metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido­tetra­kis(1H-indazole-κN2)copper(II)

aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 November 2007; accepted 24 November 2007; online 6 December 2007)

The Cu atom in the title compound, [CuBr2(C7H6N2)4], is surrounded by four N-heterocycles that define an N4 square-planar geometry. The coordination geometry is distorted towards an elongated octa­hedron owing to the presence of the two Br anions, which are located at about 3 Å above and below the square plane. There are two independent molecules in the asymmetric unit, each with their Cu atom lying on an inversion centre.

Related literature

For related structures, see Hossaini Sadr et al. (2004[Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.], 2005[Hossaini Sadr, M., Jalili, A. R., Razmi, H. & Ng, S. W. (2005). J. Organomet. Chem. 690, 2128-2132.], 2006[Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285-3288.]). For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C7H6N2)4]

  • Mr = 695.91

  • Triclinic, [P \overline 1]

  • a = 10.338 (1) Å

  • b = 10.923 (1) Å

  • c = 13.730 (1) Å

  • α = 72.545 (3)°

  • β = 77.329 (3)°

  • γ = 73.890 (3)°

  • V = 1405.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.65 mm−1

  • T = 295 (2) K

  • 0.24 × 0.21 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.073, Tmax = 0.668

  • 13779 measured reflections

  • 6389 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.228

  • S = 1.13

  • 6389 reflections

  • 356 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.027 (5)
Cu1—N3 2.008 (6)
Cu1—Br1 3.033 (1)
Cu2—N5 2.024 (7)
Cu2—N7 2.023 (6)
Cu2—Br2 2.980 (1)

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

Unlike benzimidazole, which affords a number of adducts with metal salts, indazole furnishes only few complexes (Cambridge Structural Database, Version 5.28; Allen, 2002). The present study of the copper dibromide adduct (I) follows previous studies on Cu complexes of pyrazole-based N-heterocycles (Hossaini Sadr et al., 2005; 2006).

Two independent [Cu(C7H6N2)4]2+2Br- formula units comprise the asymmetric unit in (I), each with the Cu atom situated on a center of inversion. Complex (I) is formally a salt (Fig. 1) owing to the large distance of the Br ions (more than 3 Å) above and below the N4 square plane defined by the four N-heterocycles. In the corresponding imidazole adduct, one Br atom is covalently bonded whereas the other is uncoordinated, so that the geometry is a square pyramid (Hossaini Sadr et al., 2004).

Related literature top

For related structures, see Hossaini Sadr et al. (2004, 2005, 2006). For related literature, see: Allen (2002).

Experimental top

Copper dibromide (0.05 g, 0.25 mmol) and indazole (0.12 g, 1 mmol) were dissolved in acetone (25 ml). Slow evapoaration of the filtered solution yielded crystals.

Refinement top

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N). The vibrations of the Cu atoms appeared elongated in the directions of the weakly associated Br anions and, accordingly, the displacement factors were restrained to be nearly isotropic. The final difference Fourier map had a maximum and minimum residual density peaks at 1.35 Å from Br1 and Br2, respectively {AU to confirm this}.

Structure description top

Unlike benzimidazole, which affords a number of adducts with metal salts, indazole furnishes only few complexes (Cambridge Structural Database, Version 5.28; Allen, 2002). The present study of the copper dibromide adduct (I) follows previous studies on Cu complexes of pyrazole-based N-heterocycles (Hossaini Sadr et al., 2005; 2006).

Two independent [Cu(C7H6N2)4]2+2Br- formula units comprise the asymmetric unit in (I), each with the Cu atom situated on a center of inversion. Complex (I) is formally a salt (Fig. 1) owing to the large distance of the Br ions (more than 3 Å) above and below the N4 square plane defined by the four N-heterocycles. In the corresponding imidazole adduct, one Br atom is covalently bonded whereas the other is uncoordinated, so that the geometry is a square pyramid (Hossaini Sadr et al., 2004).

For related structures, see Hossaini Sadr et al. (2004, 2005, 2006). For related literature, see: Allen (2002).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules of [Cu(C7H6N2)4]2+ 2Br- (I) showing displacement ellipsoids at the 50% probability level and H atoms as spheres of arbitrary radius. Each of the Cu atoms is located on a crystallographic center of inversion. The Cu···Br interactions are denoted by dashed lines.
Dibromidotetrakis(1H-indazole-κN2)copper(II) top
Crystal data top
[CuBr2(C7H6N2)4]Z = 2
Mr = 695.91F(000) = 694
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.338 (1) ÅCell parameters from 7166 reflections
b = 10.923 (1) Åθ = 3.2–27.5°
c = 13.730 (1) ŵ = 3.65 mm1
α = 72.545 (3)°T = 295 K
β = 77.329 (3)°Prism, blue
γ = 73.890 (3)°0.24 × 0.21 × 0.12 mm
V = 1405.3 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6389 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1114
Tmin = 0.073, Tmax = 0.668l = 1717
13779 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.228 w = 1/[σ2(Fo2) + (0.1018P)2 + 0.0608P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
6389 reflectionsΔρmax = 0.65 e Å3
356 parametersΔρmin = 1.00 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
[CuBr2(C7H6N2)4]γ = 73.890 (3)°
Mr = 695.91V = 1405.3 (3) Å3
Triclinic, P1Z = 2
a = 10.338 (1) ÅMo Kα radiation
b = 10.923 (1) ŵ = 3.65 mm1
c = 13.730 (1) ÅT = 295 K
α = 72.545 (3)°0.24 × 0.21 × 0.12 mm
β = 77.329 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6389 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2895 reflections with I > 2σ(I)
Tmin = 0.073, Tmax = 0.668Rint = 0.046
13779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06112 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.13Δρmax = 0.65 e Å3
6389 reflectionsΔρmin = 1.00 e Å3
356 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62566 (10)0.25866 (8)0.41676 (7)0.1011 (4)
Br20.25176 (8)0.40169 (7)1.09777 (6)0.0840 (3)
Cu10.50000.50000.50000.0843 (5)
Cu20.00000.50001.00000.1230 (8)
N10.5411 (5)0.3924 (6)0.6427 (4)0.0636 (14)
N20.5199 (6)0.4347 (6)0.7267 (5)0.0774 (16)
H2N0.48770.51550.72910.093*
N30.3196 (6)0.4493 (7)0.5367 (4)0.0748 (17)
N40.2108 (6)0.5102 (6)0.5891 (5)0.0803 (17)
H4N0.20710.57970.60780.096*
N50.0567 (9)0.3532 (6)0.9272 (5)0.093 (2)
N60.1763 (9)0.3169 (7)0.8743 (6)0.100 (2)
H6N0.24080.35790.86040.120*
N70.0951 (9)0.6246 (6)0.8816 (5)0.090 (2)
N80.0317 (7)0.7102 (6)0.8075 (5)0.0885 (19)
H8N0.05140.71410.80310.106*
C10.5920 (6)0.2639 (6)0.6683 (4)0.0569 (15)
H10.61700.21060.62260.068*
C20.6029 (6)0.2195 (6)0.7719 (5)0.0591 (15)
C30.6478 (8)0.0951 (8)0.8374 (6)0.084 (2)
H30.68010.02060.81200.101*
C40.6428 (7)0.0863 (9)0.9382 (6)0.090 (3)
H40.66830.00380.98280.108*
C50.6006 (8)0.1974 (10)0.9777 (6)0.091 (3)
H50.60170.18811.04710.109*
C60.5577 (7)0.3201 (9)0.9148 (6)0.086 (2)
H60.52960.39450.94040.103*
C70.5573 (6)0.3298 (6)0.8111 (4)0.0592 (15)
C80.2874 (6)0.3499 (7)0.5225 (5)0.0630 (16)
H80.34600.29060.48710.076*
C90.1562 (6)0.3431 (7)0.5663 (4)0.0604 (16)
C100.0743 (8)0.2577 (8)0.5751 (6)0.086 (2)
H100.10710.18620.54610.104*
C110.0530 (8)0.2800 (9)0.6261 (7)0.091 (2)
H110.10820.22290.63270.109*
C120.1034 (7)0.3866 (9)0.6692 (6)0.084 (2)
H120.19230.40040.70350.101*
C130.0257 (7)0.4712 (8)0.6621 (6)0.0763 (19)
H130.05990.54200.69190.092*
C140.1048 (6)0.4501 (6)0.6102 (5)0.0581 (15)
C150.0112 (7)0.2676 (7)0.9321 (5)0.0622 (16)
H150.10010.27040.96580.075*
C160.0607 (6)0.1736 (6)0.8832 (5)0.0578 (15)
C170.0283 (10)0.0657 (9)0.8687 (7)0.096 (3)
H170.05710.04720.89450.116*
C180.1251 (14)0.0105 (9)0.8162 (8)0.108 (3)
H180.10610.08430.80690.130*
C190.2487 (11)0.0154 (10)0.7764 (7)0.104 (3)
H190.31220.04100.74080.124*
C200.2836 (7)0.1224 (9)0.7868 (6)0.088 (2)
H200.36840.14090.75770.105*
C210.1863 (6)0.2026 (6)0.8430 (4)0.0564 (14)
C220.2200 (10)0.6462 (7)0.8630 (6)0.086 (2)
H220.28510.59990.90220.103*
C230.2393 (9)0.7522 (7)0.7731 (6)0.080 (2)
C240.3451 (10)0.8178 (9)0.7148 (8)0.103 (3)
H240.42860.79420.73280.124*
C250.3207 (13)0.9197 (9)0.6288 (7)0.112 (3)
H250.39000.96530.58930.135*
C260.1982 (13)0.9552 (10)0.6004 (7)0.113 (3)
H260.18661.02400.54230.135*
C270.0951 (11)0.8941 (8)0.6536 (6)0.104 (3)
H270.01210.91870.63460.124*
C280.1185 (9)0.7895 (7)0.7408 (6)0.080 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1416 (8)0.0637 (6)0.0882 (6)0.0001 (5)0.0230 (5)0.0221 (4)
Br20.0917 (6)0.0649 (5)0.0874 (6)0.0117 (4)0.0083 (4)0.0166 (4)
Cu10.0608 (7)0.1132 (11)0.0637 (7)0.0366 (7)0.0251 (6)0.0265 (7)
Cu20.232 (2)0.0513 (8)0.0766 (8)0.0341 (10)0.0776 (11)0.0246 (6)
N10.054 (3)0.085 (4)0.051 (3)0.021 (3)0.012 (2)0.007 (3)
N20.070 (3)0.069 (4)0.083 (4)0.011 (3)0.020 (3)0.003 (3)
N30.064 (3)0.086 (5)0.057 (3)0.012 (3)0.015 (3)0.007 (3)
N40.087 (4)0.073 (4)0.080 (4)0.021 (3)0.021 (3)0.011 (3)
N50.134 (6)0.056 (4)0.067 (4)0.023 (4)0.027 (4)0.016 (3)
N60.151 (7)0.067 (4)0.097 (5)0.041 (5)0.055 (5)0.002 (4)
N70.151 (6)0.042 (3)0.072 (4)0.002 (4)0.044 (4)0.010 (3)
N80.122 (5)0.058 (4)0.089 (4)0.008 (4)0.050 (4)0.011 (3)
C10.064 (3)0.054 (4)0.045 (3)0.007 (3)0.014 (3)0.004 (3)
C20.058 (3)0.056 (4)0.058 (3)0.009 (3)0.009 (3)0.011 (3)
C30.097 (5)0.059 (4)0.084 (5)0.008 (4)0.021 (4)0.005 (4)
C40.077 (5)0.095 (6)0.070 (5)0.010 (4)0.021 (4)0.018 (4)
C50.083 (5)0.121 (8)0.055 (4)0.018 (5)0.016 (4)0.005 (5)
C60.078 (5)0.100 (6)0.072 (5)0.009 (4)0.011 (4)0.023 (4)
C70.055 (3)0.069 (4)0.047 (3)0.013 (3)0.009 (3)0.004 (3)
C80.051 (3)0.066 (4)0.063 (4)0.004 (3)0.003 (3)0.017 (3)
C90.051 (3)0.073 (4)0.053 (3)0.018 (3)0.009 (3)0.006 (3)
C100.084 (5)0.081 (5)0.103 (6)0.026 (4)0.009 (4)0.034 (4)
C110.076 (5)0.098 (7)0.106 (6)0.042 (5)0.028 (5)0.005 (5)
C120.059 (4)0.092 (6)0.079 (5)0.015 (4)0.001 (4)0.002 (4)
C130.068 (4)0.070 (5)0.082 (5)0.005 (4)0.006 (4)0.020 (4)
C140.049 (3)0.063 (4)0.060 (3)0.025 (3)0.007 (3)0.000 (3)
C150.062 (4)0.061 (4)0.056 (3)0.000 (3)0.006 (3)0.017 (3)
C160.059 (3)0.052 (4)0.057 (3)0.010 (3)0.013 (3)0.006 (3)
C170.118 (6)0.086 (6)0.096 (6)0.060 (6)0.028 (5)0.001 (5)
C180.166 (10)0.056 (5)0.117 (8)0.011 (6)0.058 (8)0.029 (5)
C190.123 (8)0.086 (7)0.094 (6)0.031 (6)0.044 (6)0.042 (5)
C200.065 (4)0.117 (7)0.077 (5)0.011 (4)0.011 (4)0.026 (5)
C210.072 (4)0.044 (3)0.054 (3)0.011 (3)0.016 (3)0.012 (3)
C220.120 (7)0.055 (5)0.073 (5)0.004 (4)0.014 (5)0.023 (4)
C230.112 (6)0.055 (4)0.068 (4)0.009 (4)0.030 (4)0.022 (3)
C240.106 (6)0.098 (7)0.104 (6)0.011 (5)0.028 (5)0.045 (5)
C250.153 (9)0.082 (7)0.087 (6)0.032 (6)0.064 (7)0.020 (5)
C260.161 (10)0.084 (7)0.074 (5)0.010 (7)0.030 (7)0.020 (5)
C270.156 (8)0.059 (5)0.087 (5)0.005 (5)0.038 (6)0.009 (4)
C280.118 (6)0.050 (4)0.069 (4)0.003 (4)0.035 (4)0.012 (3)
Geometric parameters (Å, º) top
Cu1—N12.027 (5)C6—H60.9300
Cu1—N32.008 (6)C8—C91.370 (8)
Cu1—Br13.033 (1)C8—H80.9300
Cu2—N52.024 (7)C9—C101.389 (10)
Cu2—N72.023 (6)C9—C141.395 (9)
Cu2—Br22.980 (1)C10—C111.342 (11)
Cu1—N3i2.008 (6)C10—H100.9300
Cu1—N1i2.027 (5)C11—C121.385 (12)
Cu2—N7ii2.023 (6)C11—H110.9300
Cu2—N5ii2.024 (7)C12—C131.354 (12)
N1—N21.320 (8)C12—H120.9300
N1—C11.321 (8)C13—C141.374 (8)
N2—C71.400 (8)C13—H130.9300
N2—H2N0.8600C15—C161.352 (9)
N3—C81.298 (9)C15—H150.9300
N3—N41.320 (8)C16—C211.378 (8)
N4—C141.364 (8)C16—C171.389 (10)
N4—H4N0.8600C17—C181.340 (13)
N5—C151.295 (10)C17—H170.9300
N5—N61.312 (9)C18—C191.347 (13)
N6—C211.409 (9)C18—H180.9300
N6—H6N0.8600C19—C201.368 (13)
N7—C221.315 (10)C19—H190.9300
N7—N81.347 (9)C20—C211.397 (10)
N8—C281.359 (9)C20—H200.9300
N8—H8N0.8600C22—C231.424 (10)
C1—C21.377 (8)C22—H220.9300
C1—H10.9300C23—C281.362 (11)
C2—C71.388 (9)C23—C241.399 (12)
C2—C31.404 (9)C24—C251.391 (13)
C3—C41.348 (11)C24—H240.9300
C3—H30.9300C25—C261.368 (14)
C4—C51.398 (12)C25—H250.9300
C4—H40.9300C26—C271.330 (13)
C5—C61.372 (11)C26—H260.9300
C5—H50.9300C27—C281.415 (11)
C6—C71.396 (9)C27—H270.9300
N3—Cu1—N3i180.0 (4)C5—C6—C7118.0 (8)
N3—Cu1—N188.2 (2)C5—C6—H6121.0
N3i—Cu1—N191.8 (2)C7—C6—H6121.0
N3—Cu1—N1i91.8 (2)C2—C7—C6121.1 (6)
N3i—Cu1—N1i88.2 (2)C2—C7—N2104.9 (6)
N1—Cu1—N1i180.00 (16)C6—C7—N2133.9 (7)
N3—Cu1—Br1i90.3 (2)N3—C8—C9111.5 (6)
N3i—Cu1—Br1i89.7 (2)N3—C8—H8124.2
N1—Cu1—Br1i89.84 (18)C9—C8—H8124.2
N1i—Cu1—Br1i90.16 (18)C8—C9—C10134.8 (7)
N3—Cu1—Br189.7 (2)C8—C9—C14105.7 (6)
N3i—Cu1—Br190.3 (2)C10—C9—C14119.6 (6)
N1—Cu1—Br190.16 (18)C11—C10—C9119.0 (8)
N1i—Cu1—Br189.84 (18)C11—C10—H10120.5
Br1i—Cu1—Br1180.00 (3)C9—C10—H10120.5
N7ii—Cu2—N7180.000 (2)C10—C11—C12121.1 (7)
N7ii—Cu2—N5ii91.3 (2)C10—C11—H11119.5
N7—Cu2—N5ii88.7 (2)C12—C11—H11119.5
N7ii—Cu2—N588.7 (2)C13—C12—C11121.2 (7)
N7—Cu2—N591.3 (2)C13—C12—H12119.4
N5ii—Cu2—N5180.000 (2)C11—C12—H12119.4
N7ii—Cu2—Br289.4 (2)C12—C13—C14118.6 (8)
N7—Cu2—Br290.6 (2)C12—C13—H13120.7
N5ii—Cu2—Br292.4 (3)C14—C13—H13120.7
N5—Cu2—Br287.6 (3)N4—C14—C13135.3 (7)
N7ii—Cu2—Br2ii90.6 (2)N4—C14—C9104.2 (5)
N7—Cu2—Br2ii89.4 (2)C13—C14—C9120.6 (6)
N5ii—Cu2—Br2ii87.6 (3)N5—C15—C16112.9 (6)
N5—Cu2—Br2ii92.4 (3)N5—C15—H15123.6
Br2—Cu2—Br2ii180.00 (3)C16—C15—H15123.6
N2—N1—C1107.6 (5)C15—C16—C21106.6 (6)
N2—N1—Cu1127.4 (5)C15—C16—C17132.2 (7)
C1—N1—Cu1125.0 (5)C21—C16—C17121.2 (7)
N1—N2—C7110.5 (6)C18—C17—C16117.3 (8)
N1—N2—H2N124.8C18—C17—H17121.3
C7—N2—H2N124.8C16—C17—H17121.3
C8—N3—N4106.6 (6)C17—C18—C19122.6 (9)
C8—N3—Cu1129.2 (5)C17—C18—H18118.7
N4—N3—Cu1124.0 (6)C19—C18—H18118.7
N3—N4—C14112.1 (6)C18—C19—C20121.9 (8)
N3—N4—H4N124.0C18—C19—H19119.1
C14—N4—H4N124.0C20—C19—H19119.1
C15—N5—N6105.9 (6)C19—C20—C21117.1 (7)
C15—N5—Cu2127.4 (6)C19—C20—H20121.5
N6—N5—Cu2126.4 (7)C21—C20—H20121.5
N5—N6—C21111.7 (7)C16—C21—C20119.8 (6)
N5—N6—H6N124.1C16—C21—N6102.9 (6)
C21—N6—H6N124.1C20—C21—N6137.2 (7)
C22—N7—N8108.1 (6)N7—C22—C23108.8 (8)
C22—N7—Cu2131.1 (6)N7—C22—H22125.6
N8—N7—Cu2120.6 (6)C23—C22—H22125.6
N7—N8—C28110.0 (7)C28—C23—C24118.2 (8)
N7—N8—H8N125.0C28—C23—C22105.7 (7)
C28—N8—H8N125.0C24—C23—C22136.1 (10)
N1—C1—C2110.9 (6)C25—C24—C23117.5 (10)
N1—C1—H1124.6C25—C24—H24121.2
C2—C1—H1124.6C23—C24—H24121.2
C1—C2—C7106.1 (5)C26—C25—C24122.1 (9)
C1—C2—C3134.0 (7)C26—C25—H25119.0
C7—C2—C3119.9 (6)C24—C25—H25119.0
C4—C3—C2118.4 (8)C27—C26—C25121.9 (10)
C4—C3—H3120.8C27—C26—H26119.0
C2—C3—H3120.8C25—C26—H26119.0
C3—C4—C5122.1 (7)C26—C27—C28116.4 (10)
C3—C4—H4119.0C26—C27—H27121.8
C5—C4—H4119.0C28—C27—H27121.8
C6—C5—C4120.4 (7)N8—C28—C23107.4 (7)
C6—C5—H5119.8N8—C28—C27128.8 (9)
C4—C5—H5119.8C23—C28—C27123.8 (8)
N3—Cu1—N1—N293.9 (5)C5—C6—C7—N2179.1 (7)
N3i—Cu1—N1—N286.1 (5)N1—N2—C7—C20.1 (7)
Br1i—Cu1—N1—N23.6 (5)N1—N2—C7—C6178.9 (7)
Br1—Cu1—N1—N2176.4 (5)N4—N3—C8—C90.4 (8)
N3—Cu1—N1—C184.4 (5)Cu1—N3—C8—C9174.8 (4)
N3i—Cu1—N1—C195.6 (5)N3—C8—C9—C10178.6 (8)
Br1i—Cu1—N1—C1174.6 (5)N3—C8—C9—C140.5 (7)
Br1—Cu1—N1—C15.4 (5)C8—C9—C10—C11178.9 (7)
C1—N1—N2—C70.5 (7)C14—C9—C10—C110.2 (11)
Cu1—N1—N2—C7178.0 (4)C9—C10—C11—C120.4 (13)
N1—Cu1—N3—C891.4 (6)C10—C11—C12—C130.7 (13)
N1i—Cu1—N3—C888.6 (6)C11—C12—C13—C140.7 (12)
Br1i—Cu1—N3—C8178.8 (6)N3—N4—C14—C13178.6 (7)
Br1—Cu1—N3—C81.2 (6)N3—N4—C14—C90.3 (7)
N1—Cu1—N3—N483.0 (5)C12—C13—C14—N4178.6 (7)
N1i—Cu1—N3—N497.0 (5)C12—C13—C14—C90.5 (10)
Br1i—Cu1—N3—N46.8 (5)C8—C9—C14—N40.5 (7)
Br1—Cu1—N3—N4173.2 (5)C10—C9—C14—N4178.9 (6)
C8—N3—N4—C140.1 (7)C8—C9—C14—C13179.1 (6)
Cu1—N3—N4—C14175.4 (4)C10—C9—C14—C130.2 (10)
N7ii—Cu2—N5—C1591.4 (7)N6—N5—C15—C160.1 (8)
N7—Cu2—N5—C1588.6 (7)Cu2—N5—C15—C16173.3 (4)
Br2—Cu2—N5—C152.0 (6)N5—C15—C16—C210.2 (8)
Br2ii—Cu2—N5—C15178.0 (6)N5—C15—C16—C17179.4 (7)
N7ii—Cu2—N5—N680.5 (6)C15—C16—C17—C18179.4 (8)
N7—Cu2—N5—N699.5 (6)C21—C16—C17—C181.5 (11)
Br2—Cu2—N5—N6170.0 (6)C16—C17—C18—C191.3 (14)
Br2ii—Cu2—N5—N610.0 (6)C17—C18—C19—C200.2 (15)
C15—N5—N6—C210.3 (8)C18—C19—C20—C211.5 (13)
Cu2—N5—N6—C21173.7 (4)C15—C16—C21—C20179.5 (6)
N5ii—Cu2—N7—C2292.2 (7)C17—C16—C21—C200.2 (10)
N5—Cu2—N7—C2287.8 (7)C15—C16—C21—N60.4 (7)
Br2—Cu2—N7—C220.3 (7)C17—C16—C21—N6179.7 (6)
Br2ii—Cu2—N7—C22179.7 (7)C19—C20—C21—C161.3 (11)
N5ii—Cu2—N7—N883.4 (6)C19—C20—C21—N6178.9 (7)
N5—Cu2—N7—N896.6 (6)N5—N6—C21—C160.4 (7)
Br2—Cu2—N7—N8175.8 (5)N5—N6—C21—C20179.4 (8)
Br2ii—Cu2—N7—N84.2 (5)N8—N7—C22—C230.7 (8)
C22—N7—N8—C280.8 (8)Cu2—N7—C22—C23175.2 (5)
Cu2—N7—N8—C28175.7 (5)N7—C22—C23—C280.4 (8)
N2—N1—C1—C20.9 (7)N7—C22—C23—C24178.5 (8)
Cu1—N1—C1—C2177.6 (4)C28—C23—C24—C251.7 (11)
N1—C1—C2—C71.0 (7)C22—C23—C24—C25179.7 (8)
N1—C1—C2—C3179.1 (7)C23—C24—C25—C260.6 (14)
C1—C2—C3—C4179.0 (7)C24—C25—C26—C270.0 (15)
C7—C2—C3—C41.1 (11)C25—C26—C27—C280.5 (14)
C2—C3—C4—C53.0 (12)N7—N8—C28—C230.5 (8)
C3—C4—C5—C62.4 (12)N7—N8—C28—C27178.6 (7)
C4—C5—C6—C70.2 (11)C24—C23—C28—N8178.4 (7)
C1—C2—C7—C6178.5 (6)C22—C23—C28—N80.1 (8)
C3—C2—C7—C61.4 (10)C24—C23—C28—C272.4 (11)
C1—C2—C7—N20.6 (7)C22—C23—C28—C27179.1 (7)
C3—C2—C7—N2179.4 (6)C26—C27—C28—N8179.2 (8)
C5—C6—C7—C22.0 (10)C26—C27—C28—C231.7 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CuBr2(C7H6N2)4]
Mr695.91
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.338 (1), 10.923 (1), 13.730 (1)
α, β, γ (°)72.545 (3), 77.329 (3), 73.890 (3)
V3)1405.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.65
Crystal size (mm)0.24 × 0.21 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.073, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
13779, 6389, 2895
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.228, 1.13
No. of reflections6389
No. of parameters356
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.00

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Cu1—N12.027 (5)Cu2—N52.024 (7)
Cu1—N32.008 (6)Cu2—N72.023 (6)
Cu1—Br13.033 (1)Cu2—Br22.980 (1)
 

Acknowledgements

The authors thank the Research Office of Azarbaijan University of Tarbiat Moallem, Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054G036), Heilongjiang University and the University of Malaya for supporting this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHossaini Sadr, M., Jalili, A. R., Razmi, H. & Ng, S. W. (2005). J. Organomet. Chem. 690, 2128–2132.  Web of Science CSD CrossRef Google Scholar
First citationHossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationHossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds