metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 10 November 2007; accepted 24 November 2007; online 6 December 2007)

The title complex, [Cu(C3H2N3O2)Cl(C12H8N2)], crystallizes with two independent mol­ecules in the asymmetric unit. Each CuII atom is coordinated by an N atom and an O atom from the bidentate 1H-1,2,4-triazole-3-carboxyl­ate ligand, two N atoms from the 1,10-phenanthroline ligand, and the Cl atom. The coordination geometry is based on a ClN3O square pyramid. In the crystal structure, the mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Guo & Wang (2005[Guo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217-o3218.]); Zhao et al. (2008[Zhao, K., Yin, X.-H., Yu, F., Zhu, J. & Lin, C.-W. (2008). Acta Cryst. E64. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H2N3O2)Cl(C12H8N2)]

  • Mr = 391.27

  • Monoclinic, P 21 /c

  • a = 12.7302 (16) Å

  • b = 17.562 (3) Å

  • c = 14.299 (2) Å

  • β = 113.836 (2)°

  • V = 2924.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 298 (2) K

  • 0.53 × 0.49 × 0.47 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.467, Tmax = 0.503 (expected range = 0.418–0.451)

  • 14193 measured reflections

  • 5142 independent reflections

  • 3277 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.04

  • 5142 reflections

  • 433 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.99 2.835 (4) 166
N7—H7⋯O2ii 0.86 1.94 2.797 (4) 172
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In connection with on-going studies in coordination chemistry (Zhao et al., 2008) and the biological importance of triazole molecules (Guo & Wang, 2005), the crystal structure of a new ternary Cu(II) complex with 1H-1,2,4-triazole-3-carboxylate (TRIA), 1,10-phenanthroline (phen) and Cl is described.

Two independent mononuclear complex molecules, Cu(TRIA)(phen)Cl, comprise the asymmetric unit of (I), Fig. 1. Each Cu atom is chelated by a N atom and a O atom, derived from the TRIA anion, two N atoms from the chelating phen ligand, and the penta-coordinated coordination geometry is completed by a Cl atom. The latter atom occupies an axial position in the approximately square-pyramidal N3OCl coordination geometry; the angles around the Cu(II) atom range from 81.66 (12) to 166.88 (12)°.

The primary intermolecular contacts in the crystal structure are of the type N—H···O and involve both amines and both of the non-coordinating carbonyls of the TRIA anions (Table 1).

Related literature top

For related literature, see: Guo & Wang (2005); Zhao et al. (2008).

Experimental top

CuCl2.2H2O (0.5 mmol, 85.2 mg) dissolved in distilled water (15 ml) was added with stirring at 323 K to 1H-1,2,4-triazole-3-carboxylic acid (1 mmol, 113 mg) also dissolved in distilled water (5 ml). The resulting blue solution was allowed to react for 30 min and 1,10-phenanthroline (0.5 mmol, 99.1 mg) dissolved in ethanol (5 ml) was added. Dark-blue crystals suitable for X-ray analysis were obtained by slow evaporation over a period of one month (yield 85%). Analysis. Found: C 46.08, H 2.52, Cl 9.00, Cu 16.29, N 17.83, O 8.23%. C15H10ClCuN5O2 requires: C 46.04, H 2.58, Cl 9.06, Cu 16.24, N 17.90, O 8.18%.

Refinement top

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Structure description top

In connection with on-going studies in coordination chemistry (Zhao et al., 2008) and the biological importance of triazole molecules (Guo & Wang, 2005), the crystal structure of a new ternary Cu(II) complex with 1H-1,2,4-triazole-3-carboxylate (TRIA), 1,10-phenanthroline (phen) and Cl is described.

Two independent mononuclear complex molecules, Cu(TRIA)(phen)Cl, comprise the asymmetric unit of (I), Fig. 1. Each Cu atom is chelated by a N atom and a O atom, derived from the TRIA anion, two N atoms from the chelating phen ligand, and the penta-coordinated coordination geometry is completed by a Cl atom. The latter atom occupies an axial position in the approximately square-pyramidal N3OCl coordination geometry; the angles around the Cu(II) atom range from 81.66 (12) to 166.88 (12)°.

The primary intermolecular contacts in the crystal structure are of the type N—H···O and involve both amines and both of the non-coordinating carbonyls of the TRIA anions (Table 1).

For related literature, see: Guo & Wang (2005); Zhao et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
Chlorido(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxylato)copper(II) top
Crystal data top
[Cu(C3H2N3O2)Cl(C12H8N2)]F(000) = 1576
Mr = 391.27Dx = 1.777 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4070 reflections
a = 12.7302 (16) Åθ = 2.8–26.9°
b = 17.562 (3) ŵ = 1.70 mm1
c = 14.299 (2) ÅT = 298 K
β = 113.836 (2)°Prism, dark-blue
V = 2924.2 (7) Å30.53 × 0.49 × 0.47 mm
Z = 8
Data collection top
Siemens SMART CCD area-detector
diffractometer
5142 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 915
Tmin = 0.467, Tmax = 0.503k = 2020
14193 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.079P]
where P = (Fo2 + 2Fc2)/3
5142 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C3H2N3O2)Cl(C12H8N2)]V = 2924.2 (7) Å3
Mr = 391.27Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.7302 (16) ŵ = 1.70 mm1
b = 17.562 (3) ÅT = 298 K
c = 14.299 (2) Å0.53 × 0.49 × 0.47 mm
β = 113.836 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3277 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.503Rint = 0.038
14193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
5142 reflectionsΔρmin = 0.41 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40914 (4)0.59579 (2)0.14980 (4)0.03021 (14)
Cu20.09358 (4)0.44546 (2)0.35025 (4)0.03027 (14)
Cl10.47137 (8)0.60210 (6)0.33526 (8)0.0430 (3)
Cl20.02771 (8)0.43345 (6)0.16237 (8)0.0435 (3)
N10.1523 (3)0.75001 (18)0.0769 (2)0.0363 (8)
N20.0815 (3)0.69152 (17)0.0746 (2)0.0344 (8)
H20.01090.69650.06570.041*
N30.2440 (2)0.63748 (17)0.1008 (2)0.0289 (7)
N40.3832 (2)0.48281 (16)0.1427 (2)0.0273 (7)
N50.5511 (2)0.56362 (16)0.1292 (2)0.0259 (7)
N60.3479 (3)0.29065 (17)0.4200 (2)0.0342 (8)
N70.4151 (3)0.34806 (17)0.4121 (2)0.0336 (8)
H70.48430.34240.41710.040*
N80.2549 (2)0.40305 (16)0.3910 (2)0.0290 (7)
N90.1178 (2)0.55924 (16)0.3493 (2)0.0287 (7)
N100.0475 (2)0.47917 (17)0.3696 (2)0.0278 (7)
O10.4428 (2)0.70196 (14)0.1296 (2)0.0413 (7)
O20.3680 (2)0.81737 (15)0.0851 (2)0.0466 (8)
O30.0617 (2)0.34048 (14)0.3793 (2)0.0399 (7)
O40.1371 (2)0.22583 (14)0.4277 (2)0.0392 (7)
C10.3611 (3)0.7493 (2)0.1033 (3)0.0322 (9)
C20.2492 (3)0.7149 (2)0.0931 (3)0.0290 (9)
C30.1364 (3)0.6260 (2)0.0879 (3)0.0329 (9)
H30.10410.57860.08820.039*
C40.2961 (3)0.4431 (2)0.1466 (3)0.0375 (10)
H40.23420.46940.14970.045*
C50.2937 (4)0.3643 (2)0.1461 (3)0.0473 (12)
H50.23070.33890.14850.057*
C60.3838 (4)0.3233 (2)0.1422 (3)0.0436 (11)
H60.38300.27040.14290.052*
C70.4772 (3)0.3632 (2)0.1371 (3)0.0341 (10)
C80.4721 (3)0.4430 (2)0.1373 (3)0.0256 (9)
C90.5629 (3)0.4865 (2)0.1295 (3)0.0251 (8)
C100.6570 (3)0.4505 (2)0.1219 (3)0.0309 (9)
C110.7427 (3)0.4971 (2)0.1136 (3)0.0365 (10)
H110.80740.47580.10900.044*
C120.7291 (3)0.5749 (2)0.1124 (3)0.0353 (10)
H120.78440.60660.10610.042*
C130.6325 (3)0.6063 (2)0.1207 (3)0.0319 (9)
H130.62500.65900.12010.038*
C140.5729 (4)0.3277 (2)0.1292 (3)0.0427 (11)
H140.57650.27480.12880.051*
C150.6596 (3)0.3685 (2)0.1222 (3)0.0422 (11)
H150.72160.34340.11760.051*
C160.1432 (3)0.2929 (2)0.4052 (3)0.0295 (9)
C170.2519 (3)0.3259 (2)0.4067 (3)0.0292 (9)
C180.3601 (3)0.4141 (2)0.3956 (3)0.0319 (9)
H180.39040.46080.38830.038*
C190.2018 (3)0.5979 (2)0.3396 (3)0.0366 (10)
H190.26580.57150.34120.044*
C200.1980 (4)0.6772 (2)0.3269 (3)0.0417 (11)
H200.25840.70250.31970.050*
C210.1050 (3)0.7171 (2)0.3251 (3)0.0408 (11)
H210.10120.76960.31590.049*
C220.0151 (3)0.6776 (2)0.3375 (3)0.0326 (9)
C230.0260 (3)0.5985 (2)0.3494 (3)0.0268 (9)
C240.0622 (3)0.5555 (2)0.3619 (3)0.0247 (8)
C250.1584 (3)0.5917 (2)0.3659 (3)0.0317 (9)
C260.2413 (3)0.5454 (2)0.3793 (3)0.0367 (10)
H260.30670.56710.38190.044*
C270.2255 (3)0.4686 (2)0.3884 (3)0.0378 (10)
H270.27930.43760.39840.045*
C280.1272 (3)0.4369 (2)0.3826 (3)0.0330 (9)
H280.11740.38440.38800.040*
C290.0847 (4)0.7134 (2)0.3396 (3)0.0428 (11)
H290.09310.76590.33100.051*
C300.1669 (3)0.6726 (2)0.3536 (3)0.0409 (10)
H300.23050.69760.35540.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0245 (3)0.0246 (3)0.0455 (3)0.0001 (2)0.0183 (2)0.0029 (2)
Cu20.0238 (3)0.0244 (3)0.0463 (3)0.0038 (2)0.0181 (2)0.0024 (2)
Cl10.0310 (6)0.0590 (7)0.0408 (5)0.0006 (5)0.0164 (5)0.0093 (5)
Cl20.0323 (6)0.0566 (7)0.0420 (5)0.0026 (5)0.0154 (5)0.0063 (5)
N10.0269 (18)0.0319 (18)0.054 (2)0.0027 (15)0.0201 (17)0.0032 (16)
N20.0201 (17)0.038 (2)0.047 (2)0.0001 (15)0.0148 (16)0.0030 (16)
N30.0234 (17)0.0262 (17)0.0378 (18)0.0006 (14)0.0130 (15)0.0029 (15)
N40.0262 (18)0.0264 (17)0.0327 (18)0.0003 (14)0.0154 (15)0.0008 (14)
N50.0227 (17)0.0260 (17)0.0309 (17)0.0020 (14)0.0128 (14)0.0000 (14)
N60.0255 (18)0.0291 (18)0.050 (2)0.0013 (15)0.0180 (16)0.0002 (16)
N70.0213 (17)0.0344 (19)0.048 (2)0.0020 (14)0.0167 (16)0.0018 (15)
N80.0211 (17)0.0271 (18)0.0391 (19)0.0017 (13)0.0124 (15)0.0017 (14)
N90.0251 (18)0.0280 (18)0.0356 (19)0.0035 (14)0.0152 (15)0.0011 (14)
N100.0218 (17)0.0322 (18)0.0319 (18)0.0043 (14)0.0135 (15)0.0030 (15)
O10.0275 (15)0.0283 (15)0.073 (2)0.0034 (12)0.0251 (15)0.0005 (14)
O20.0346 (16)0.0296 (16)0.085 (2)0.0021 (13)0.0337 (16)0.0087 (15)
O30.0246 (15)0.0268 (15)0.073 (2)0.0052 (12)0.0245 (14)0.0081 (14)
O40.0314 (15)0.0267 (15)0.0655 (19)0.0031 (12)0.0259 (15)0.0054 (14)
C10.030 (2)0.027 (2)0.045 (2)0.0003 (19)0.021 (2)0.0012 (19)
C20.025 (2)0.028 (2)0.038 (2)0.0031 (17)0.0168 (18)0.0014 (18)
C30.026 (2)0.030 (2)0.042 (2)0.0045 (18)0.0141 (19)0.0057 (18)
C40.034 (2)0.034 (2)0.052 (3)0.0056 (19)0.024 (2)0.007 (2)
C50.046 (3)0.037 (2)0.070 (3)0.018 (2)0.034 (2)0.005 (2)
C60.051 (3)0.026 (2)0.061 (3)0.012 (2)0.031 (2)0.004 (2)
C70.035 (2)0.028 (2)0.040 (2)0.0036 (18)0.015 (2)0.0022 (18)
C80.025 (2)0.025 (2)0.028 (2)0.0019 (16)0.0112 (17)0.0008 (16)
C90.0227 (19)0.028 (2)0.0230 (19)0.0008 (16)0.0073 (16)0.0019 (16)
C100.026 (2)0.037 (2)0.029 (2)0.0059 (17)0.0110 (18)0.0001 (17)
C110.023 (2)0.048 (3)0.039 (2)0.0042 (19)0.0131 (19)0.002 (2)
C120.029 (2)0.038 (2)0.041 (2)0.0078 (19)0.017 (2)0.0002 (19)
C130.030 (2)0.028 (2)0.038 (2)0.0020 (17)0.0146 (19)0.0009 (18)
C140.046 (3)0.023 (2)0.060 (3)0.006 (2)0.023 (2)0.001 (2)
C150.035 (2)0.037 (2)0.056 (3)0.014 (2)0.019 (2)0.001 (2)
C160.025 (2)0.028 (2)0.037 (2)0.0012 (18)0.0139 (18)0.0003 (18)
C170.025 (2)0.030 (2)0.033 (2)0.0050 (18)0.0125 (18)0.0008 (18)
C180.028 (2)0.029 (2)0.039 (2)0.0000 (18)0.0139 (19)0.0014 (18)
C190.027 (2)0.042 (3)0.047 (3)0.0003 (19)0.022 (2)0.001 (2)
C200.041 (3)0.034 (2)0.055 (3)0.009 (2)0.025 (2)0.004 (2)
C210.041 (3)0.032 (2)0.048 (3)0.004 (2)0.017 (2)0.0029 (19)
C220.034 (2)0.026 (2)0.033 (2)0.0037 (18)0.0091 (19)0.0034 (17)
C230.027 (2)0.029 (2)0.024 (2)0.0034 (17)0.0104 (17)0.0016 (16)
C240.0201 (19)0.028 (2)0.025 (2)0.0048 (16)0.0073 (17)0.0003 (16)
C250.029 (2)0.037 (2)0.030 (2)0.0057 (18)0.0124 (18)0.0016 (18)
C260.023 (2)0.052 (3)0.039 (2)0.0104 (19)0.0153 (19)0.003 (2)
C270.028 (2)0.048 (3)0.042 (2)0.003 (2)0.020 (2)0.001 (2)
C280.031 (2)0.032 (2)0.036 (2)0.0001 (18)0.0142 (19)0.0017 (18)
C290.046 (3)0.028 (2)0.056 (3)0.013 (2)0.022 (2)0.001 (2)
C300.036 (2)0.036 (2)0.056 (3)0.011 (2)0.023 (2)0.003 (2)
Geometric parameters (Å, º) top
Cu1—O11.960 (3)C5—H50.9300
Cu1—N42.007 (3)C6—C71.407 (5)
Cu1—N52.026 (3)C6—H60.9300
Cu1—N32.063 (3)C7—C81.404 (5)
Cu1—Cl12.4443 (12)C7—C141.414 (5)
Cu2—O31.968 (3)C8—C91.427 (5)
Cu2—N102.014 (3)C9—C101.396 (5)
Cu2—N92.023 (3)C10—C111.407 (5)
Cu2—N82.036 (3)C10—C151.440 (5)
Cu2—Cl22.4788 (12)C11—C121.376 (5)
N1—C21.313 (4)C11—H110.9300
N1—N21.359 (4)C12—C131.396 (5)
N2—C31.320 (5)C12—H120.9300
N2—H20.8600C13—H130.9300
N3—C31.321 (5)C14—C151.353 (6)
N3—C21.368 (4)C14—H140.9300
N4—C41.330 (5)C15—H150.9300
N4—C81.359 (4)C16—C171.493 (5)
N5—C131.323 (5)C18—H180.9300
N5—C91.363 (4)C19—C201.403 (5)
N6—C171.313 (4)C19—H190.9300
N6—N71.357 (4)C20—C211.367 (5)
N7—C181.326 (4)C20—H200.9300
N7—H70.8600C21—C221.410 (5)
N8—C181.328 (5)C21—H210.9300
N8—C171.376 (4)C22—C231.401 (5)
N9—C191.320 (5)C22—C291.428 (5)
N9—C231.357 (4)C23—C241.422 (5)
N10—C281.329 (5)C24—C251.402 (5)
N10—C241.352 (4)C25—C261.405 (5)
O1—C11.265 (4)C25—C301.431 (5)
O2—C11.233 (4)C26—C271.362 (5)
O3—C161.265 (4)C26—H260.9300
O4—C161.232 (4)C27—C281.402 (5)
C1—C21.499 (5)C27—H270.9300
C3—H30.9300C28—H280.9300
C4—C51.385 (5)C29—C301.349 (6)
C4—H40.9300C29—H290.9300
C5—C61.374 (6)C30—H300.9300
O1—Cu1—N4166.89 (12)N4—C8—C7123.7 (3)
O1—Cu1—N589.02 (11)N4—C8—C9116.7 (3)
N4—Cu1—N581.67 (12)C7—C8—C9119.7 (3)
O1—Cu1—N382.28 (11)N5—C9—C10123.1 (3)
N4—Cu1—N3102.10 (12)N5—C9—C8116.1 (3)
N5—Cu1—N3153.69 (12)C10—C9—C8120.8 (3)
O1—Cu1—Cl197.04 (9)C9—C10—C11117.5 (4)
N4—Cu1—Cl194.25 (9)C9—C10—C15118.1 (3)
N5—Cu1—Cl1104.68 (9)C11—C10—C15124.3 (4)
N3—Cu1—Cl1101.02 (9)C12—C11—C10118.7 (4)
O3—Cu2—N1088.58 (11)C12—C11—H11120.6
O3—Cu2—N9166.41 (12)C10—C11—H11120.6
N10—Cu2—N981.80 (12)C11—C12—C13120.1 (4)
O3—Cu2—N882.37 (11)C11—C12—H12119.9
N10—Cu2—N8157.06 (12)C13—C12—H12119.9
N9—Cu2—N8102.95 (12)N5—C13—C12122.2 (4)
O3—Cu2—Cl298.08 (9)N5—C13—H13118.9
N10—Cu2—Cl2104.13 (9)C12—C13—H13118.9
N9—Cu2—Cl293.58 (9)C15—C14—C7121.8 (4)
N8—Cu2—Cl298.01 (9)C15—C14—H14119.1
C2—N1—N2102.5 (3)C7—C14—H14119.1
C3—N2—N1110.4 (3)C14—C15—C10120.8 (4)
C3—N2—H2124.8C14—C15—H15119.6
N1—N2—H2124.8C10—C15—H15119.6
C3—N3—C2102.9 (3)O4—C16—O3125.3 (3)
C3—N3—Cu1148.2 (3)O4—C16—C17121.5 (3)
C2—N3—Cu1107.7 (2)O3—C16—C17113.2 (3)
C4—N4—C8117.4 (3)N6—C17—N8113.8 (3)
C4—N4—Cu1129.7 (3)N6—C17—C16128.4 (3)
C8—N4—Cu1112.8 (2)N8—C17—C16117.8 (3)
C13—N5—C9118.3 (3)N7—C18—N8109.3 (3)
C13—N5—Cu1129.2 (3)N7—C18—H18125.4
C9—N5—Cu1112.3 (2)N8—C18—H18125.4
C17—N6—N7102.6 (3)N9—C19—C20122.5 (4)
C18—N7—N6111.1 (3)N9—C19—H19118.8
C18—N7—H7124.5C20—C19—H19118.8
N6—N7—H7124.5C21—C20—C19119.7 (4)
C18—N8—C17103.3 (3)C21—C20—H20120.1
C18—N8—Cu2147.2 (3)C19—C20—H20120.1
C17—N8—Cu2108.4 (2)C20—C21—C22119.1 (4)
C19—N9—C23118.3 (3)C20—C21—H21120.5
C19—N9—Cu2129.9 (3)C22—C21—H21120.5
C23—N9—Cu2111.6 (2)C23—C22—C21117.2 (4)
C28—N10—C24118.5 (3)C23—C22—C29118.7 (4)
C28—N10—Cu2129.0 (3)C21—C22—C29124.0 (4)
C24—N10—Cu2112.4 (2)N9—C23—C22123.2 (3)
C1—O1—Cu1117.9 (2)N9—C23—C24117.1 (3)
C16—O3—Cu2117.8 (2)C22—C23—C24119.8 (3)
O2—C1—O1125.4 (4)N10—C24—C25122.7 (3)
O2—C1—C2121.1 (3)N10—C24—C23116.5 (3)
O1—C1—C2113.4 (3)C25—C24—C23120.8 (3)
N1—C2—N3114.1 (3)C24—C25—C26117.4 (4)
N1—C2—C1128.0 (3)C24—C25—C30118.0 (4)
N3—C2—C1118.0 (3)C26—C25—C30124.6 (4)
N2—C3—N3110.2 (3)C27—C26—C25119.8 (4)
N2—C3—H3124.9C27—C26—H26120.1
N3—C3—H3124.9C25—C26—H26120.1
N4—C4—C5122.7 (4)C26—C27—C28119.2 (4)
N4—C4—H4118.6C26—C27—H27120.4
C5—C4—H4118.6C28—C27—H27120.4
C6—C5—C4120.4 (4)N10—C28—C27122.5 (4)
C6—C5—H5119.8N10—C28—H28118.8
C4—C5—H5119.8C27—C28—H28118.8
C5—C6—C7118.6 (4)C30—C29—C22121.3 (4)
C5—C6—H6120.7C30—C29—H29119.4
C7—C6—H6120.7C22—C29—H29119.4
C8—C7—C6117.1 (4)C29—C30—C25121.4 (4)
C8—C7—C14118.9 (3)C29—C30—H30119.3
C6—C7—C14124.0 (4)C25—C30—H30119.3
C2—N1—N2—C30.7 (4)C4—N4—C8—C9177.8 (3)
O1—Cu1—N3—C3169.9 (5)Cu1—N4—C8—C94.7 (4)
N4—Cu1—N3—C322.6 (5)C6—C7—C8—N40.4 (6)
N5—Cu1—N3—C3118.3 (5)C14—C7—C8—N4178.8 (4)
Cl1—Cu1—N3—C374.2 (5)C6—C7—C8—C9178.4 (4)
O1—Cu1—N3—C27.0 (2)C14—C7—C8—C90.1 (5)
N4—Cu1—N3—C2174.4 (2)C13—N5—C9—C100.4 (5)
N5—Cu1—N3—C278.7 (3)Cu1—N5—C9—C10176.7 (3)
Cl1—Cu1—N3—C288.8 (2)C13—N5—C9—C8179.1 (3)
O1—Cu1—N4—C4132.5 (5)Cu1—N5—C9—C83.9 (4)
N5—Cu1—N4—C4177.7 (3)N4—C8—C9—N50.5 (5)
N3—Cu1—N4—C424.2 (4)C7—C8—C9—N5179.3 (3)
Cl1—Cu1—N4—C478.1 (3)N4—C8—C9—C10179.0 (3)
O1—Cu1—N4—C850.4 (6)C7—C8—C9—C100.2 (5)
N5—Cu1—N4—C85.2 (2)N5—C9—C10—C110.0 (5)
N3—Cu1—N4—C8158.7 (2)C8—C9—C10—C11179.5 (3)
Cl1—Cu1—N4—C899.0 (2)N5—C9—C10—C15179.5 (3)
O1—Cu1—N5—C137.7 (3)C8—C9—C10—C150.0 (5)
N4—Cu1—N5—C13178.4 (3)C9—C10—C11—C120.6 (5)
N3—Cu1—N5—C1378.0 (4)C15—C10—C11—C12178.9 (3)
Cl1—Cu1—N5—C1389.3 (3)C10—C11—C12—C130.8 (6)
O1—Cu1—N5—C9175.7 (2)C9—N5—C13—C120.2 (5)
N4—Cu1—N5—C94.9 (2)Cu1—N5—C13—C12176.3 (3)
N3—Cu1—N5—C9105.4 (3)C11—C12—C13—N50.4 (6)
Cl1—Cu1—N5—C987.3 (2)C8—C7—C14—C150.2 (6)
C17—N6—N7—C180.5 (4)C6—C7—C14—C15178.5 (4)
O3—Cu2—N8—C18169.9 (5)C7—C14—C15—C100.4 (6)
N10—Cu2—N8—C18122.5 (5)C9—C10—C15—C140.3 (6)
N9—Cu2—N8—C1822.8 (5)C11—C10—C15—C14179.2 (4)
Cl2—Cu2—N8—C1872.8 (5)Cu2—O3—C16—O4178.5 (3)
O3—Cu2—N8—C175.3 (2)Cu2—O3—C16—C171.4 (4)
N10—Cu2—N8—C1772.9 (4)N7—N6—C17—N80.2 (4)
N9—Cu2—N8—C17172.6 (2)N7—N6—C17—C16178.9 (4)
Cl2—Cu2—N8—C1791.8 (2)C18—N8—C17—N60.1 (4)
O3—Cu2—N9—C19134.2 (5)Cu2—N8—C17—N6171.4 (3)
N10—Cu2—N9—C19179.6 (3)C18—N8—C17—C16179.3 (3)
N8—Cu2—N9—C1922.4 (4)Cu2—N8—C17—C167.8 (4)
Cl2—Cu2—N9—C1976.6 (3)O4—C16—C17—N67.6 (6)
O3—Cu2—N9—C2352.5 (6)O3—C16—C17—N6172.5 (4)
N10—Cu2—N9—C237.1 (2)O4—C16—C17—N8173.4 (3)
N8—Cu2—N9—C23164.3 (2)O3—C16—C17—N86.5 (5)
Cl2—Cu2—N9—C2396.6 (2)N6—N7—C18—N80.6 (4)
O3—Cu2—N10—C287.4 (3)C17—N8—C18—N70.4 (4)
N9—Cu2—N10—C28177.8 (3)Cu2—N8—C18—N7164.6 (4)
N8—Cu2—N10—C2873.9 (5)C23—N9—C19—C201.6 (6)
Cl2—Cu2—N10—C2890.6 (3)Cu2—N9—C19—C20171.3 (3)
O3—Cu2—N10—C24176.6 (2)N9—C19—C20—C210.5 (6)
N9—Cu2—N10—C246.3 (2)C19—C20—C21—C220.8 (6)
N8—Cu2—N10—C24110.2 (3)C20—C21—C22—C231.0 (6)
Cl2—Cu2—N10—C2485.4 (2)C20—C21—C22—C29178.4 (4)
N4—Cu1—O1—C1114.0 (5)C19—N9—C23—C221.4 (5)
N5—Cu1—O1—C1158.6 (3)Cu2—N9—C23—C22172.7 (3)
N3—Cu1—O1—C13.5 (3)C19—N9—C23—C24178.9 (3)
Cl1—Cu1—O1—C196.7 (3)Cu2—N9—C23—C247.0 (4)
N10—Cu2—O3—C16161.1 (3)C21—C22—C23—N90.1 (5)
N9—Cu2—O3—C16116.3 (5)C29—C22—C23—N9179.5 (3)
N8—Cu2—O3—C162.2 (3)C21—C22—C23—C24179.8 (3)
Cl2—Cu2—O3—C1694.9 (3)C29—C22—C23—C240.7 (5)
Cu1—O1—C1—O2178.0 (3)C28—N10—C24—C250.8 (5)
Cu1—O1—C1—C20.8 (4)Cu2—N10—C24—C25175.7 (3)
N2—N1—C2—N30.3 (4)C28—N10—C24—C23179.2 (3)
N2—N1—C2—C1180.0 (4)Cu2—N10—C24—C234.4 (4)
C3—N3—C2—N10.2 (4)N9—C23—C24—N101.8 (5)
Cu1—N3—C2—N1170.7 (3)C22—C23—C24—N10177.9 (3)
C3—N3—C2—C1179.5 (3)N9—C23—C24—C25178.2 (3)
Cu1—N3—C2—C19.6 (4)C22—C23—C24—C252.1 (5)
O2—C1—C2—N18.4 (6)N10—C24—C25—C260.5 (5)
O1—C1—C2—N1172.8 (4)C23—C24—C25—C26179.4 (3)
O2—C1—C2—N3171.3 (4)N10—C24—C25—C30178.0 (3)
O1—C1—C2—N37.5 (5)C23—C24—C25—C302.0 (5)
N1—N2—C3—N30.9 (4)C24—C25—C26—C270.4 (6)
C2—N3—C3—N20.6 (4)C30—C25—C26—C27178.8 (4)
Cu1—N3—C3—N2162.7 (4)C25—C26—C27—C281.1 (6)
C8—N4—C4—C50.6 (6)C24—N10—C28—C270.1 (6)
Cu1—N4—C4—C5176.4 (3)Cu2—N10—C28—C27175.7 (3)
N4—C4—C5—C60.4 (6)C26—C27—C28—N100.8 (6)
C4—C5—C6—C71.0 (6)C23—C22—C29—C300.7 (6)
C5—C6—C7—C80.6 (6)C21—C22—C29—C30178.7 (4)
C5—C6—C7—C14177.7 (4)C22—C29—C30—C250.8 (6)
C4—N4—C8—C71.0 (5)C24—C25—C30—C290.6 (6)
Cu1—N4—C8—C7176.5 (3)C26—C25—C30—C29179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.992.835 (4)166
N7—H7···O2ii0.861.942.797 (4)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C3H2N3O2)Cl(C12H8N2)]
Mr391.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.7302 (16), 17.562 (3), 14.299 (2)
β (°) 113.836 (2)
V3)2924.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.53 × 0.49 × 0.47
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.467, 0.503
No. of measured, independent and
observed [I > 2σ(I)] reflections
14193, 5142, 3277
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.04
No. of reflections5142
No. of parameters433
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.992.835 (4)166.3
N7—H7···O2ii0.861.942.797 (4)171.8
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Fund of the Talent Highland Research Programme of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).

References

First citationGuo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217–o3218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, K., Yin, X.-H., Yu, F., Zhu, J. & Lin, C.-W. (2008). Acta Cryst. E64. In the press.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds