldehydes with hydrazides have been widely investigated both from a structural point of view and for their biological activity (Jing et al., 2006; Yang, 2007; Wang et al., 2007). Complexes derived from Schiff bases have also been widely investigated (Ali et al., 2005; Qiu et al., 2006; Diao, 2007; Diao, 2007; Diao, Li et al., 2007; Diao, Shu et al., 2007; Diao, Wang et al., 2007). We report herein the crystal structure of the title compound derived from the reaction of equimolar salicylaldehyde with 3,5-dihydroxybenzoic acid hydrazide in a methanol solution.

The molecular structure of the title compound (Fig. 1) is a Schiff base, which has an intramolecular O1—H1···N1 hydrogen bond (Table 1), and crystallizes as a water solvate. In the crystal structure the water molecule links three symmetry related molecules through two donnor O—H···O hydrogen bonds and one acceptor N—H···O hydrogen bond (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the bc plane are formed (Fig. 2).

Related literature top

For related structures see Ali et al., 2005; Diao, 2007; Diao, Li et al., 2007; Diao, Shu et al., 2007; Diao, Wang et al., 2007; Jing et al., 2006; Qiu et al., 2006; Wang et al., 2007; Yang, 2007.

Experimental top

Salicylaldehyde and 3,5-dihydroxybenzoic acid hydrazide were purchased from Aldrich and were used without further purification. Salicylaldehyde (0.1 mmol, 12.2 mg) and 3,5-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were mixed in a methanol solution (10 cm3). The mixture was stirred at reflux for 30 min and cooled to room temperature. After keeping the solution in air for a few days, yellow block-shaped crystals appeard at the bottom of the vessel.

Refinement top

The NH H-atom, H2A, and the water H-atoms were located from difference Fourier maps and were refined with the N–H, O–H and H···H distances restrained to 0.90 (1), 0.85 (1) and 1.37 (2) Å, respectively. The remaining H-atoms were placed in calculated positions and treated as riding atoms; C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C), and O–H = 0.82 Å with Uiso(H) = 1.5Ueq(O).

Structure description top

Compounds derived from the Schiff base condensation reaction of aldehydes with hydrazides have been widely investigated both from a structural point of view and for their biological activity (Jing et al., 2006; Yang, 2007; Wang et al., 2007). Complexes derived from Schiff bases have also been widely investigated (Ali et al., 2005; Qiu et al., 2006; Diao, 2007; Diao, 2007; Diao, Li et al., 2007; Diao, Shu et al., 2007; Diao, Wang et al., 2007). We report herein the crystal structure of the title compound derived from the reaction of equimolar salicylaldehyde with 3,5-dihydroxybenzoic acid hydrazide in a methanol solution.

The molecular structure of the title compound (Fig. 1) is a Schiff base, which has an intramolecular O1—H1···N1 hydrogen bond (Table 1), and crystallizes as a water solvate. In the crystal structure the water molecule links three symmetry related molecules through two donnor O—H···O hydrogen bonds and one acceptor N—H···O hydrogen bond (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the bc plane are formed (Fig. 2).

For related structures see Ali et al., 2005; Diao, 2007; Diao, Li et al., 2007; Diao, Shu et al., 2007; Diao, Wang et al., 2007; Jing et al., 2006; Qiu et al., 2006; Wang et al., 2007; Yang, 2007.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level
[Figure 2] Fig. 2. The crystal packing of the the title compound. The intermolecular hydrogen bonds are shown as dashed lines.
3,5-Dihydroxy-N'-(2-hydroxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C14H12N2O4·H2OF(000) = 608
Mr = 290.27Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybcCell parameters from 2799 reflections
a = 7.773 (2) Åθ = 2.2–24.5°
b = 13.411 (3) ŵ = 0.11 mm1
c = 13.084 (3) ÅT = 293 K
β = 100.52 (3)°Block, yellow
V = 1341.0 (5) Å30.33 × 0.32 × 0.32 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.964, Tmax = 0.965k = 1617
17195 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4645P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12N2O4·H2OV = 1341.0 (5) Å3
Mr = 290.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.773 (2) ŵ = 0.11 mm1
b = 13.411 (3) ÅT = 293 K
c = 13.084 (3) Å0.33 × 0.32 × 0.32 mm
β = 100.52 (3)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2062 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.965Rint = 0.038
17195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
2918 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82125 (17)0.06536 (10)0.52477 (11)0.0340 (3)
N20.89934 (18)0.14758 (10)0.48954 (11)0.0329 (3)
O10.7166 (2)0.03870 (11)0.66833 (10)0.0593 (4)
H10.75900.00930.64300.089*
O20.96488 (18)0.20688 (9)0.65336 (9)0.0452 (3)
O31.1037 (3)0.43849 (11)0.28345 (10)0.0700 (5)
H31.05370.39420.24620.105*
O41.3445 (2)0.50690 (11)0.63155 (11)0.0577 (4)
H41.33890.48960.69100.087*
O50.8486 (2)0.36158 (10)0.76830 (11)0.0606 (4)
C10.6575 (2)0.08377 (12)0.48772 (14)0.0369 (4)
C20.5775 (2)0.15150 (14)0.41236 (17)0.0508 (5)
H20.58070.13970.34270.061*
C30.4943 (3)0.23513 (15)0.4397 (2)0.0613 (6)
H3A0.44180.27940.38870.074*
C40.4886 (3)0.25336 (15)0.5423 (2)0.0635 (7)
H4A0.43400.31060.56070.076*
C50.5630 (3)0.18744 (16)0.61818 (19)0.0579 (6)
H50.55710.19970.68740.070*
C60.6470 (2)0.10272 (13)0.59157 (15)0.0424 (4)
C70.7438 (2)0.00390 (12)0.45641 (14)0.0363 (4)
H70.74310.01570.38630.044*
C80.9672 (2)0.21721 (12)0.55913 (12)0.0319 (4)
C91.0484 (2)0.30675 (11)0.51996 (12)0.0315 (4)
C101.0290 (2)0.33013 (13)0.41515 (13)0.0399 (4)
H100.95760.29160.36560.048*
C111.1174 (3)0.41156 (13)0.38544 (14)0.0431 (4)
C121.2233 (3)0.46968 (13)0.45862 (14)0.0424 (4)
H121.28390.52350.43780.051*
C131.2382 (2)0.44731 (13)0.56219 (13)0.0385 (4)
C141.1516 (2)0.36597 (12)0.59365 (13)0.0354 (4)
H141.16250.35110.66400.042*
H2A0.894 (3)0.1496 (18)0.4203 (8)0.080*
H5A0.876 (3)0.4197 (9)0.7493 (18)0.080*
H5B0.885 (3)0.3199 (13)0.7274 (16)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0361 (7)0.0282 (7)0.0391 (8)0.0005 (6)0.0105 (6)0.0015 (6)
N20.0397 (8)0.0282 (7)0.0319 (7)0.0035 (6)0.0099 (6)0.0004 (6)
O10.0736 (10)0.0606 (9)0.0411 (8)0.0153 (8)0.0033 (7)0.0109 (7)
O20.0685 (9)0.0388 (7)0.0287 (7)0.0058 (6)0.0104 (6)0.0020 (5)
O30.1327 (15)0.0443 (8)0.0319 (7)0.0293 (9)0.0125 (8)0.0041 (6)
O40.0694 (9)0.0560 (9)0.0443 (8)0.0272 (7)0.0015 (7)0.0049 (7)
O50.1062 (13)0.0392 (8)0.0432 (8)0.0067 (8)0.0312 (8)0.0064 (6)
C10.0316 (8)0.0285 (8)0.0517 (11)0.0031 (7)0.0101 (8)0.0023 (7)
C20.0445 (10)0.0444 (11)0.0654 (13)0.0034 (9)0.0149 (9)0.0156 (10)
C30.0442 (11)0.0385 (11)0.102 (2)0.0061 (9)0.0148 (12)0.0205 (12)
C40.0443 (11)0.0326 (10)0.115 (2)0.0027 (9)0.0177 (12)0.0101 (12)
C50.0530 (12)0.0481 (12)0.0726 (15)0.0013 (10)0.0110 (11)0.0226 (11)
C60.0397 (10)0.0336 (9)0.0524 (12)0.0017 (7)0.0043 (8)0.0086 (8)
C70.0385 (9)0.0353 (9)0.0371 (10)0.0010 (7)0.0117 (7)0.0017 (7)
C80.0366 (9)0.0299 (8)0.0292 (9)0.0037 (7)0.0061 (7)0.0010 (7)
C90.0375 (9)0.0271 (8)0.0303 (9)0.0026 (7)0.0071 (7)0.0004 (6)
C100.0586 (11)0.0287 (8)0.0304 (9)0.0043 (8)0.0030 (8)0.0008 (7)
C110.0684 (12)0.0312 (9)0.0305 (9)0.0030 (8)0.0108 (8)0.0017 (7)
C120.0562 (11)0.0305 (9)0.0418 (11)0.0067 (8)0.0121 (8)0.0011 (8)
C130.0425 (10)0.0340 (9)0.0382 (10)0.0030 (7)0.0056 (8)0.0044 (7)
C140.0423 (9)0.0356 (9)0.0281 (9)0.0000 (7)0.0057 (7)0.0004 (7)
Geometric parameters (Å, º) top
N1—C71.283 (2)C3—C41.373 (3)
N1—N21.3780 (19)C3—H3A0.9300
N2—C81.343 (2)C4—C51.375 (3)
N2—H2A0.899 (10)C4—H4A0.9300
O1—C61.357 (2)C5—C61.386 (3)
O1—H10.8200C5—H50.9300
O2—C81.244 (2)C7—H70.9300
O3—C111.368 (2)C8—C91.490 (2)
O3—H30.8200C9—C141.386 (2)
O4—C131.368 (2)C9—C101.388 (2)
O4—H40.8200C10—C111.383 (2)
O5—H5A0.856 (9)C10—H100.9300
O5—H5B0.857 (9)C11—C121.383 (3)
C1—C61.399 (3)C12—C131.372 (3)
C1—C21.400 (3)C12—H120.9300
C1—C71.450 (2)C13—C141.383 (2)
C2—C31.374 (3)C14—H140.9300
C2—H20.9300
C7—N1—N2117.40 (14)C5—C6—C1120.43 (19)
C8—N2—N1118.17 (13)N1—C7—C1120.45 (16)
C8—N2—H2A126.9 (16)N1—C7—H7119.8
N1—N2—H2A114.8 (16)C1—C7—H7119.8
C6—O1—H1109.5O2—C8—N2121.30 (15)
C11—O3—H3109.5O2—C8—C9120.94 (15)
C13—O4—H4109.5N2—C8—C9117.75 (14)
H5A—O5—H5B106.6 (18)C14—C9—C10120.16 (15)
C6—C1—C2117.96 (17)C14—C9—C8116.75 (15)
C6—C1—C7122.26 (16)C10—C9—C8123.06 (15)
C2—C1—C7119.75 (17)C11—C10—C9119.09 (16)
C3—C2—C1121.0 (2)C11—C10—H10120.5
C3—C2—H2119.5C9—C10—H10120.5
C1—C2—H2119.5O3—C11—C10121.91 (17)
C4—C3—C2120.1 (2)O3—C11—C12117.19 (16)
C4—C3—H3A120.0C10—C11—C12120.90 (17)
C2—C3—H3A120.0C13—C12—C11119.52 (17)
C3—C4—C5120.4 (2)C13—C12—H12120.2
C3—C4—H4A119.8C11—C12—H12120.2
C5—C4—H4A119.8O4—C13—C12117.35 (16)
C4—C5—C6120.1 (2)O4—C13—C14122.08 (16)
C4—C5—H5120.0C12—C13—C14120.54 (16)
C6—C5—H5120.0C13—C14—C9119.75 (16)
O1—C6—C5118.38 (18)C13—C14—H14120.1
O1—C6—C1121.19 (16)C9—C14—H14120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.587 (2)147
O5—H5B···O20.86 (1)1.96 (1)2.807 (2)170 (2)
O5—H5A···O3i0.86 (1)1.96 (1)2.806 (2)168 (2)
N2—H2A···O5ii0.90 (1)1.96 (1)2.852 (2)170 (2)
O3—H3···O2ii0.821.872.682 (2)173
O4—H4···O1iii0.822.002.813 (2)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O4·H2O
Mr290.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.773 (2), 13.411 (3), 13.084 (3)
β (°) 100.52 (3)
V3)1341.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.32 × 0.32
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
17195, 2918, 2062
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.03
No. of reflections2918
No. of parameters202
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.587 (2)147
O5—H5B···O20.857 (9)1.96 (1)2.807 (2)170 (2)
O5—H5A···O3i0.856 (9)1.96 (1)2.806 (2)168 (2)
N2—H2A···O5ii0.899 (10)1.96 (1)2.852 (2)170 (2)
O3—H3···O2ii0.821.872.682 (2)173
O4—H4···O1iii0.822.002.813 (2)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Affiliated Shengjing Hospital of the China Medical University for a research grant.

References

First citationAli, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Li, K., Huang, S.-S., Lu, L. & Liu, K.-X. (2007). Acta Cryst. E63, m2426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Wang, Y.-Z., Wang, M.-D. & Li, K. (2007). Acta Cryst. E63, m2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087–o4088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1320–m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, N., Li, J.-P. & Pu, Y.-L. (2007). Chin. J. Struct. Chem. 26, 547–550.  CAS Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds