metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic polymorph of poly[[di-μ-aqua-tri­aquadi-μ-oxalato-barium(II)­copper(II)] monohydrate]

aDepartment of Inorganic Chemistry, University of Yaounde I, POB 812 Yaounde, Cameroon, and bInstitut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany
*Correspondence e-mail: belombe2000@yahoo.fr

(Received 16 November 2007; accepted 29 November 2007; online 6 December 2007)

A monoclinic polymorph of the title compound, {[BaCu(C2O4)2(H2O)5]·H2O}n, is reported. The structure is best described as a coordination polymer where the CuII and BaII centers are coordinated by five and nine O atoms, respectively, in capped quadratic antiprismatic and tetragonal pyramidal geometries. The polymerization arises due to the presence of bridging mono- and bidentate oxalate ligands as well as bridging water mol­ecules. The crystal structure is consolidated by a three-dimensional network of hydrogen bonding.

Related literature

For related literature, see: Bélombé et al. (2003[Bélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.], 2006[Bélombé, M. M., Nenwa, J., Fokwa, B. P. & Dronskowski, R. (2006). Acta Cryst. E62, m1400-m1402.]); Belombe, Nenwa, Bebga et al. (2007[Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037-m2038.]); Bélombé, Nenwa, Mbiangué et al. (2007[Bélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Gouet Bebga, Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2007). Inorg. Chim. Acta. doi: 10.1016/j.ica.2007.03.003.]); Bouayad et al. (1995[Bouayad, A., Trobe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.]); Nenwa (2004[Nenwa, J. (2004). PhD dissertation, University of Yaounde I, Cameroon.]). For synthesis, see: Kirschner (1960[Kirschner, S. (1960). Inorg. Synth. 6, 1-2.]).

[Scheme 1]

Experimental

Crystal data
  • [BaCu(C2O4)2(H2O)5]·H2O

  • Mr = 485.02

  • Monoclinic, C 2/c

  • a = 15.744 (2) Å

  • b = 10.7565 (15) Å

  • c = 15.345 (2) Å

  • β = 97.331 (2)°

  • V = 2577.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.76 mm−1

  • T = 293 (2) K

  • 0.28 × 0.14 × 0.10 mm

Data collection
  • Bruker APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.462, Tmax = 0.631

  • 17321 measured reflections

  • 3213 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.32

  • 3213 reflections

  • 228 parameters

  • 12 restraints

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ba—O11 2.751 (2)
Ba—O13 2.770 (2)
Ba—O7 2.7888 (17)
Ba—O12 2.800 (2)
Ba—O8 2.8066 (17)
Ba—O6 2.8393 (17)
Ba—O15 2.846 (2)
Ba—O15i 2.8765 (19)
Ba—O10 2.9140 (18)
Cu—O3 1.9252 (16)
Cu—O2 1.9326 (16)
Cu—O4 1.9393 (17)
Cu—O1 1.9440 (16)
Cu—O10 2.451 (3)
O3—Cu—O2 174.10 (8)
O3—Cu—O4 85.44 (7)
O2—Cu—O4 93.52 (7)
O3—Cu—O1 94.90 (7)
O2—Cu—O1 84.69 (7)
O4—Cu—O1 165.84 (8)
O4—Cu—O10 96.48 (7)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O7ii 0.82 (2) 1.93 (2) 2.740 (2) 168 (3)
O10—H10B⋯O5iii 0.80 (2) 2.02 (3) 2.801 (2) 163 (4)
O10—H10B⋯O8ii 0.80 (2) 2.59 (3) 3.114 (2) 125 (3)
O11—H11A⋯O2 0.80 (2) 2.13 (3) 2.903 (3) 161 (4)
O11—H11B⋯O6iv 0.84 (3) 2.00 (3) 2.835 (3) 172 (4)
O11—H11B⋯O2v 0.84 (3) 2.63 (4) 3.127 (3) 119 (3)
O12—H12A⋯O1vi 0.80 (2) 1.98 (3) 2.768 (3) 165 (4)
O13—H13A⋯O5vii 0.82 (3) 2.02 (3) 2.832 (3) 168 (6)
O13—H13B⋯O14i 0.81 (3) 2.41 (3) 3.180 (4) 159 (6)
O14—H14A⋯O11viii 0.80 (3) 2.25 (3) 3.041 (3) 171 (5)
O14—H14B⋯O4vii 0.83 (3) 2.21 (3) 3.007 (3) 163 (5)
O15—H15A⋯O3iv 0.81 (2) 2.05 (3) 2.845 (3) 165 (4)
O12—H12B⋯O14 0.78 (2) 2.14 (3) 2.918 (3) 173 (4)
O15—H15B⋯O14i 0.76 (3) 2.24 (3) 2.952 (3) 156 (5)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vi) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (vii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.624a. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bouayad et al. (1995) reported the structure of the title compound, (I), in the triclinic space group P-1. Herein, a new polymorph of (I) is reported which crystallizes in the monoclinic space group C2/c. It was obtained unintentionally from aqueous solution during an on-going study of oxalate-based multifunctional materials (Bélombé et al., 2003, 2006; Belombe, Nenwa, Bebga et al., 2007; Bélombé, Nenwa, Mbiangué et al., 2007; Nenwa, 2004), and is formulated as {[Ba(H2O)4][Cu(C2O4)2(H2O)].H2O}n. The two polymorphs structurally differ with respect to their crystal systems as well as in their coordination modes around the metal centers and in the formation of their lattice networks in the bulk.

The lattice network reported by Bouayad et al. (1995) was shown to be a coordination polymer where each oxalate ion acts as a bidentate ligand, coordinating the metal centers in three different modes: first with the "internal", then with the "external" O atoms linked, respectively to CuII and BaII centers (thus generating pentacyclic rings) and, finally, with one "internal" and one "external" oxalato-O atoms bound to a neighboring Ba atom (thus forming a tetracyclic ring). In that structure, each CuII ion is hexa-coordinated by six O atoms that define a highly distorted octahedral geometry. By contrast, in the monoclinic polymorph, the CuII atom is penta-coordinated in an approximately square pyramidal geometry defined by five O atoms, with the Cu site slightly displaced from the least-squares plane through the O1–O4 atoms towards the axial water-O10 atom (Fig. 1). Therein, the coordination sphere around each BaII center which assumes coordination number nine, as opposed to coordination number eleven in the triclinic polymorph, is emphasized. In the monoclinic form, the Ba site is located approximately at the center of a capped tetragonal antiprism, reminiscent of the geometry around the K+site in the salt K[Cr(C2O4)2(H2O)2] (Bélombé et al., 2006). Selected geometric parameters for the monoclinic polymorph are listed in Table 1 and compare very well with the published data for the triclinic polymorph (Bouayad et al., 1995).

Taken individually, the [Cu(C2O4)2(H2O)]2- complex anions are virtually the same but are connected differently in the triclinic and monoclinic polymorphs. In the monoclinic polymorph, these ions are interconnected into layers parallel to the (101) plane via O–H···O bridges which involve the uncoordinated water molecules (Fig. 2). The 3-D polymerization arises from the linkage of "external" oxalato-O atoms to neighboring Ba centers via mono- or bi-dentate coordination modes, and by single and double water bridges across the O10 and O15/O15i atoms, respectively (Table 2). The latter double bridge interconnects the next two neighboring Ba atoms, related by a center of inversion, with a Ba···Ba separation of 4.788 (2) Å.

In conclusion, the present study reveals that the unit cell symmetry in both structural polymorphs is basically dictated by the differing spatial orientations of the common anionic complexes, [Cu(C2O4)2(H2O)]2-, and variable coordination modes of the BaII centers.

Related literature top

For related literature, see: Bélombé et al. (2003, 2006); Belombe, Nenwa, Bebga et al. (2007); Bélombé, Nenwa, Mbiangué et al. (2007); Bouayad et al. (1995); Nenwa (2004). For synthesis, see: Kirschner (1960).

Experimental top

Compound (I) was obtained by mixing Ba(NO3)2 (0.31 g, 1.2 mmol, Riedel-de Haën, pure) and K2[Cu(C2O4)2].2H2O (0.18 g, 0.51 mmol), freshly prepared according to the method of Kirschner (1960), in warm water (60 °C; 100 ml). A solid precipitated immediately. The mixture was stirred for about 1 h at the same temperature and left to stand undisturbed over three days at ambient temperature. The blue prismatic crystals that formed were isolated by filtration, dried in air and one of these was used in the X-ray diffraction analysis.

Refinement top

All water-bound H atoms were first located in a difference Fourier map and then refined with distance restraints of O–H = 0.83 (3) Å with all Uiso(H) freely refined. The highest peak and deepest hole in the final difference Fourier map are, respectively, 0.49 Å from atom H13B and 1.00 Å from Cu.

Structure description top

Bouayad et al. (1995) reported the structure of the title compound, (I), in the triclinic space group P-1. Herein, a new polymorph of (I) is reported which crystallizes in the monoclinic space group C2/c. It was obtained unintentionally from aqueous solution during an on-going study of oxalate-based multifunctional materials (Bélombé et al., 2003, 2006; Belombe, Nenwa, Bebga et al., 2007; Bélombé, Nenwa, Mbiangué et al., 2007; Nenwa, 2004), and is formulated as {[Ba(H2O)4][Cu(C2O4)2(H2O)].H2O}n. The two polymorphs structurally differ with respect to their crystal systems as well as in their coordination modes around the metal centers and in the formation of their lattice networks in the bulk.

The lattice network reported by Bouayad et al. (1995) was shown to be a coordination polymer where each oxalate ion acts as a bidentate ligand, coordinating the metal centers in three different modes: first with the "internal", then with the "external" O atoms linked, respectively to CuII and BaII centers (thus generating pentacyclic rings) and, finally, with one "internal" and one "external" oxalato-O atoms bound to a neighboring Ba atom (thus forming a tetracyclic ring). In that structure, each CuII ion is hexa-coordinated by six O atoms that define a highly distorted octahedral geometry. By contrast, in the monoclinic polymorph, the CuII atom is penta-coordinated in an approximately square pyramidal geometry defined by five O atoms, with the Cu site slightly displaced from the least-squares plane through the O1–O4 atoms towards the axial water-O10 atom (Fig. 1). Therein, the coordination sphere around each BaII center which assumes coordination number nine, as opposed to coordination number eleven in the triclinic polymorph, is emphasized. In the monoclinic form, the Ba site is located approximately at the center of a capped tetragonal antiprism, reminiscent of the geometry around the K+site in the salt K[Cr(C2O4)2(H2O)2] (Bélombé et al., 2006). Selected geometric parameters for the monoclinic polymorph are listed in Table 1 and compare very well with the published data for the triclinic polymorph (Bouayad et al., 1995).

Taken individually, the [Cu(C2O4)2(H2O)]2- complex anions are virtually the same but are connected differently in the triclinic and monoclinic polymorphs. In the monoclinic polymorph, these ions are interconnected into layers parallel to the (101) plane via O–H···O bridges which involve the uncoordinated water molecules (Fig. 2). The 3-D polymerization arises from the linkage of "external" oxalato-O atoms to neighboring Ba centers via mono- or bi-dentate coordination modes, and by single and double water bridges across the O10 and O15/O15i atoms, respectively (Table 2). The latter double bridge interconnects the next two neighboring Ba atoms, related by a center of inversion, with a Ba···Ba separation of 4.788 (2) Å.

In conclusion, the present study reveals that the unit cell symmetry in both structural polymorphs is basically dictated by the differing spatial orientations of the common anionic complexes, [Cu(C2O4)2(H2O)]2-, and variable coordination modes of the BaII centers.

For related literature, see: Bélombé et al. (2003, 2006); Belombe, Nenwa, Bebga et al. (2007); Bélombé, Nenwa, Mbiangué et al. (2007); Bouayad et al. (1995); Nenwa (2004). For synthesis, see: Kirschner (1960).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), expanded to show the coordination geometry around the BaII center, showing atom-numbering scheme and 50% probability displacement ellipsoids. Symmetry codes: (i) -x, y, -z + 1/2; (ii) x, -y + 1, z + 1/2; (iii) x - 1/2, y - 1/2, z; (iv) x, -y + 1, z - 1/2; (v) x + 1/2, y + 1/2, z.
[Figure 2] Fig. 2. A view of the crystal packing in (I) projected down the b axis. Hydrogen bonds are drawn as dashed lines and coordinate bonds to the Ba centers are omitted for clarity.
poly[[di-µ-aqua-triaquadi-µ-oxalato-barium(II)copper(II)] monohydrate] top
Crystal data top
[BaCu(C2O4)2(H2O)5]·H2OF(000) = 1864
Mr = 485.02Dx = 2.500 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3213 reflections
a = 15.744 (2) Åθ = 2.3–28.3°
b = 10.7565 (15) ŵ = 4.76 mm1
c = 15.345 (2) ÅT = 293 K
β = 97.331 (2)°Prism, blue
V = 2577.5 (6) Å30.28 × 0.14 × 0.10 mm
Z = 8
Data collection top
Bruker APEX CCD area detector
diffractometer
3213 independent reflections
Radiation source: fine-focus sealed tube3180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω & φ scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2020
Tmin = 0.462, Tmax = 0.631k = 1414
17321 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050All H-atom parameters refined
S = 1.32 w = 1/[σ2(Fo2) + (0.0219P)2 + 2.8035P]
where P = (Fo2 + 2Fc2)/3
3213 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.49 e Å3
12 restraintsΔρmin = 1.00 e Å3
Crystal data top
[BaCu(C2O4)2(H2O)5]·H2OV = 2577.5 (6) Å3
Mr = 485.02Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.744 (2) ŵ = 4.76 mm1
b = 10.7565 (15) ÅT = 293 K
c = 15.345 (2) Å0.28 × 0.14 × 0.10 mm
β = 97.331 (2)°
Data collection top
Bruker APEX CCD area detector
diffractometer
3213 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3180 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.631Rint = 0.022
17321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02012 restraints
wR(F2) = 0.050All H-atom parameters refined
S = 1.32Δρmax = 0.49 e Å3
3213 reflectionsΔρmin = 1.00 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.141583 (8)0.466998 (11)0.208698 (8)0.01861 (5)
Cu0.392694 (18)0.57358 (3)0.044543 (18)0.02206 (7)
O10.32532 (11)0.68548 (15)0.03636 (11)0.0259 (3)
O20.32797 (11)0.44372 (15)0.02082 (11)0.0246 (3)
O30.46519 (11)0.70211 (15)0.10073 (11)0.0253 (3)
O40.47712 (11)0.45898 (14)0.10183 (12)0.0265 (4)
O50.59239 (11)0.46396 (15)0.20210 (12)0.0269 (4)
O60.23179 (11)0.57822 (15)0.36098 (11)0.0266 (3)
O70.23098 (12)0.32494 (15)0.34220 (12)0.0297 (4)
O80.08384 (11)0.22003 (16)0.19560 (12)0.0286 (4)
C10.27787 (14)0.4853 (2)0.08588 (15)0.0191 (4)
C20.52919 (14)0.6586 (2)0.15113 (14)0.0201 (4)
C30.53447 (14)0.5145 (2)0.15330 (15)0.0195 (4)
C40.27694 (14)0.6281 (2)0.09552 (15)0.0201 (4)
O100.29911 (11)0.57403 (16)0.16050 (12)0.0251 (3)
O110.21699 (14)0.32422 (18)0.09118 (15)0.0383 (5)
O120.09995 (15)0.58277 (19)0.04541 (13)0.0363 (4)
O130.09098 (17)0.7070 (2)0.24223 (18)0.0485 (6)
O140.06779 (16)0.6935 (2)0.05515 (17)0.0482 (5)
O150.03947 (12)0.45626 (19)0.34874 (13)0.0290 (4)
H10A0.287 (2)0.648 (2)0.166 (2)0.041 (9)*
H10B0.332 (2)0.557 (3)0.2032 (19)0.042 (10)*
H11A0.257 (2)0.351 (4)0.069 (2)0.053 (11)*
H11B0.237 (2)0.254 (3)0.106 (3)0.061 (12)*
H12A0.129 (2)0.643 (3)0.040 (2)0.046 (10)*
H12B0.0539 (18)0.611 (4)0.043 (3)0.056 (12)*
H13A0.097 (4)0.779 (3)0.226 (4)0.104 (14)*
H13B0.078 (3)0.721 (5)0.291 (2)0.104 (14)*
H14A0.106 (2)0.697 (4)0.016 (2)0.069 (14)*
H14B0.047 (3)0.764 (3)0.061 (3)0.091 (17)*
H15A0.047 (2)0.386 (3)0.368 (2)0.051 (11)*
H15B0.059 (3)0.506 (4)0.381 (3)0.066 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.01904 (8)0.01779 (7)0.01834 (8)0.00038 (4)0.00019 (5)0.00062 (4)
Cu0.02429 (14)0.01650 (13)0.02248 (14)0.00159 (10)0.00821 (10)0.00040 (10)
O10.0300 (8)0.0164 (7)0.0279 (8)0.0009 (6)0.0089 (7)0.0011 (6)
O20.0303 (9)0.0172 (7)0.0234 (8)0.0024 (6)0.0086 (7)0.0024 (6)
O30.0263 (8)0.0181 (7)0.0286 (8)0.0022 (6)0.0071 (6)0.0001 (6)
O40.0285 (9)0.0182 (7)0.0294 (9)0.0000 (6)0.0090 (7)0.0023 (6)
O50.0244 (8)0.0235 (8)0.0302 (9)0.0007 (6)0.0059 (7)0.0022 (6)
O60.0294 (8)0.0197 (8)0.0275 (8)0.0049 (6)0.0090 (7)0.0004 (6)
O70.0349 (9)0.0191 (8)0.0307 (9)0.0022 (7)0.0132 (7)0.0014 (7)
O80.0256 (8)0.0252 (8)0.0328 (9)0.0071 (7)0.0053 (7)0.0035 (7)
C10.0189 (9)0.0173 (9)0.0208 (10)0.0010 (7)0.0009 (8)0.0002 (8)
C20.0215 (10)0.0193 (10)0.0194 (10)0.0025 (8)0.0023 (8)0.0002 (8)
C30.0206 (10)0.0189 (10)0.0190 (10)0.0006 (8)0.0026 (8)0.0001 (8)
C40.0204 (10)0.0162 (9)0.0228 (10)0.0003 (7)0.0003 (8)0.0008 (8)
O100.0253 (8)0.0215 (8)0.0266 (8)0.0002 (7)0.0044 (7)0.0004 (7)
O110.0501 (12)0.0192 (8)0.0503 (12)0.0010 (8)0.0250 (10)0.0001 (8)
O120.0451 (12)0.0278 (10)0.0344 (10)0.0054 (9)0.0014 (9)0.0072 (8)
O130.0605 (15)0.0242 (10)0.0625 (15)0.0077 (10)0.0139 (12)0.0060 (10)
O140.0460 (13)0.0465 (13)0.0501 (14)0.0039 (11)0.0018 (11)0.0160 (11)
O150.0263 (9)0.0353 (10)0.0245 (9)0.0004 (7)0.0005 (7)0.0006 (8)
Geometric parameters (Å, º) top
Ba—O112.751 (2)O7—C4ii1.231 (3)
Ba—O132.770 (2)O8—C2iii1.222 (3)
Ba—O72.7888 (17)C1—O6iv1.228 (3)
Ba—O122.800 (2)C1—C41.542 (3)
Ba—O82.8066 (17)C2—O8v1.222 (3)
Ba—O62.8393 (17)C2—C31.552 (3)
Ba—O152.846 (2)C4—O7iv1.231 (3)
Ba—O15i2.8765 (19)O10—H10A0.82 (2)
Ba—O102.9140 (18)O10—H10B0.80 (2)
Ba—Bai4.7880 (7)O11—H11A0.80 (2)
Cu—O31.9252 (16)O11—H11B0.84 (3)
Cu—O21.9326 (16)O12—H12A0.80 (2)
Cu—O41.9393 (17)O12—H12B0.78 (2)
Cu—O11.9440 (16)O13—H13A0.82 (3)
Cu—O102.451 (3)O13—H13B0.81 (3)
O1—C41.269 (3)O14—H14A0.80 (3)
O2—C11.272 (3)O14—H14B0.83 (3)
O3—C21.278 (3)O15—Bai2.8765 (19)
O4—C31.270 (3)O15—H15A0.81 (2)
O5—C31.230 (3)O15—H15B0.76 (3)
O6—C1ii1.228 (3)
O11—Ba—O13143.20 (7)O3—Cu—O2174.10 (8)
O11—Ba—O787.48 (6)O3—Cu—O485.44 (7)
O13—Ba—O7120.30 (7)O2—Cu—O493.52 (7)
O11—Ba—O1274.52 (7)O3—Cu—O194.90 (7)
O13—Ba—O1273.24 (7)O2—Cu—O184.69 (7)
O7—Ba—O12160.00 (6)O4—Cu—O1165.84 (8)
O11—Ba—O865.64 (6)O4—Cu—O1096.48 (7)
O13—Ba—O8142.89 (7)C4—O1—Cu112.60 (14)
O7—Ba—O870.27 (5)C1—O2—Cu112.70 (14)
O12—Ba—O8108.68 (6)C2—O3—Cu112.62 (14)
O11—Ba—O6124.22 (6)C3—O4—Cu112.01 (14)
O13—Ba—O665.15 (7)C1ii—O6—Ba120.20 (14)
O7—Ba—O658.25 (5)C4ii—O7—Ba122.45 (14)
O12—Ba—O6125.77 (6)C2iii—O8—Ba138.63 (15)
O8—Ba—O6125.53 (5)O6iv—C1—O2125.4 (2)
O11—Ba—O15143.62 (6)O6iv—C1—C4119.5 (2)
O13—Ba—O1572.18 (7)O2—C1—C4115.03 (19)
O7—Ba—O1572.77 (6)O8v—C2—O3125.8 (2)
O12—Ba—O15127.12 (6)O8v—C2—C3119.7 (2)
O8—Ba—O1578.85 (6)O3—C2—C3114.49 (18)
O6—Ba—O1570.55 (6)O5—C3—O4125.7 (2)
O11—Ba—O15i105.69 (6)O5—C3—C2119.2 (2)
O13—Ba—O15i78.29 (7)O4—C3—C2115.09 (19)
O7—Ba—O15i126.20 (6)O7iv—C4—O1126.5 (2)
O12—Ba—O15i68.53 (6)O7iv—C4—C1118.73 (19)
O8—Ba—O15i68.95 (5)O1—C4—C1114.74 (19)
O6—Ba—O15i129.88 (5)Ba—O10—H10A98 (2)
O15—Ba—O15i66.20 (6)Ba—O10—H10B101 (3)
O11—Ba—O1066.53 (6)H10A—O10—H10B105 (3)
O13—Ba—O1087.32 (6)Ba—O11—H11A120 (3)
O7—Ba—O1092.11 (5)Ba—O11—H11B120 (3)
O12—Ba—O1072.95 (6)H11A—O11—H11B98 (4)
O8—Ba—O10129.36 (5)Ba—O12—H12A113 (3)
O6—Ba—O1071.93 (5)Ba—O12—H12B109 (3)
O15—Ba—O10142.08 (5)H12A—O12—H12B103 (4)
O15i—Ba—O10141.29 (5)Ba—O13—H13A141 (4)
O11—Ba—Bai131.91 (5)Ba—O13—H13B117 (4)
O13—Ba—Bai69.58 (5)H13A—O13—H13B99 (5)
O7—Ba—Bai101.84 (4)H14A—O14—H14B106 (5)
O12—Ba—Bai96.74 (5)Ba—O15—Bai113.60 (6)
O8—Ba—Bai73.44 (4)Ba—O15—H15A104 (3)
O6—Ba—Bai99.61 (4)Bai—O15—H15A104 (3)
O15—Ba—Bai33.40 (4)Ba—O15—H15B104 (4)
O15i—Ba—Bai33.00 (4)Bai—O15—H15B118 (4)
O10—Ba—Bai156.72 (3)H15A—O15—H15B113 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x1/2, y1/2, z; (iv) x, y+1, z1/2; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O7vi0.82 (2)1.93 (2)2.740 (2)168 (3)
O10—H10B···O5vii0.80 (2)2.02 (3)2.801 (2)163 (4)
O10—H10B···O8vi0.80 (2)2.59 (3)3.114 (2)125 (3)
O11—H11A···O20.80 (2)2.13 (3)2.903 (3)161 (4)
O11—H11B···O6viii0.84 (3)2.00 (3)2.835 (3)172 (4)
O11—H11B···O2ix0.84 (3)2.63 (4)3.127 (3)119 (3)
O12—H12A···O1x0.80 (2)1.98 (3)2.768 (3)165 (4)
O13—H13A···O5xi0.82 (3)2.02 (3)2.832 (3)168 (6)
O13—H13B···O14i0.81 (3)2.41 (3)3.180 (4)159 (6)
O14—H14A···O11xii0.80 (3)2.25 (3)3.041 (3)171 (5)
O14—H14B···O4xi0.83 (3)2.21 (3)3.007 (3)163 (5)
O15—H15A···O3viii0.81 (2)2.05 (3)2.845 (3)165 (4)
O12—H12B···O140.78 (2)2.14 (3)2.918 (3)173 (4)
O15—H15B···O14i0.76 (3)2.24 (3)2.952 (3)156 (5)
Symmetry codes: (i) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+3/2, z; (xi) x1/2, y+1/2, z; (xii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[BaCu(C2O4)2(H2O)5]·H2O
Mr485.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.744 (2), 10.7565 (15), 15.345 (2)
β (°) 97.331 (2)
V3)2577.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.76
Crystal size (mm)0.28 × 0.14 × 0.10
Data collection
DiffractometerBruker APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.462, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
17321, 3213, 3180
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.32
No. of reflections3213
No. of parameters228
No. of restraints12
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 1.00

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ba—O112.751 (2)Ba—O15i2.8765 (19)
Ba—O132.770 (2)Ba—O102.9140 (18)
Ba—O72.7888 (17)Cu—O31.9252 (16)
Ba—O122.800 (2)Cu—O21.9326 (16)
Ba—O82.8066 (17)Cu—O41.9393 (17)
Ba—O62.8393 (17)Cu—O11.9440 (16)
Ba—O152.846 (2)Cu—O102.451 (3)
O3—Cu—O2174.10 (8)O2—Cu—O184.69 (7)
O3—Cu—O485.44 (7)O4—Cu—O1165.84 (8)
O2—Cu—O493.52 (7)O4—Cu—O1096.48 (7)
O3—Cu—O194.90 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O7ii0.82 (2)1.93 (2)2.740 (2)168 (3)
O10—H10B···O5iii0.80 (2)2.02 (3)2.801 (2)163 (4)
O10—H10B···O8ii0.80 (2)2.59 (3)3.114 (2)125 (3)
O11—H11A···O20.80 (2)2.13 (3)2.903 (3)161 (4)
O11—H11B···O6iv0.84 (3)2.00 (3)2.835 (3)172 (4)
O11—H11B···O2v0.84 (3)2.63 (4)3.127 (3)119 (3)
O12—H12A···O1vi0.80 (2)1.98 (3)2.768 (3)165 (4)
O13—H13A···O5vii0.82 (3)2.02 (3)2.832 (3)168 (6)
O13—H13B···O14i0.81 (3)2.41 (3)3.180 (4)159 (6)
O14—H14A···O11viii0.80 (3)2.25 (3)3.041 (3)171 (5)
O14—H14B···O4vii0.83 (3)2.21 (3)3.007 (3)163 (5)
O15—H15A···O3iv0.81 (2)2.05 (3)2.845 (3)165 (4)
O12—H12B···O140.78 (2)2.14 (3)2.918 (3)173 (4)
O15—H15B···O14i0.76 (3)2.24 (3)2.952 (3)156 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+3/2, z; (vii) x1/2, y+1/2, z; (viii) x, y+1, z.
 

Acknowledgements

The authors are grateful to Klaus Kruse (RWTH Aachen) for technical support during the X-ray experiments.

References

First citationBelombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J., Fokwa, B. P. & Dronskowski, R. (2006). Acta Cryst. E62, m1400–m1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Gouet Bebga, Majoumo-Mbé, F., Hey-Hawkins, E. & Lönnecke, P. (2007). Inorg. Chim. Acta. doi: 10.1016/j.ica.2007.03.003.  Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118.  Google Scholar
First citationBouayad, A., Trobe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1–7.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART. Version 5.624a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKirschner, S. (1960). Inorg. Synth. 6, 1–2.  CrossRef CAS Web of Science Google Scholar
First citationNenwa, J. (2004). PhD dissertation, University of Yaounde I, Cameroon.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds