organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-tosyl-2-pyrrol­yl)ethyne

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 21 November 2007; accepted 24 November 2007; online 6 December 2007)

The title mol­ecule, C24H20N2O4S2, has crystallographic inversion symmetry with a triple-bond distance of 1.206 (2) Å. The alkyne is not quite linear, with a C—C≡C angle of 175.78 (16)°. The planar pyrrole rings are parallel but offset from coplanarity by 0.318 (1) Å. The conformation of the sulfonyl group with respect to the pyrrole ring is such that an O atom is nearly eclipsed with this ring, having an O—S—N—C torsion angle of 3.48 (11)°. C—H⋯O inter­actions [C⋯O 3.278 (2) Å, 136° about H] between pyrrole H and sulfonyl O atoms lead to the formation of ladder-like chains.

Related literature

For related structures, see Abell et al. (1998[Abell, A. D., Nabbs, B. K. & Battersby, A. R. (1998). J. Org. Chem. 63, 8163-8169.]); Knight et al. (2003[Knight, L. W., Padgett, C. W., Huffman, J. W. & Pennington, W. T. (2003). Acta Cryst. E59, o762-o764.]); Tanui et al. (2008[Tanui, H. K., Fronczek, F. R. & Vicente, M. G. H. (2008). Acta Cryst. E64, o75.]). For related literature, see: Vogel (1996[Vogel, E. (1996). Pure Appl. Chem. 68, 1355-1360.]); Chinchilla & Najera (2007[Chinchilla, R. & Najera, C. (2007). Chem. Rev. 107, 874-922.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O4S2

  • Mr = 464.54

  • Monoclinic, P 21 /c

  • a = 8.5127 (15) Å

  • b = 16.822 (2) Å

  • c = 7.5311 (11) Å

  • β = 101.049 (7)°

  • V = 1058.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 90 K

  • 0.35 × 0.30 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer (with Oxford Cryostream)

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.896, Tmax = 0.966

  • 16546 measured reflections

  • 3565 independent reflections

  • 2995 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.05

  • 3565 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.53 3.278 (2) 136
Symmetry code: (i) x, y, z + 1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and HKL SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bis(1-tosyl-pyrrol-2-yl)ethyne (I) is an important intermediate in the synthesis of porphyrin analogues containing a two-carbon interpyrrolic bridge such as in corrphycene (Vogel, 1996). Compound (I) was prepared by an improved Sonogashira coupling reaction (Chinchilla & Najera, 2007) between 2-bromo-1-tosyl-pyrrole and ethyne-trimethylsilane in the presence of Pd(0) and Cu(I) catalysts at room temperature, see Experimental.

The molecule lies about an inversion center. The pyrrole rings are experimentally planar, but offset 0.318 (1) Å from co-planarity, because of the deviation from linearity of the C—CC—C group. Pyrrole-H atoms form intermolecular C—H···O interactions (Desiraju & Steiner, 1999) with sulfonate-O, C···O 3.278 (2) Å and angle of 136° about H. Thes einteractions lead to the formation of ladder-like chains along the [001] direction, Fig. 2.

The structures of related tosylpyrroles, i.e. 2-bromo-N-(p-toluenesulfonyl)pyrrole (Abell et al., 1998) and 2-chloromethyl-1-(4-methylphenylsulfonyl)pyrrole (Knight et al., 2003) have been reported. A similar compound containing the bis(2-pyrrolyl)ethyne core (Tanui et al., 2008) lies on a twofold axis rather than an inversion center, and has its pyrrole groups twisted by 40.49 (4)° from co-planarity.

Related literature top

For related structures, see Abell et al. (1998); Knight et al. (2003); Tanui et al. (2008). For related literature, see: Vogel (1996); Chinchilla & Najera (2007); Desiraju & Steiner (1999).

Experimental top

To a 50 ml round bottom flask was added 2-bromo-1-tosyl-pyrrole (0.3 g, 1 mmol) followed by Pd(PPh)2Cl2(0.042 g, 0.06 mmol) and CuI (0.038 g 0.2 mmol). The flask was sealed and placed in a dry ice bath under N2. Trimethylsilanylethyne (0.072 ml, 0.5 mmol), DBU (0.9 ml, 6 mmol) and water (0.0072 ml, 40 molar equiv.) were dissolved in benzene (5 ml) and added to the reaction flask. After the mixture froze in a dry ice bath, the flask was evacuated and N2 gas added. The resulting reaction mixture was allowed to warm slowly to room temperature and was stirred until complete disappearance of the starting material, by TLC. The reaction mixture was worked up by adding ethyl acetate (100 ml), and washing the organic layer three times with saline. The organic phase was dried over anhydrous sodium bicarbonate and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography using hexane/ethyl acetate (5:1) for elution. The bispyrrole-ethyne (I) was obtained in 8.4% yield (0.0194 g) and recrystallized from dichloromethane to afford colorless crystals. 1H NMR (250 MHz, CDCl3, 293 K, δ): 7.9 (4H, B, CH), 7.4 (4H, B, CH), 7.3 (2H, B, CH), 6.7 (2H, B, CH), 6.3 (2H, B, CH), 2.4 (6H, S, CH3). MS (EI) m/z: 465.0939 (M+). M.P.: 459 K.

Refinement top

H atoms were placed in idealized positions with C—H distances 0.95–0.98 Å and thereafter treated as riding. Uiso for H was assigned as 1.2xUeq of the attached C atoms (1.5 for methyl). A torsional parameter was refined for the methyl group.

Structure description top

Bis(1-tosyl-pyrrol-2-yl)ethyne (I) is an important intermediate in the synthesis of porphyrin analogues containing a two-carbon interpyrrolic bridge such as in corrphycene (Vogel, 1996). Compound (I) was prepared by an improved Sonogashira coupling reaction (Chinchilla & Najera, 2007) between 2-bromo-1-tosyl-pyrrole and ethyne-trimethylsilane in the presence of Pd(0) and Cu(I) catalysts at room temperature, see Experimental.

The molecule lies about an inversion center. The pyrrole rings are experimentally planar, but offset 0.318 (1) Å from co-planarity, because of the deviation from linearity of the C—CC—C group. Pyrrole-H atoms form intermolecular C—H···O interactions (Desiraju & Steiner, 1999) with sulfonate-O, C···O 3.278 (2) Å and angle of 136° about H. Thes einteractions lead to the formation of ladder-like chains along the [001] direction, Fig. 2.

The structures of related tosylpyrroles, i.e. 2-bromo-N-(p-toluenesulfonyl)pyrrole (Abell et al., 1998) and 2-chloromethyl-1-(4-methylphenylsulfonyl)pyrrole (Knight et al., 2003) have been reported. A similar compound containing the bis(2-pyrrolyl)ethyne core (Tanui et al., 2008) lies on a twofold axis rather than an inversion center, and has its pyrrole groups twisted by 40.49 (4)° from co-planarity.

For related structures, see Abell et al. (1998); Knight et al. (2003); Tanui et al. (2008). For related literature, see: Vogel (1996); Chinchilla & Najera (2007); Desiraju & Steiner (1999).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and HKL SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% level and H atoms having arbitrary radius. Unlabelled atoms are related by symmetry operation: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. View approximately down the b axis of the supramolecular chain in (I), showing C—H···O interactions as dashed lines.
Bis(1-tosyl-2-pyrrolyl)ethyne top
Crystal data top
C24H20N2O4S2F(000) = 484
Mr = 464.54Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3246 reflections
a = 8.5127 (15) Åθ = 2.5–32.5°
b = 16.822 (2) ŵ = 0.29 mm1
c = 7.5311 (11) ÅT = 90 K
β = 101.049 (7)°Fragment, colorless
V = 1058.5 (3) Å30.35 × 0.30 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
3565 independent reflections
Radiation source: fine-focus sealed tube2995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scans with κ offsetsθmax = 32.6°, θmin = 2.7°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
h = 1212
Tmin = 0.896, Tmax = 0.966k = 2024
16546 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5421P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3565 reflectionsΔρmax = 0.39 e Å3
147 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (19)
Crystal data top
C24H20N2O4S2V = 1058.5 (3) Å3
Mr = 464.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5127 (15) ŵ = 0.29 mm1
b = 16.822 (2) ÅT = 90 K
c = 7.5311 (11) Å0.35 × 0.30 × 0.12 mm
β = 101.049 (7)°
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
3565 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
2995 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.966Rint = 0.019
16546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3565 reflectionsΔρmin = 0.54 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17966 (3)0.588570 (17)0.18361 (4)0.01389 (9)
O10.03490 (11)0.62987 (6)0.10845 (12)0.0205 (2)
O20.21216 (11)0.51113 (5)0.12117 (12)0.01826 (19)
N10.17450 (12)0.58026 (6)0.40533 (13)0.01363 (19)
C10.04720 (14)0.60559 (7)0.48222 (16)0.0155 (2)
H10.04380.63420.42220.019*
C20.07578 (14)0.58208 (7)0.65906 (16)0.0159 (2)
H20.00830.59150.74370.019*
C30.22451 (15)0.54103 (7)0.69389 (15)0.0154 (2)
H30.27360.51810.80610.018*
C40.28522 (14)0.54024 (7)0.53683 (15)0.0135 (2)
C50.43438 (14)0.51145 (7)0.50710 (15)0.0143 (2)
C60.34514 (14)0.64976 (7)0.17831 (15)0.0141 (2)
C70.33400 (15)0.73131 (7)0.20914 (16)0.0169 (2)
H70.23720.75410.23060.020*
C80.46788 (16)0.77829 (7)0.20758 (17)0.0187 (2)
H80.46220.83380.22860.022*
C90.61100 (15)0.74548 (8)0.17564 (16)0.0183 (2)
C100.61811 (15)0.66412 (8)0.14272 (16)0.0172 (2)
H100.71430.64140.11930.021*
C110.48522 (14)0.61580 (7)0.14388 (15)0.0151 (2)
H110.49030.56040.12140.018*
C120.75453 (18)0.79796 (9)0.1772 (2)0.0262 (3)
H12A0.83860.76760.13510.039*
H12B0.79460.81700.30050.039*
H12C0.72380.84350.09680.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01179 (14)0.01874 (15)0.01119 (13)0.00136 (10)0.00237 (9)0.00013 (9)
O10.0125 (4)0.0318 (5)0.0161 (4)0.0012 (4)0.0001 (3)0.0038 (4)
O20.0202 (4)0.0203 (4)0.0152 (4)0.0047 (3)0.0056 (3)0.0036 (3)
N10.0112 (4)0.0182 (5)0.0119 (4)0.0008 (3)0.0032 (3)0.0007 (3)
C10.0121 (5)0.0191 (5)0.0164 (5)0.0016 (4)0.0051 (4)0.0000 (4)
C20.0140 (5)0.0188 (5)0.0160 (5)0.0004 (4)0.0060 (4)0.0012 (4)
C30.0150 (5)0.0186 (5)0.0136 (5)0.0005 (4)0.0051 (4)0.0003 (4)
C40.0123 (5)0.0160 (5)0.0122 (5)0.0006 (4)0.0028 (4)0.0000 (4)
C50.0141 (5)0.0173 (5)0.0118 (4)0.0001 (4)0.0032 (4)0.0012 (4)
C60.0133 (5)0.0174 (5)0.0117 (5)0.0011 (4)0.0028 (4)0.0017 (4)
C70.0178 (5)0.0179 (5)0.0151 (5)0.0020 (4)0.0029 (4)0.0012 (4)
C80.0239 (6)0.0159 (5)0.0159 (5)0.0012 (4)0.0030 (4)0.0015 (4)
C90.0185 (6)0.0211 (6)0.0146 (5)0.0052 (4)0.0017 (4)0.0034 (4)
C100.0138 (5)0.0214 (6)0.0166 (5)0.0004 (4)0.0038 (4)0.0037 (4)
C110.0154 (5)0.0161 (5)0.0141 (5)0.0003 (4)0.0039 (4)0.0017 (4)
C120.0254 (7)0.0283 (7)0.0256 (6)0.0114 (5)0.0062 (5)0.0019 (5)
Geometric parameters (Å, º) top
S1—O21.4298 (10)C6—C111.3907 (17)
S1—O11.4333 (10)C6—C71.3977 (17)
S1—N11.6845 (10)C7—C81.3888 (18)
S1—C61.7513 (12)C7—H70.9500
N1—C11.3900 (15)C8—C91.3997 (19)
N1—C41.4016 (15)C8—H80.9500
C1—C21.3656 (17)C9—C101.3945 (18)
C1—H10.9500C9—C121.5056 (18)
C2—C31.4218 (17)C10—C111.3944 (17)
C2—H20.9500C10—H100.9500
C3—C41.3786 (16)C11—H110.9500
C3—H30.9500C12—H12A0.9800
C4—C51.4164 (16)C12—H12B0.9800
C5—C5i1.206 (2)C12—H12C0.9800
O2—S1—O1121.17 (6)C11—C6—S1119.01 (9)
O2—S1—N1107.09 (5)C7—C6—S1119.51 (9)
O1—S1—N1104.35 (5)C8—C7—C6118.37 (11)
O2—S1—C6108.71 (6)C8—C7—H7120.8
O1—S1—C6109.91 (6)C6—C7—H7120.8
N1—S1—C6104.20 (5)C7—C8—C9121.32 (12)
C1—N1—C4108.98 (9)C7—C8—H8119.3
C1—N1—S1123.92 (8)C9—C8—H8119.3
C4—N1—S1126.76 (8)C10—C9—C8119.11 (11)
C2—C1—N1108.07 (10)C10—C9—C12120.93 (12)
C2—C1—H1126.0C8—C9—C12119.96 (12)
N1—C1—H1126.0C11—C10—C9120.54 (12)
C1—C2—C3107.85 (10)C11—C10—H10119.7
C1—C2—H2126.1C9—C10—H10119.7
C3—C2—H2126.1C6—C11—C10119.17 (11)
C4—C3—C2108.26 (10)C6—C11—H11120.4
C4—C3—H3125.9C10—C11—H11120.4
C2—C3—H3125.9C9—C12—H12A109.5
C3—C4—N1106.85 (10)C9—C12—H12B109.5
C3—C4—C5129.33 (11)H12A—C12—H12B109.5
N1—C4—C5123.67 (10)C9—C12—H12C109.5
C5i—C5—C4175.78 (16)H12A—C12—H12C109.5
C11—C6—C7121.47 (11)H12B—C12—H12C109.5
O2—S1—N1—C1126.14 (10)O2—S1—C6—C119.04 (11)
O1—S1—N1—C13.48 (11)O1—S1—C6—C11143.78 (9)
C6—S1—N1—C1118.78 (10)N1—S1—C6—C11104.90 (10)
O2—S1—N1—C446.48 (11)O2—S1—C6—C7171.15 (9)
O1—S1—N1—C4176.09 (10)O1—S1—C6—C736.41 (11)
C6—S1—N1—C468.61 (11)N1—S1—C6—C774.92 (10)
C4—N1—C1—C20.14 (13)C11—C6—C7—C81.01 (17)
S1—N1—C1—C2173.61 (9)S1—C6—C7—C8178.80 (9)
N1—C1—C2—C30.01 (14)C6—C7—C8—C90.15 (18)
C1—C2—C3—C40.16 (14)C7—C8—C9—C100.76 (18)
C2—C3—C4—N10.24 (13)C7—C8—C9—C12179.25 (12)
C2—C3—C4—C5175.18 (12)C8—C9—C10—C110.83 (18)
C1—N1—C4—C30.23 (13)C12—C9—C10—C11179.17 (11)
S1—N1—C4—C3173.29 (9)C7—C6—C11—C100.93 (17)
C1—N1—C4—C5175.51 (11)S1—C6—C11—C10178.88 (9)
S1—N1—C4—C510.97 (17)C9—C10—C11—C60.01 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.952.533.278 (2)136
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H20N2O4S2
Mr464.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)8.5127 (15), 16.822 (2), 7.5311 (11)
β (°) 101.049 (7)
V3)1058.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.30 × 0.12
Data collection
DiffractometerNonius KappaCCD (with Oxford Cryostream)
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.896, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
16546, 3565, 2995
Rint0.019
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.05
No. of reflections3565
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.54

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and HKL SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.533.278 (2)136
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAbell, A. D., Nabbs, B. K. & Battersby, A. R. (1998). J. Org. Chem. 63, 8163–8169.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChinchilla, R. & Najera, C. (2007). Chem. Rev. 107, 874–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnight, L. W., Padgett, C. W., Huffman, J. W. & Pennington, W. T. (2003). Acta Cryst. E59, o762–o764.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTanui, H. K., Fronczek, F. R. & Vicente, M. G. H. (2008). Acta Cryst. E64, o75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVogel, E. (1996). Pure Appl. Chem. 68, 1355–1360.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds