metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-chloro-6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato]nickel(II) tetra­hydrate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 7 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title complex, [Ni(C11H9ClN3O2)2]·4H2O, the Ni atom is coordinated by four N atoms and two O atoms derived from two tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The cis-N4O2 donor set defines a distorted octa­hedral geometry. In the crystal structure, the complex and water mol­ecules are linked by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]); Zhao et al. (2007[Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H9ClN3O2)2]·4H2O

  • Mr = 632.10

  • Triclinic, [P \overline 1]

  • a = 9.5907 (10) Å

  • b = 11.2776 (17) Å

  • c = 14.2659 (19) Å

  • α = 92.593 (2)°

  • β = 105.206 (3)°

  • γ = 113.820 (3)°

  • V = 1342.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 (2) K

  • 0.52 × 0.49 × 0.37 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.630, Tmax = 0.713

  • 6957 measured reflections

  • 4644 independent reflections

  • 3549 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.01

  • 4644 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 1.998 (2)
Ni1—N1 2.000 (2)
Ni1—O1 2.069 (2)
Ni1—O3 2.079 (2)
Ni1—N3 2.096 (3)
Ni1—N6 2.112 (3)
N4—Ni1—N1 178.42 (10)
N4—Ni1—O1 101.86 (9)
N1—Ni1—O1 78.75 (9)
N4—Ni1—O3 78.49 (9)
N1—Ni1—O3 100.08 (9)
O1—Ni1—O3 90.29 (10)
N4—Ni1—N3 102.51 (10)
N1—Ni1—N3 76.82 (9)
O1—Ni1—N3 155.49 (9)
O3—Ni1—N3 92.01 (10)
N4—Ni1—N6 76.94 (10)
N1—Ni1—N6 104.50 (10)
O1—Ni1—N6 93.55 (10)
O3—Ni1—N6 155.40 (9)
N3—Ni1—N6 94.43 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.85 1.96 2.800 (4) 170
O5—H5B⋯O6i 0.85 1.95 2.790 (4) 170
O6—H6A⋯O2ii 0.85 2.21 3.063 (5) 176
O6—H6B⋯O7iii 0.85 1.84 2.693 (4) 176
O7—H7D⋯O4iv 0.85 2.13 2.942 (4) 161
O7—H7E⋯O2v 0.85 1.94 2.758 (4) 160
O8—H8A⋯O5vi 0.85 1.95 2.802 (5) 179
O8—H8B⋯O5vii 0.85 2.09 2.939 (5) 178
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y, z-1; (vi) -x, -y+1, -z+1; (vii) x, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we reported the crystal structures of bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, the crystal structure of the title complex, (I), is described.

In (I), Fig. 1, the Ni atom is six-coordinated by four N atoms and two O atoms derived from two uninegative tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The resultant cis-N4O2 donor set defines an approximate octahedral geometry with the range of the angles around Ni(II) center being 76.82 (9) to 178.42 (10)°. A complex network of O—H···O hydrogen bonds involving the ligand-O and water molecules of crystallization consolidate the crystal structure (Table 1).

Related literature top

For related literature, see: Yin et al. (2007); Zhao et al. (2007).

Experimental top

6-(3,5-Dimethyl-1H-pyrazol-1-yl)picolinic acid (1 mmol, 250 mg) was dissolved in anhydrous alcohol (15 ml) and stirred until a clear solution resulted. A solution of NiCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml) was then added. After keeping the resulting solution in air to evaporate about half of the volume, blue prisms of (I) formed. The crystals were isolated, washed with ethanol three times and dried in a vacuum desiccator using silica gel as the dessicant; yield 75%. Elemental analysis: Found: C 41.70, H 4.25, N 13.20, O 20.35%. C22H26NiN6O8 requires: C 41.80, H 4.15, N 13.30, O 20.25%.

Refinement top

C-bound H atoms were included in the riding model approximation with C—H = 0.93 to 0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The water H atoms were located in a difference Fourier map and the O—H distances were constrained to 0.85 Å, and with Uiso(H) = 1.2Ueq(O).

Structure description top

Recently we reported the crystal structures of bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, the crystal structure of the title complex, (I), is described.

In (I), Fig. 1, the Ni atom is six-coordinated by four N atoms and two O atoms derived from two uninegative tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The resultant cis-N4O2 donor set defines an approximate octahedral geometry with the range of the angles around Ni(II) center being 76.82 (9) to 178.42 (10)°. A complex network of O—H···O hydrogen bonds involving the ligand-O and water molecules of crystallization consolidate the crystal structure (Table 1).

For related literature, see: Yin et al. (2007); Zhao et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]nickel(II) tetrahydrate top
Crystal data top
[Ni(C11H9ClN3O2)2]·4H2OZ = 2
Mr = 632.10F(000) = 652
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5907 (10) ÅCell parameters from 3154 reflections
b = 11.2776 (17) Åθ = 2.4–27.3°
c = 14.2659 (19) ŵ = 0.98 mm1
α = 92.593 (2)°T = 298 K
β = 105.206 (3)°Prism, blue
γ = 113.820 (3)°0.52 × 0.49 × 0.37 mm
V = 1342.0 (3) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4644 independent reflections
Radiation source: fine-focus sealed tube3549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.630, Tmax = 0.713k = 1313
6957 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1899P]
where P = (Fo2 + 2Fc2)/3
4644 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni(C11H9ClN3O2)2]·4H2Oγ = 113.820 (3)°
Mr = 632.10V = 1342.0 (3) Å3
Triclinic, P1Z = 2
a = 9.5907 (10) ÅMo Kα radiation
b = 11.2776 (17) ŵ = 0.98 mm1
c = 14.2659 (19) ÅT = 298 K
α = 92.593 (2)°0.52 × 0.49 × 0.37 mm
β = 105.206 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4644 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3549 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.713Rint = 0.022
6957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
4644 reflectionsΔρmin = 0.41 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.77264 (5)0.52387 (4)0.75140 (3)0.03203 (14)
Cl10.55546 (12)0.91209 (9)0.67524 (7)0.0551 (3)
Cl20.57607 (13)0.07074 (9)0.92174 (8)0.0640 (3)
N10.7176 (3)0.6405 (2)0.66193 (16)0.0292 (5)
N20.7517 (3)0.5219 (2)0.54309 (17)0.0337 (6)
N30.7717 (3)0.4465 (2)0.61479 (18)0.0363 (6)
N40.8219 (3)0.4031 (2)0.83869 (17)0.0313 (6)
N51.0849 (3)0.5382 (2)0.86026 (17)0.0326 (6)
N61.0248 (3)0.6181 (2)0.80948 (18)0.0337 (6)
O10.7411 (3)0.6477 (2)0.84674 (15)0.0448 (6)
O20.6899 (3)0.8231 (3)0.85594 (17)0.0582 (7)
O30.5445 (3)0.3791 (2)0.73513 (17)0.0479 (6)
O40.4125 (3)0.2055 (3)0.7966 (2)0.0870 (10)
O50.1053 (4)0.1080 (3)0.6606 (2)0.0812 (9)
H5A0.20270.13900.69600.097*
H5B0.04720.08780.69850.097*
O60.9476 (4)0.0534 (4)0.8033 (2)0.0994 (11)
H6A0.87990.01010.82080.119*
H6B1.03680.08370.84880.119*
O70.7637 (4)0.8418 (4)0.0580 (2)0.1187 (15)
H7D0.69330.82340.08770.142*
H7E0.71790.83030.00360.142*
O80.0584 (6)0.8775 (5)0.5293 (3)0.159 (2)
H8A0.00920.88120.47130.191*
H8B0.07330.94390.56820.191*
C10.7039 (4)0.7344 (3)0.8106 (2)0.0371 (7)
C20.6770 (3)0.7295 (3)0.6994 (2)0.0302 (7)
C30.6215 (4)0.8021 (3)0.6372 (2)0.0359 (7)
C40.6125 (4)0.7840 (3)0.5382 (2)0.0439 (8)
H40.57750.83400.49640.053*
C50.6548 (4)0.6931 (3)0.5015 (2)0.0426 (8)
H50.64780.67970.43530.051*
C60.7084 (3)0.6222 (3)0.5670 (2)0.0296 (6)
C70.7597 (5)0.5369 (4)0.3668 (2)0.0557 (10)
H7A0.79640.49880.32250.083*
H7B0.82590.63000.38430.083*
H7C0.65080.52120.33510.083*
C80.7691 (4)0.4755 (3)0.4583 (2)0.0394 (8)
C90.7988 (4)0.3697 (3)0.4775 (2)0.0455 (8)
H90.81660.31740.43410.055*
C100.7979 (4)0.3533 (3)0.5734 (2)0.0396 (8)
C110.8165 (5)0.2478 (4)0.6281 (3)0.0616 (11)
H11A0.92010.28330.67680.092*
H11B0.80630.17710.58270.092*
H11C0.73500.21530.66000.092*
C120.5349 (4)0.2929 (4)0.7887 (2)0.0465 (9)
C130.6969 (4)0.2984 (3)0.8487 (2)0.0364 (7)
C140.7263 (4)0.2110 (3)0.9064 (2)0.0399 (8)
C150.8827 (4)0.2345 (3)0.9545 (2)0.0451 (9)
H150.90270.17690.99470.054*
C161.0094 (4)0.3425 (3)0.9436 (2)0.0412 (8)
H161.11500.35920.97550.049*
C170.9719 (4)0.4250 (3)0.8826 (2)0.0309 (7)
C181.3525 (4)0.5291 (4)0.9329 (3)0.0599 (11)
H18A1.45960.57780.93070.090*
H18B1.31080.44030.89980.090*
H18C1.35340.52881.00040.090*
C191.2490 (4)0.5920 (3)0.8830 (2)0.0378 (7)
C201.2925 (4)0.7063 (3)0.8466 (2)0.0428 (8)
H201.39620.76440.85020.051*
C211.1525 (4)0.7206 (3)0.8024 (2)0.0362 (7)
C221.1358 (4)0.8304 (3)0.7544 (3)0.0535 (9)
H22A1.05830.79560.69010.080*
H22B1.23730.88900.74830.080*
H22C1.10100.87740.79370.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0331 (2)0.0372 (2)0.0302 (2)0.01843 (18)0.00948 (17)0.01627 (17)
Cl10.0667 (6)0.0481 (6)0.0634 (6)0.0382 (5)0.0177 (5)0.0138 (4)
Cl20.0823 (8)0.0401 (5)0.0683 (6)0.0134 (5)0.0392 (6)0.0272 (5)
N10.0298 (14)0.0313 (14)0.0260 (13)0.0131 (12)0.0074 (11)0.0094 (11)
N20.0381 (15)0.0348 (15)0.0293 (13)0.0165 (12)0.0100 (11)0.0091 (11)
N30.0433 (16)0.0348 (15)0.0369 (14)0.0211 (13)0.0131 (12)0.0159 (12)
N40.0318 (14)0.0329 (14)0.0292 (13)0.0131 (12)0.0094 (11)0.0128 (11)
N50.0324 (15)0.0336 (15)0.0329 (13)0.0172 (12)0.0059 (11)0.0118 (11)
N60.0357 (15)0.0307 (14)0.0368 (14)0.0161 (12)0.0098 (12)0.0149 (11)
O10.0596 (15)0.0607 (16)0.0280 (11)0.0382 (13)0.0141 (11)0.0165 (11)
O20.084 (2)0.0719 (18)0.0388 (13)0.0514 (16)0.0211 (13)0.0079 (13)
O30.0323 (13)0.0596 (16)0.0479 (14)0.0162 (11)0.0093 (11)0.0251 (12)
O40.0405 (17)0.102 (2)0.096 (2)0.0064 (16)0.0172 (16)0.059 (2)
O50.071 (2)0.100 (2)0.0615 (18)0.0352 (18)0.0067 (15)0.0182 (17)
O60.066 (2)0.123 (3)0.076 (2)0.017 (2)0.0131 (17)0.008 (2)
O70.072 (2)0.231 (5)0.0458 (17)0.063 (3)0.0129 (16)0.011 (2)
O80.271 (6)0.195 (5)0.079 (3)0.178 (5)0.034 (3)0.025 (3)
C10.0340 (18)0.048 (2)0.0336 (17)0.0217 (16)0.0099 (14)0.0101 (15)
C20.0284 (16)0.0295 (17)0.0323 (16)0.0123 (13)0.0084 (13)0.0090 (13)
C30.0350 (18)0.0303 (17)0.0409 (18)0.0146 (14)0.0078 (14)0.0112 (14)
C40.056 (2)0.044 (2)0.0390 (19)0.0291 (18)0.0120 (16)0.0215 (16)
C50.054 (2)0.048 (2)0.0292 (17)0.0240 (18)0.0123 (15)0.0163 (15)
C60.0300 (16)0.0290 (16)0.0281 (15)0.0112 (13)0.0083 (13)0.0079 (13)
C70.076 (3)0.064 (3)0.0370 (19)0.034 (2)0.0263 (19)0.0120 (18)
C80.0387 (19)0.043 (2)0.0336 (17)0.0129 (16)0.0137 (14)0.0040 (15)
C90.050 (2)0.042 (2)0.046 (2)0.0204 (17)0.0167 (17)0.0007 (16)
C100.0408 (19)0.0324 (18)0.049 (2)0.0167 (15)0.0165 (16)0.0089 (15)
C110.082 (3)0.049 (2)0.076 (3)0.042 (2)0.035 (2)0.024 (2)
C120.036 (2)0.052 (2)0.0426 (19)0.0090 (17)0.0119 (16)0.0176 (17)
C130.0414 (19)0.0356 (18)0.0294 (16)0.0116 (15)0.0136 (14)0.0103 (14)
C140.059 (2)0.0297 (18)0.0356 (17)0.0173 (16)0.0230 (16)0.0147 (14)
C150.070 (3)0.042 (2)0.0381 (18)0.0340 (19)0.0213 (18)0.0220 (16)
C160.048 (2)0.046 (2)0.0369 (18)0.0271 (17)0.0100 (16)0.0183 (16)
C170.0360 (18)0.0318 (17)0.0272 (15)0.0164 (14)0.0097 (13)0.0090 (13)
C180.043 (2)0.070 (3)0.074 (3)0.035 (2)0.010 (2)0.027 (2)
C190.0325 (18)0.044 (2)0.0378 (17)0.0200 (15)0.0061 (14)0.0047 (15)
C200.0312 (18)0.043 (2)0.049 (2)0.0114 (16)0.0111 (15)0.0026 (16)
C210.0370 (18)0.0296 (17)0.0387 (17)0.0104 (14)0.0126 (14)0.0068 (14)
C220.052 (2)0.042 (2)0.069 (3)0.0179 (18)0.022 (2)0.0237 (19)
Geometric parameters (Å, º) top
Ni1—N41.998 (2)C3—C41.393 (4)
Ni1—N12.000 (2)C4—C51.374 (4)
Ni1—O12.069 (2)C4—H40.9300
Ni1—O32.079 (2)C5—C61.387 (4)
Ni1—N32.096 (3)C5—H50.9300
Ni1—N62.112 (3)C7—C81.505 (5)
Cl1—C31.729 (3)C7—H7A0.9600
Cl2—C141.726 (3)C7—H7B0.9600
N1—C61.335 (4)C7—H7C0.9600
N1—C21.349 (4)C8—C91.358 (5)
N2—C81.372 (4)C9—C101.390 (5)
N2—N31.384 (3)C9—H90.9300
N2—C61.409 (4)C10—C111.497 (4)
N3—C101.323 (4)C11—H11A0.9600
N4—C171.323 (4)C11—H11B0.9600
N4—C131.347 (4)C11—H11C0.9600
N5—C191.377 (4)C12—C131.539 (4)
N5—N61.389 (3)C13—C141.381 (4)
N5—C171.416 (4)C14—C151.383 (5)
N6—C211.333 (4)C15—C161.380 (5)
O1—C11.256 (4)C15—H150.9300
O2—C11.238 (4)C16—C171.389 (4)
O3—C121.253 (4)C16—H160.9300
O4—C121.228 (4)C18—C191.496 (4)
O5—H5A0.8500C18—H18A0.9600
O5—H5B0.8500C18—H18B0.9600
O6—H6A0.8499C18—H18C0.9600
O6—H6B0.8500C19—C201.359 (5)
O7—H7D0.8500C20—C211.402 (4)
O7—H7E0.8499C20—H200.9300
O8—H8A0.8500C21—C221.486 (4)
O8—H8B0.8500C22—H22A0.9600
C1—C21.535 (4)C22—H22B0.9600
C2—C31.382 (4)C22—H22C0.9600
N4—Ni1—N1178.42 (10)H7A—C7—H7B109.5
N4—Ni1—O1101.86 (9)C8—C7—H7C109.5
N1—Ni1—O178.75 (9)H7A—C7—H7C109.5
N4—Ni1—O378.49 (9)H7B—C7—H7C109.5
N1—Ni1—O3100.08 (9)C9—C8—N2105.6 (3)
O1—Ni1—O390.29 (10)C9—C8—C7129.8 (3)
N4—Ni1—N3102.51 (10)N2—C8—C7124.6 (3)
N1—Ni1—N376.82 (9)C8—C9—C10108.0 (3)
O1—Ni1—N3155.49 (9)C8—C9—H9126.0
O3—Ni1—N392.01 (10)C10—C9—H9126.0
N4—Ni1—N676.94 (10)N3—C10—C9110.1 (3)
N1—Ni1—N6104.50 (10)N3—C10—C11120.7 (3)
O1—Ni1—N693.55 (10)C9—C10—C11129.2 (3)
O3—Ni1—N6155.40 (9)C10—C11—H11A109.5
N3—Ni1—N694.43 (10)C10—C11—H11B109.5
C6—N1—C2121.9 (2)H11A—C11—H11B109.5
C6—N1—Ni1120.58 (19)C10—C11—H11C109.5
C2—N1—Ni1117.24 (18)H11A—C11—H11C109.5
C8—N2—N3110.6 (2)H11B—C11—H11C109.5
C8—N2—C6132.8 (3)O4—C12—O3127.2 (3)
N3—N2—C6116.5 (2)O4—C12—C13118.0 (3)
C10—N3—N2105.6 (2)O3—C12—C13114.8 (3)
C10—N3—Ni1141.3 (2)N4—C13—C14118.9 (3)
N2—N3—Ni1112.77 (17)N4—C13—C12112.3 (3)
C17—N4—C13122.1 (3)C14—C13—C12128.7 (3)
C17—N4—Ni1120.6 (2)C13—C14—C15119.4 (3)
C13—N4—Ni1117.3 (2)C13—C14—Cl2123.2 (3)
C19—N5—N6110.6 (2)C15—C14—Cl2117.4 (2)
C19—N5—C17133.0 (2)C16—C15—C14120.8 (3)
N6—N5—C17116.4 (2)C16—C15—H15119.6
C21—N6—N5105.4 (2)C14—C15—H15119.6
C21—N6—Ni1141.8 (2)C15—C16—C17116.9 (3)
N5—N6—Ni1111.64 (18)C15—C16—H16121.5
C1—O1—Ni1116.31 (19)C17—C16—H16121.5
C12—O3—Ni1116.7 (2)N4—C17—C16121.8 (3)
H5A—O5—H5B108.1N4—C17—N5113.0 (2)
H6A—O6—H6B108.5C16—C17—N5125.2 (3)
H7D—O7—H7E108.8C19—C18—H18A109.5
H8A—O8—H8B108.4C19—C18—H18B109.5
O2—C1—O1126.6 (3)H18A—C18—H18B109.5
O2—C1—C2117.7 (3)C19—C18—H18C109.5
O1—C1—C2115.7 (3)H18A—C18—H18C109.5
N1—C2—C3119.0 (3)H18B—C18—H18C109.5
N1—C2—C1111.5 (2)C20—C19—N5106.2 (3)
C3—C2—C1129.4 (3)C20—C19—C18128.6 (3)
C2—C3—C4119.3 (3)N5—C19—C18125.1 (3)
C2—C3—Cl1123.1 (2)C19—C20—C21107.5 (3)
C4—C3—Cl1117.5 (2)C19—C20—H20126.2
C5—C4—C3120.8 (3)C21—C20—H20126.2
C5—C4—H4119.6N6—C21—C20110.3 (3)
C3—C4—H4119.6N6—C21—C22121.1 (3)
C4—C5—C6117.4 (3)C20—C21—C22128.6 (3)
C4—C5—H5121.3C21—C22—H22A109.5
C6—C5—H5121.3C21—C22—H22B109.5
N1—C6—C5121.5 (3)H22A—C22—H22B109.5
N1—C6—N2112.5 (2)C21—C22—H22C109.5
C5—C6—N2126.0 (3)H22A—C22—H22C109.5
C8—C7—H7A109.5H22B—C22—H22C109.5
C8—C7—H7B109.5
O1—Ni1—N1—C6179.1 (2)N1—C2—C3—Cl1176.3 (2)
O3—Ni1—N1—C690.8 (2)C1—C2—C3—Cl14.7 (5)
N3—Ni1—N1—C61.1 (2)C2—C3—C4—C51.4 (5)
N6—Ni1—N1—C690.1 (2)Cl1—C3—C4—C5176.5 (3)
O1—Ni1—N1—C24.8 (2)C3—C4—C5—C60.8 (5)
O3—Ni1—N1—C283.5 (2)C2—N1—C6—C50.7 (4)
N3—Ni1—N1—C2173.2 (2)Ni1—N1—C6—C5173.4 (2)
N6—Ni1—N1—C295.6 (2)C2—N1—C6—N2178.1 (3)
C8—N2—N3—C101.2 (3)Ni1—N1—C6—N24.1 (3)
C6—N2—N3—C10174.8 (3)C4—C5—C6—N10.5 (5)
C8—N2—N3—Ni1173.52 (19)C4—C5—C6—N2177.6 (3)
C6—N2—N3—Ni110.5 (3)C8—N2—C6—N1175.5 (3)
N4—Ni1—N3—C103.4 (4)N3—N2—C6—N19.6 (4)
N1—Ni1—N3—C10178.0 (4)C8—N2—C6—C57.2 (5)
O1—Ni1—N3—C10177.2 (3)N3—N2—C6—C5167.7 (3)
O3—Ni1—N3—C1082.1 (4)N3—N2—C8—C90.5 (3)
N6—Ni1—N3—C1074.1 (4)C6—N2—C8—C9174.6 (3)
N4—Ni1—N3—N2175.31 (19)N3—N2—C8—C7178.1 (3)
N1—Ni1—N3—N26.15 (19)C6—N2—C8—C76.8 (5)
O1—Ni1—N3—N210.9 (4)N2—C8—C9—C100.4 (4)
O3—Ni1—N3—N2106.0 (2)C7—C8—C9—C10178.9 (3)
N6—Ni1—N3—N297.7 (2)N2—N3—C10—C91.4 (4)
O1—Ni1—N4—C1796.3 (2)Ni1—N3—C10—C9170.8 (3)
O3—Ni1—N4—C17175.9 (2)N2—N3—C10—C11176.7 (3)
N3—Ni1—N4—C1786.3 (2)Ni1—N3—C10—C1111.1 (6)
N6—Ni1—N4—C175.4 (2)C8—C9—C10—N31.2 (4)
O1—Ni1—N4—C1385.2 (2)C8—C9—C10—C11176.7 (4)
O3—Ni1—N4—C132.7 (2)Ni1—O3—C12—O4173.8 (3)
N3—Ni1—N4—C1392.2 (2)Ni1—O3—C12—C137.6 (4)
N6—Ni1—N4—C13176.1 (2)C17—N4—C13—C140.1 (4)
C19—N5—N6—C210.6 (3)Ni1—N4—C13—C14178.4 (2)
C17—N5—N6—C21176.3 (2)C17—N4—C13—C12178.7 (3)
C19—N5—N6—Ni1169.89 (19)Ni1—N4—C13—C120.2 (3)
C17—N5—N6—Ni113.2 (3)O4—C12—C13—N4176.0 (3)
N4—Ni1—N6—C21174.8 (4)O3—C12—C13—N45.2 (4)
N1—Ni1—N6—C214.6 (4)O4—C12—C13—C145.6 (6)
O1—Ni1—N6—C2183.9 (3)O3—C12—C13—C14173.2 (3)
O3—Ni1—N6—C21177.6 (3)N4—C13—C14—C151.6 (4)
N3—Ni1—N6—C2172.9 (3)C12—C13—C14—C15179.9 (3)
N4—Ni1—N6—N59.66 (17)N4—C13—C14—Cl2178.0 (2)
N1—Ni1—N6—N5169.68 (17)C12—C13—C14—Cl20.3 (5)
O1—Ni1—N6—N5111.03 (18)C13—C14—C15—C161.6 (5)
O3—Ni1—N6—N512.5 (3)Cl2—C14—C15—C16178.1 (2)
N3—Ni1—N6—N592.17 (18)C14—C15—C16—C170.0 (5)
N4—Ni1—O1—C1178.3 (2)C13—N4—C17—C161.5 (4)
N1—Ni1—O1—C10.2 (2)Ni1—N4—C17—C16179.9 (2)
O3—Ni1—O1—C1100.0 (2)C13—N4—C17—N5178.3 (2)
N3—Ni1—O1—C14.5 (4)Ni1—N4—C17—N50.2 (3)
N6—Ni1—O1—C1104.3 (2)C15—C16—C17—N41.5 (5)
N4—Ni1—O3—C125.9 (2)C15—C16—C17—N5178.3 (3)
N1—Ni1—O3—C12174.7 (2)C19—N5—C17—N4174.7 (3)
O1—Ni1—O3—C1296.1 (3)N6—N5—C17—N49.2 (4)
N3—Ni1—O3—C12108.3 (3)C19—N5—C17—C165.0 (5)
N6—Ni1—O3—C123.1 (4)N6—N5—C17—C16171.0 (3)
Ni1—O1—C1—O2174.9 (3)N6—N5—C19—C200.1 (3)
Ni1—O1—C1—C23.8 (4)C17—N5—C19—C20176.1 (3)
C6—N1—C2—C31.2 (4)N6—N5—C19—C18176.8 (3)
Ni1—N1—C2—C3173.1 (2)C17—N5—C19—C187.0 (5)
C6—N1—C2—C1178.0 (3)N5—C19—C20—C210.4 (4)
Ni1—N1—C2—C17.7 (3)C18—C19—C20—C21177.1 (3)
O2—C1—C2—N1171.3 (3)N5—N6—C21—C200.9 (3)
O1—C1—C2—N17.5 (4)Ni1—N6—C21—C20164.8 (3)
O2—C1—C2—C37.8 (5)N5—N6—C21—C22178.3 (3)
O1—C1—C2—C3173.4 (3)Ni1—N6—C21—C2216.1 (5)
N1—C2—C3—C41.5 (5)C19—C20—C21—N60.8 (4)
C1—C2—C3—C4177.6 (3)C19—C20—C21—C22178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.851.962.800 (4)170
O5—H5B···O6i0.851.952.790 (4)170
O6—H6A···O2ii0.852.213.063 (5)176
O6—H6B···O7iii0.851.842.693 (4)176
O7—H7D···O4iv0.852.132.942 (4)161
O7—H7E···O2v0.851.942.758 (4)160
O8—H8A···O5vi0.851.952.802 (5)179
O8—H8B···O5vii0.852.092.939 (5)178
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C11H9ClN3O2)2]·4H2O
Mr632.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.5907 (10), 11.2776 (17), 14.2659 (19)
α, β, γ (°)92.593 (2), 105.206 (3), 113.820 (3)
V3)1342.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.52 × 0.49 × 0.37
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.630, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
6957, 4644, 3549
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.01
No. of reflections4644
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Ni1—N41.998 (2)Ni1—O32.079 (2)
Ni1—N12.000 (2)Ni1—N32.096 (3)
Ni1—O12.069 (2)Ni1—N62.112 (3)
N4—Ni1—N1178.42 (10)O1—Ni1—N3155.49 (9)
N4—Ni1—O1101.86 (9)O3—Ni1—N392.01 (10)
N1—Ni1—O178.75 (9)N4—Ni1—N676.94 (10)
N4—Ni1—O378.49 (9)N1—Ni1—N6104.50 (10)
N1—Ni1—O3100.08 (9)O1—Ni1—N693.55 (10)
O1—Ni1—O390.29 (10)O3—Ni1—N6155.40 (9)
N4—Ni1—N3102.51 (10)N3—Ni1—N694.43 (10)
N1—Ni1—N376.82 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.851.962.800 (4)170
O5—H5B···O6i0.851.952.790 (4)170
O6—H6A···O2ii0.852.213.063 (5)176
O6—H6B···O7iii0.851.842.693 (4)176
O7—H7D···O4iv0.852.132.942 (4)161
O7—H7E···O2v0.851.942.758 (4)160
O8—H8A···O5vi0.851.952.802 (5)179
O8—H8B···O5vii0.852.092.939 (5)178
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z1; (vi) x, y+1, z+1; (vii) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Fund of the Talent Highland Research Programme of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds