organic compounds
1-Hydroxy-1,1,3,3,3-pentaphenyldisiloxane, [Si2O(OH)(Ph)5], at 100 K
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: filipe.paz@ua.pt
In the 30H26O2Si2, one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge. The is composed of two such molecules which interact, on the one hand, via a strong and highly directional O—H⋯O hydrogen bond involving the two neighbouring Si—OH units and, on the other, via an O—H⋯π contact connecting the second hydroxyl group with an adjacent phenyl group.
of the title compound, CRelated literature
For the structure of the title compound at 150 (2) K, see the next paper: Amarante et al. (2008). For related structures of disiloxane compounds, see: Glidewell & Liles (1978); Hönle et al. (1990); Morosin & Harrah (1981); Suwińska et al. (1986); Wojnowski et al. (2004). For literature relevant to this communication and published by our group, see: Abrantes et al. (2002); Bruno et al. (2006, 2007); Nunes et al. (2003). For the Cambridge Structural Database (Version 5.28 with three updates, August 2007), see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807064975/tk2228sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064975/tk2228Isup2.hkl
The title compound was isolated as a secondary product during our synthetic attempts to isolate organometallic vanadium(V) oxides from AgVO3 and triphenylchlorosilane (Ph3SiCl, 97.0%, Fluka). Standard Schlenk line techniques were employed.
AgVO3 was obtained in our laboratories by adding a solution (ca 10 ml) of silver nitrate (AgNO3, 0.77 g; 99.0%, Sigma-Aldrich) to another of ammonium metavanadate (NH4VO3, 0.51 g; 99%, Sigma-Aldrich) in ca 100 ml of distilled water. A yellow precipitate (AgVO3) was immediately isolated by vacuum filtering and in-vacuo drying.
To a solution of AgVO3 (0.31 g) in dried 1,2-dichloroethane, another solution of Ph3SiCl (0.44 g) was added dropwise, and the resulting mixture was allowed to react over a period of 87 h under reflux in an oil bath at 263 K. After reacting, the obtained precipitate was separated from the yellow mother liquor by using dried Celite 545 (Aldrich). The isolated solution was then concentrated to an oil by slowly evaporating 1,2-dichloroethane in a water bath, under vacuum for 5 h. The title compound (a secondary product) was separated from the desired synthesized product by washing with ca 10 ml of n-hexane (HPLC grade, 95%, Aldrich). Well formed prismatic colourless crystals of [Si2O(OH)(Ph)5] were thus obtained from the total evaporation of the n-hexane in open air for about 24 h.
Crystals of the title compound were manually harvested from the crystallization vial and mounted on CryoLoops purchased from Hampton Research using FOMBLIN Y perfluoropolyether vacuum oil (LVAC 25/6) purchased from Aldrich, with the help of a Stemi 2000 stereomicroscope equipped with Carl Zeiss lenses. Different crystals from the same batch systematically diffracted very weakly at high angle. A full data set was collected at the low temperature of 100 (2) K with a long exposure time per frame, revealing the existence of a poorly defined spot shape which ultimately had a strong influence in the high value of Rint. Nevertheless, the structure was readily solved using Patterson synthesis which allowed the immediate location of the four crystallographically unique Si centres. All remaining non-H atoms were located from difference Fourier maps calculated from successive least-squares refinements cycles. Non-H atoms were successfully refined using anisotropic displacement parameters. H atoms bound to C and the terminal Si—OH groups were located at their idealized positions and allowed to ride on their parent atoms with C—H = 0.95Å and O—H = 0.84 Å, and with Uiso = 1.2 or 1.5×Ueq of the parent atoms (C and O, respectively).
It is of considerable importance to emphasize that a minor amount of the isolated crystals was instead indexed with a larger triclinic
with this being particularly apparent when the temperature of the data collection was increased to 150 (2) K. This procedure increases the thermal motion associated with the phenyl groups, reducing overall symmetry and increasing the number of crystallographically independent [Si2O(OH)(Ph)5] molecular units. The structure of the title compound at 150 (2) K will be the subject of a different crystallographic communication (Amarante et al., 2008).Even though derivatives of triphenylsilane, SiH(Ph)3, have been widely used in organometallic chemistry and chemistry in general for many years, disiloxanes (i.e., compounds having two Si centres bridged via an oxo group) in which one Si centre is bound to a hydroxyl group are unknown as revealed by a search of the literature in conjunction with another of the Cambridge Structural Database (CSD, Version 5.28 with three updates - August 2007; Allen, 2002). Moreover, disiloxanes having one of the two Si centres bound to three phenyl groups are scarce, with only a handful of compounds being available in the literature (Glidewell & Liles, 1978; Hönle et al., 1990; Morosin & Harrah, 1981; Suwińska et al., 1986; Wojnowski et al., 2004). Following our on-going research toward the synthesis, structural characterization and catalytic application of novel triphenylsiloxy derivatives (Abrantes et al., 2002; Bruno et al., 2006, 2007; Nunes et al., 2003), we have recently isolated the unprecedented [Si2O(OH)(Ph)5] disiloxane, in which one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge.
The 1 with the being composed of two crystallographically independent [Si2O(OH)(Ph)5] molecular units, Fig. 1 & Table 1. Within each binuclear unit, the two Si centres exhibit distinct coordination environments, even though the µ2-bridging oxo group is common to the two Si centres. While one Si is coordinated to three phenyl groups, {SiC3O}, the other is bound to two phenyl groups plus a hydroxyl moiety,{SiC2O2}. For the two independent molecular units, the Si—C and Si—O bond lengths were found in the 1.841 (5)–1.861 (5) and 1.605 (3)–1.637 (3) Å ranges, respectively, in good agreement with those found in related materials.
of the title compound, (I), at the low temperature of 100 K is fully described in the triclinic PIt is of considerable importance to note that while for the disiloxanes which have identical coordination environments for the Si centres the internal Si—O—Si bridge is almost linear, such as for the compounds reported by Glidewell & Liles (1978), Hönle et al. (1990) and Suwińska et al. (1986), the presence of distinct coordinating chemical moieties and their interaction with adjacent species in (I) induces a kink in this µ2-bridge. Indeed, the Si—O—Si bond angles for (I) range from 147.7 (2)° to 166.0 (2)°, values which are consistent with that reported by Wojnowski et al. (2004) for [Si2O(H)(Ph)5] (ca 163°). We also note the markedly distinct nature of the bridging angles for the two molecular units, a structural feature which can be rationalized taking into consideration the strongest intermolecular interactions present. Indeed, besides the very strong and linear O—H···O hydrogen bonding interaction connecting adjacent [Si2O(OH)(Ph)5] units, the O2-hydroxyl group is further engaged in a O—H···π interaction with the neighbouring C55→C60 phenyl group, Table 2. Consequently, in order to maximize these two interactions the Si3—O3—Si4 angle decreases, while the Si1—O1—Si2 approaches linearity so to minimize between coordinating moieties.
The two interactions described above (O—H···O and O—H···π) create a supramolecular entity (Fig. 1) which packs in a parallel fashion in the ab plane of the forming layers (Fig. 2). Adjacent layers alternate along the [001] direction of the with a number of C—H···π contacts mediating the interactions between adjacent phenyl groups (not shown).
For the structure of the title compound at 150 (2) K, seee: Amarante et al. (2008). For related structures of disiloxane compounds, see: Glidewell & Liles (1978); Hönle et al. (1990); Morosin & Harrah (1981); Suwińska et al. (1986); Wojnowski et al. (2004). For literature relevant to this communication and published by our group, see: Abrantes et al. (2002); Bruno et al. (2006, 2007); Nunes et al. (2003). For the Cambridge Structural Database, see: Allen (2002).
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL (Bruker 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Bruker 2001).C30H26O2Si2 | Z = 4 |
Mr = 474.69 | F(000) = 1000 |
Triclinic, P1 | Dx = 1.255 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3611 (6) Å | Cell parameters from 1283 reflections |
b = 14.2844 (8) Å | θ = 2.8–17.4° |
c = 18.4367 (9) Å | µ = 0.17 mm−1 |
α = 99.421 (4)° | T = 100 K |
β = 98.492 (4)° | Prism, colourless |
γ = 107.415 (4)° | 0.14 × 0.08 × 0.08 mm |
V = 2511.8 (3) Å3 |
Bruker X8 KappaCCD APEXII diffractometer | 9155 independent reflections |
Radiation source: fine-focus sealed tube | 4059 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.140 |
ω/φ scans | θmax = 25.4°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −12→12 |
Tmin = 0.977, Tmax = 0.987 | k = −17→17 |
33504 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: mixed |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0681P)2] where P = (Fo2 + 2Fc2)/3 |
9155 reflections | (Δ/σ)max < 0.001 |
615 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C30H26O2Si2 | γ = 107.415 (4)° |
Mr = 474.69 | V = 2511.8 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 10.3611 (6) Å | Mo Kα radiation |
b = 14.2844 (8) Å | µ = 0.17 mm−1 |
c = 18.4367 (9) Å | T = 100 K |
α = 99.421 (4)° | 0.14 × 0.08 × 0.08 mm |
β = 98.492 (4)° |
Bruker X8 KappaCCD APEXII diffractometer | 9155 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 4059 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.987 | Rint = 0.140 |
33504 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.38 e Å−3 |
9155 reflections | Δρmin = −0.37 e Å−3 |
615 parameters |
Experimental. See dedicated section in the main paper |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.65378 (14) | 0.38772 (10) | 0.22723 (7) | 0.0325 (4) | |
Si2 | 0.37645 (15) | 0.20240 (10) | 0.20581 (7) | 0.0349 (4) | |
O1 | 0.5137 (3) | 0.3003 (2) | 0.22680 (16) | 0.0353 (8) | |
O2 | 0.6412 (3) | 0.4896 (2) | 0.27676 (17) | 0.0373 (8) | |
H2 | 0.7188 | 0.5246 | 0.3040 | 0.056* | |
C1 | 0.6626 (5) | 0.4060 (4) | 0.1306 (3) | 0.0321 (12) | |
C2 | 0.6737 (5) | 0.3310 (4) | 0.0760 (3) | 0.0404 (14) | |
H2A | 0.6778 | 0.2699 | 0.0885 | 0.049* | |
C3 | 0.6790 (5) | 0.3443 (4) | 0.0033 (3) | 0.0447 (14) | |
H3 | 0.6880 | 0.2929 | −0.0334 | 0.054* | |
C4 | 0.6711 (5) | 0.4324 (4) | −0.0152 (3) | 0.0380 (13) | |
H4A | 0.6722 | 0.4407 | −0.0652 | 0.046* | |
C5 | 0.6617 (5) | 0.5071 (4) | 0.0371 (3) | 0.0388 (13) | |
H5 | 0.6570 | 0.5677 | 0.0240 | 0.047* | |
C6 | 0.6591 (5) | 0.4946 (4) | 0.1097 (3) | 0.0355 (12) | |
H6 | 0.6547 | 0.5481 | 0.1464 | 0.043* | |
C7 | 0.8033 (5) | 0.3584 (4) | 0.2723 (3) | 0.0380 (13) | |
C8 | 0.7915 (6) | 0.2950 (4) | 0.3225 (3) | 0.0559 (16) | |
H8 | 0.7044 | 0.2661 | 0.3347 | 0.067* | |
C9 | 0.9063 (7) | 0.2736 (5) | 0.3551 (3) | 0.074 (2) | |
H9 | 0.8971 | 0.2285 | 0.3881 | 0.089* | |
C10 | 1.0333 (7) | 0.3181 (6) | 0.3394 (4) | 0.083 (2) | |
H10 | 1.1125 | 0.3053 | 0.3627 | 0.100* | |
C11 | 1.0457 (6) | 0.3805 (5) | 0.2903 (3) | 0.076 (2) | |
H11 | 1.1337 | 0.4108 | 0.2796 | 0.091* | |
C12 | 0.9337 (6) | 0.4001 (4) | 0.2563 (3) | 0.0573 (17) | |
H12 | 0.9442 | 0.4425 | 0.2214 | 0.069* | |
C13 | 0.2320 (5) | 0.2360 (4) | 0.1589 (3) | 0.0391 (13) | |
C14 | 0.2492 (5) | 0.3110 (4) | 0.1194 (3) | 0.0403 (13) | |
H14 | 0.3403 | 0.3501 | 0.1178 | 0.048* | |
C15 | 0.1392 (5) | 0.3315 (4) | 0.0820 (3) | 0.0382 (13) | |
H15 | 0.1547 | 0.3835 | 0.0549 | 0.046* | |
C16 | 0.0087 (6) | 0.2768 (4) | 0.0841 (3) | 0.0556 (16) | |
H16 | −0.0677 | 0.2893 | 0.0572 | 0.067* | |
C18 | 0.0978 (6) | 0.1848 (4) | 0.1625 (3) | 0.0569 (17) | |
H18 | 0.0816 | 0.1351 | 0.1917 | 0.068* | |
C17 | −0.0138 (6) | 0.2042 (4) | 0.1247 (3) | 0.0649 (18) | |
H17 | −0.1054 | 0.1670 | 0.1270 | 0.078* | |
C19 | 0.3412 (5) | 0.1655 (4) | 0.2950 (3) | 0.0367 (13) | |
C20 | 0.3761 (5) | 0.2357 (4) | 0.3611 (3) | 0.0446 (14) | |
H20 | 0.4199 | 0.3044 | 0.3613 | 0.054* | |
C21 | 0.3497 (6) | 0.2096 (4) | 0.4268 (3) | 0.0567 (16) | |
H21 | 0.3762 | 0.2600 | 0.4718 | 0.068* | |
C22 | 0.2853 (6) | 0.1111 (4) | 0.4281 (3) | 0.0539 (16) | |
H22 | 0.2653 | 0.0934 | 0.4737 | 0.065* | |
C23 | 0.2503 (6) | 0.0392 (4) | 0.3640 (3) | 0.0548 (16) | |
H23 | 0.2061 | −0.0293 | 0.3645 | 0.066* | |
C24 | 0.2791 (5) | 0.0656 (4) | 0.2979 (3) | 0.0500 (15) | |
H24 | 0.2560 | 0.0145 | 0.2535 | 0.060* | |
C25 | 0.4074 (5) | 0.0972 (4) | 0.1459 (3) | 0.0381 (13) | |
C26 | 0.3073 (6) | 0.0290 (4) | 0.0873 (3) | 0.0505 (15) | |
H26 | 0.2212 | 0.0393 | 0.0742 | 0.061* | |
C27 | 0.3288 (7) | −0.0545 (4) | 0.0470 (3) | 0.0582 (17) | |
H27 | 0.2580 | −0.1018 | 0.0079 | 0.070* | |
C28 | 0.4551 (7) | −0.0662 (4) | 0.0655 (3) | 0.0577 (16) | |
H28 | 0.4715 | −0.1222 | 0.0378 | 0.069* | |
C29 | 0.5557 (7) | −0.0022 (4) | 0.1208 (3) | 0.0612 (17) | |
H29 | 0.6425 | −0.0123 | 0.1319 | 0.073* | |
C30 | 0.5324 (6) | 0.0794 (4) | 0.1623 (3) | 0.0567 (16) | |
H30 | 0.6033 | 0.1240 | 0.2027 | 0.068* | |
Si3 | 0.41436 (14) | 0.65882 (10) | 0.26844 (7) | 0.0326 (4) | |
Si4 | 0.70163 (14) | 0.82551 (10) | 0.29771 (7) | 0.0350 (4) | |
O3 | 0.5376 (3) | 0.7660 (2) | 0.28621 (16) | 0.0375 (9) | |
O4 | 0.4511 (3) | 0.5704 (2) | 0.21842 (16) | 0.0371 (8) | |
H4 | 0.5029 | 0.5495 | 0.2462 | 0.056* | |
C31 | 0.2633 (5) | 0.6726 (3) | 0.2105 (2) | 0.0300 (12) | |
C32 | 0.2548 (5) | 0.7665 (4) | 0.2015 (3) | 0.0448 (14) | |
H32 | 0.3300 | 0.8259 | 0.2255 | 0.054* | |
C33 | 0.1395 (5) | 0.7738 (4) | 0.1585 (3) | 0.0456 (14) | |
H33 | 0.1355 | 0.8380 | 0.1534 | 0.055* | |
C34 | 0.0307 (5) | 0.6891 (4) | 0.1231 (3) | 0.0443 (14) | |
H34 | −0.0493 | 0.6949 | 0.0941 | 0.053* | |
C35 | 0.0364 (5) | 0.5960 (4) | 0.1291 (3) | 0.0416 (14) | |
H35 | −0.0385 | 0.5371 | 0.1037 | 0.050* | |
C36 | 0.1517 (5) | 0.5887 (4) | 0.1722 (2) | 0.0350 (12) | |
H36 | 0.1550 | 0.5238 | 0.1758 | 0.042* | |
C37 | 0.3804 (5) | 0.6264 (3) | 0.3589 (3) | 0.0324 (12) | |
C38 | 0.3412 (6) | 0.6867 (4) | 0.4095 (3) | 0.0473 (15) | |
H38 | 0.3341 | 0.7479 | 0.3987 | 0.057* | |
C39 | 0.3109 (6) | 0.6628 (4) | 0.4766 (3) | 0.0507 (15) | |
H39 | 0.2846 | 0.7076 | 0.5108 | 0.061* | |
C40 | 0.3191 (5) | 0.5752 (4) | 0.4931 (3) | 0.0447 (14) | |
H40 | 0.2953 | 0.5569 | 0.5379 | 0.054* | |
C41 | 0.3619 (6) | 0.5143 (4) | 0.4449 (3) | 0.0608 (17) | |
H41 | 0.3723 | 0.4545 | 0.4569 | 0.073* | |
C42 | 0.3904 (6) | 0.5393 (4) | 0.3776 (3) | 0.0549 (16) | |
H42 | 0.4177 | 0.4948 | 0.3437 | 0.066* | |
C43 | 0.7384 (5) | 0.9429 (3) | 0.3686 (3) | 0.0349 (12) | |
C44 | 0.6351 (6) | 0.9785 (4) | 0.3864 (3) | 0.0467 (14) | |
H44 | 0.5431 | 0.9449 | 0.3587 | 0.056* | |
C45 | 0.6613 (6) | 1.0623 (4) | 0.4440 (3) | 0.0555 (16) | |
H45 | 0.5880 | 1.0853 | 0.4553 | 0.067* | |
C46 | 0.7932 (6) | 1.1110 (4) | 0.4839 (3) | 0.0496 (15) | |
H46 | 0.8111 | 1.1670 | 0.5243 | 0.060* | |
C47 | 0.8996 (6) | 1.0802 (4) | 0.4665 (3) | 0.0473 (15) | |
H47 | 0.9917 | 1.1159 | 0.4934 | 0.057* | |
C48 | 0.8725 (5) | 0.9964 (3) | 0.4094 (3) | 0.0378 (13) | |
H48 | 0.9468 | 0.9749 | 0.3978 | 0.045* | |
C49 | 0.7447 (5) | 0.8425 (4) | 0.2052 (3) | 0.0358 (13) | |
C50 | 0.6623 (5) | 0.7799 (4) | 0.1391 (3) | 0.0387 (13) | |
H50 | 0.5792 | 0.7298 | 0.1410 | 0.046* | |
C51 | 0.6962 (6) | 0.7872 (4) | 0.0707 (3) | 0.0437 (14) | |
H51 | 0.6351 | 0.7443 | 0.0260 | 0.052* | |
C52 | 0.8162 (6) | 0.8554 (4) | 0.0663 (3) | 0.0497 (15) | |
H52 | 0.8405 | 0.8586 | 0.0189 | 0.060* | |
C53 | 0.9022 (6) | 0.9195 (4) | 0.1298 (3) | 0.0523 (15) | |
H53 | 0.9856 | 0.9682 | 0.1268 | 0.063* | |
C54 | 0.8669 (6) | 0.9130 (4) | 0.1991 (3) | 0.0501 (15) | |
H54 | 0.9274 | 0.9576 | 0.2433 | 0.060* | |
C55 | 0.8023 (5) | 0.7503 (3) | 0.3357 (2) | 0.0300 (12) | |
C56 | 0.7791 (5) | 0.7161 (3) | 0.4014 (3) | 0.0356 (12) | |
H56 | 0.7115 | 0.7321 | 0.4259 | 0.043* | |
C57 | 0.8516 (5) | 0.6599 (4) | 0.4314 (3) | 0.0396 (13) | |
H57 | 0.8341 | 0.6381 | 0.4761 | 0.048* | |
C58 | 0.9489 (5) | 0.6354 (4) | 0.3967 (3) | 0.0426 (14) | |
H58 | 0.9981 | 0.5958 | 0.4169 | 0.051* | |
C59 | 0.9754 (5) | 0.6686 (4) | 0.3325 (3) | 0.0460 (14) | |
H59 | 1.0432 | 0.6521 | 0.3084 | 0.055* | |
C60 | 0.9029 (5) | 0.7258 (3) | 0.3031 (3) | 0.0384 (13) | |
H60 | 0.9231 | 0.7490 | 0.2592 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0309 (9) | 0.0326 (8) | 0.0341 (8) | 0.0114 (7) | 0.0055 (6) | 0.0069 (6) |
Si2 | 0.0357 (9) | 0.0306 (8) | 0.0364 (8) | 0.0085 (7) | 0.0069 (7) | 0.0074 (6) |
O1 | 0.032 (2) | 0.0321 (19) | 0.0375 (19) | 0.0036 (16) | 0.0082 (15) | 0.0070 (15) |
O2 | 0.038 (2) | 0.0311 (19) | 0.041 (2) | 0.0124 (17) | 0.0058 (16) | 0.0031 (16) |
C1 | 0.023 (3) | 0.040 (3) | 0.037 (3) | 0.013 (2) | 0.008 (2) | 0.011 (3) |
C2 | 0.047 (4) | 0.039 (3) | 0.037 (3) | 0.014 (3) | 0.007 (3) | 0.014 (3) |
C3 | 0.046 (4) | 0.044 (3) | 0.040 (3) | 0.013 (3) | 0.010 (3) | −0.001 (3) |
C4 | 0.036 (3) | 0.040 (3) | 0.040 (3) | 0.012 (3) | 0.008 (2) | 0.015 (3) |
C5 | 0.037 (3) | 0.043 (3) | 0.042 (3) | 0.015 (3) | 0.014 (3) | 0.017 (3) |
C6 | 0.033 (3) | 0.038 (3) | 0.039 (3) | 0.016 (3) | 0.009 (2) | 0.008 (2) |
C7 | 0.037 (3) | 0.049 (3) | 0.036 (3) | 0.023 (3) | 0.008 (2) | 0.016 (3) |
C8 | 0.053 (4) | 0.079 (4) | 0.053 (4) | 0.032 (4) | 0.020 (3) | 0.034 (3) |
C9 | 0.069 (5) | 0.115 (6) | 0.067 (4) | 0.049 (5) | 0.015 (4) | 0.059 (4) |
C10 | 0.064 (5) | 0.129 (6) | 0.083 (5) | 0.059 (5) | 0.010 (4) | 0.054 (5) |
C11 | 0.040 (4) | 0.127 (6) | 0.082 (5) | 0.043 (4) | 0.008 (3) | 0.053 (5) |
C12 | 0.043 (4) | 0.075 (4) | 0.067 (4) | 0.024 (3) | 0.014 (3) | 0.042 (3) |
C13 | 0.029 (3) | 0.036 (3) | 0.041 (3) | 0.000 (3) | −0.001 (2) | 0.007 (3) |
C14 | 0.037 (3) | 0.041 (3) | 0.040 (3) | 0.011 (3) | 0.005 (3) | 0.005 (3) |
C15 | 0.041 (4) | 0.039 (3) | 0.037 (3) | 0.017 (3) | 0.009 (3) | 0.011 (2) |
C16 | 0.036 (4) | 0.058 (4) | 0.072 (4) | 0.016 (3) | −0.001 (3) | 0.021 (3) |
C18 | 0.043 (4) | 0.050 (4) | 0.076 (4) | 0.010 (3) | 0.001 (3) | 0.030 (3) |
C17 | 0.035 (4) | 0.072 (4) | 0.087 (5) | 0.012 (3) | 0.004 (3) | 0.034 (4) |
C19 | 0.031 (3) | 0.029 (3) | 0.045 (3) | 0.003 (2) | 0.004 (2) | 0.011 (3) |
C20 | 0.055 (4) | 0.031 (3) | 0.047 (3) | 0.009 (3) | 0.020 (3) | 0.007 (3) |
C21 | 0.076 (5) | 0.046 (4) | 0.043 (3) | 0.014 (3) | 0.018 (3) | 0.004 (3) |
C22 | 0.063 (4) | 0.056 (4) | 0.046 (4) | 0.017 (3) | 0.021 (3) | 0.017 (3) |
C23 | 0.064 (4) | 0.045 (4) | 0.049 (4) | 0.001 (3) | 0.020 (3) | 0.018 (3) |
C24 | 0.058 (4) | 0.043 (3) | 0.041 (3) | 0.007 (3) | 0.012 (3) | 0.004 (3) |
C25 | 0.042 (3) | 0.037 (3) | 0.036 (3) | 0.017 (3) | 0.006 (3) | 0.009 (2) |
C26 | 0.059 (4) | 0.050 (4) | 0.045 (3) | 0.023 (3) | 0.007 (3) | 0.013 (3) |
C27 | 0.070 (5) | 0.051 (4) | 0.041 (3) | 0.015 (4) | 0.000 (3) | −0.005 (3) |
C28 | 0.072 (5) | 0.039 (4) | 0.063 (4) | 0.022 (4) | 0.014 (4) | 0.009 (3) |
C29 | 0.070 (5) | 0.049 (4) | 0.067 (4) | 0.031 (4) | 0.007 (4) | 0.003 (3) |
C30 | 0.059 (4) | 0.051 (4) | 0.053 (4) | 0.023 (3) | −0.004 (3) | −0.002 (3) |
Si3 | 0.0279 (8) | 0.0310 (8) | 0.0360 (8) | 0.0087 (7) | 0.0040 (6) | 0.0033 (6) |
Si4 | 0.0293 (9) | 0.0328 (8) | 0.0387 (8) | 0.0071 (7) | 0.0017 (7) | 0.0072 (7) |
O3 | 0.028 (2) | 0.0314 (19) | 0.044 (2) | 0.0030 (16) | 0.0026 (16) | 0.0028 (15) |
O4 | 0.038 (2) | 0.040 (2) | 0.0366 (19) | 0.0191 (17) | 0.0068 (16) | 0.0061 (16) |
C31 | 0.027 (3) | 0.031 (3) | 0.030 (3) | 0.009 (2) | 0.006 (2) | 0.004 (2) |
C32 | 0.034 (3) | 0.043 (3) | 0.050 (3) | 0.007 (3) | 0.002 (3) | 0.005 (3) |
C33 | 0.038 (4) | 0.044 (3) | 0.057 (4) | 0.019 (3) | 0.000 (3) | 0.018 (3) |
C34 | 0.032 (3) | 0.063 (4) | 0.046 (3) | 0.024 (3) | 0.004 (3) | 0.023 (3) |
C35 | 0.030 (3) | 0.048 (3) | 0.041 (3) | 0.010 (3) | −0.001 (2) | 0.005 (3) |
C36 | 0.036 (3) | 0.034 (3) | 0.036 (3) | 0.014 (3) | 0.009 (2) | 0.007 (2) |
C37 | 0.029 (3) | 0.025 (3) | 0.041 (3) | 0.011 (2) | 0.002 (2) | 0.001 (2) |
C38 | 0.071 (4) | 0.038 (3) | 0.039 (3) | 0.026 (3) | 0.012 (3) | 0.011 (3) |
C39 | 0.072 (4) | 0.046 (4) | 0.042 (3) | 0.032 (3) | 0.013 (3) | 0.006 (3) |
C40 | 0.053 (4) | 0.041 (3) | 0.042 (3) | 0.014 (3) | 0.015 (3) | 0.010 (3) |
C41 | 0.094 (5) | 0.044 (4) | 0.064 (4) | 0.036 (4) | 0.035 (4) | 0.023 (3) |
C42 | 0.077 (5) | 0.046 (4) | 0.053 (4) | 0.030 (3) | 0.025 (3) | 0.010 (3) |
C43 | 0.033 (3) | 0.029 (3) | 0.044 (3) | 0.012 (3) | 0.002 (3) | 0.014 (2) |
C44 | 0.037 (4) | 0.029 (3) | 0.066 (4) | 0.011 (3) | −0.001 (3) | −0.001 (3) |
C45 | 0.053 (4) | 0.047 (4) | 0.072 (4) | 0.025 (3) | 0.015 (3) | 0.009 (3) |
C46 | 0.062 (4) | 0.030 (3) | 0.046 (3) | 0.009 (3) | 0.001 (3) | 0.003 (3) |
C47 | 0.049 (4) | 0.029 (3) | 0.055 (4) | 0.010 (3) | −0.009 (3) | 0.010 (3) |
C48 | 0.044 (3) | 0.028 (3) | 0.041 (3) | 0.014 (3) | 0.001 (3) | 0.011 (2) |
C49 | 0.034 (3) | 0.036 (3) | 0.039 (3) | 0.010 (3) | 0.008 (3) | 0.014 (2) |
C50 | 0.033 (3) | 0.034 (3) | 0.049 (3) | 0.012 (3) | 0.008 (3) | 0.008 (3) |
C51 | 0.047 (4) | 0.045 (3) | 0.040 (3) | 0.016 (3) | 0.007 (3) | 0.012 (3) |
C52 | 0.057 (4) | 0.046 (3) | 0.052 (4) | 0.021 (3) | 0.011 (3) | 0.019 (3) |
C53 | 0.057 (4) | 0.043 (3) | 0.056 (4) | 0.010 (3) | 0.019 (3) | 0.016 (3) |
C54 | 0.050 (4) | 0.049 (4) | 0.051 (4) | 0.014 (3) | 0.008 (3) | 0.018 (3) |
C55 | 0.027 (3) | 0.025 (3) | 0.031 (3) | 0.003 (2) | 0.002 (2) | −0.001 (2) |
C56 | 0.029 (3) | 0.032 (3) | 0.039 (3) | 0.007 (3) | 0.000 (2) | 0.001 (2) |
C57 | 0.045 (4) | 0.034 (3) | 0.039 (3) | 0.014 (3) | 0.008 (3) | 0.008 (2) |
C58 | 0.041 (4) | 0.030 (3) | 0.050 (3) | 0.011 (3) | −0.005 (3) | 0.008 (3) |
C59 | 0.041 (4) | 0.050 (4) | 0.053 (4) | 0.020 (3) | 0.019 (3) | 0.009 (3) |
C60 | 0.030 (3) | 0.038 (3) | 0.041 (3) | 0.005 (3) | 0.002 (3) | 0.010 (3) |
Si1—O1 | 1.605 (3) | Si3—O4 | 1.612 (3) |
Si1—O2 | 1.637 (3) | Si3—O3 | 1.620 (3) |
Si1—C7 | 1.841 (5) | Si3—C31 | 1.841 (5) |
Si1—C1 | 1.854 (5) | Si3—C37 | 1.858 (5) |
Si2—O1 | 1.612 (3) | Si4—O3 | 1.620 (3) |
Si2—C13 | 1.844 (5) | Si4—C43 | 1.848 (5) |
Si2—C25 | 1.852 (5) | Si4—C55 | 1.854 (5) |
Si2—C19 | 1.861 (5) | Si4—C49 | 1.861 (5) |
O2—H2 | 0.8400 | O4—H4 | 0.8400 |
C1—C2 | 1.389 (6) | C31—C36 | 1.387 (6) |
C1—C6 | 1.390 (6) | C31—C32 | 1.405 (6) |
C2—C3 | 1.391 (6) | C32—C33 | 1.374 (6) |
C2—H2A | 0.9500 | C32—H32 | 0.9500 |
C3—C4 | 1.379 (6) | C33—C34 | 1.367 (6) |
C3—H3 | 0.9500 | C33—H33 | 0.9500 |
C4—C5 | 1.353 (6) | C34—C35 | 1.371 (6) |
C4—H4A | 0.9500 | C34—H34 | 0.9500 |
C5—C6 | 1.382 (6) | C35—C36 | 1.375 (6) |
C5—H5 | 0.9500 | C35—H35 | 0.9500 |
C6—H6 | 0.9500 | C36—H36 | 0.9500 |
C7—C8 | 1.391 (6) | C37—C38 | 1.355 (6) |
C7—C12 | 1.400 (7) | C37—C42 | 1.372 (6) |
C8—C9 | 1.391 (7) | C38—C39 | 1.390 (6) |
C8—H8 | 0.9500 | C38—H38 | 0.9500 |
C9—C10 | 1.375 (8) | C39—C40 | 1.359 (6) |
C9—H9 | 0.9500 | C39—H39 | 0.9500 |
C10—C11 | 1.365 (8) | C40—C41 | 1.356 (7) |
C10—H10 | 0.9500 | C40—H40 | 0.9500 |
C11—C12 | 1.361 (7) | C41—C42 | 1.394 (7) |
C11—H11 | 0.9500 | C41—H41 | 0.9500 |
C12—H12 | 0.9500 | C42—H42 | 0.9500 |
C13—C14 | 1.375 (6) | C43—C44 | 1.374 (7) |
C13—C18 | 1.381 (7) | C43—C48 | 1.396 (6) |
C14—C15 | 1.376 (6) | C44—C45 | 1.391 (7) |
C14—H14 | 0.9500 | C44—H44 | 0.9500 |
C15—C16 | 1.354 (6) | C45—C46 | 1.364 (7) |
C15—H15 | 0.9500 | C45—H45 | 0.9500 |
C16—C17 | 1.360 (7) | C46—C47 | 1.365 (7) |
C16—H16 | 0.9500 | C46—H46 | 0.9500 |
C18—C17 | 1.384 (7) | C47—C48 | 1.385 (7) |
C18—H18 | 0.9500 | C47—H47 | 0.9500 |
C17—H17 | 0.9500 | C48—H48 | 0.9500 |
C19—C20 | 1.369 (6) | C49—C50 | 1.376 (6) |
C19—C24 | 1.393 (6) | C49—C54 | 1.395 (6) |
C20—C21 | 1.365 (6) | C50—C51 | 1.371 (6) |
C20—H20 | 0.9500 | C50—H50 | 0.9500 |
C21—C22 | 1.371 (7) | C51—C52 | 1.353 (7) |
C21—H21 | 0.9500 | C51—H51 | 0.9500 |
C22—C23 | 1.356 (7) | C52—C53 | 1.362 (7) |
C22—H22 | 0.9500 | C52—H52 | 0.9500 |
C23—C24 | 1.380 (6) | C53—C54 | 1.388 (7) |
C23—H23 | 0.9500 | C53—H53 | 0.9500 |
C24—H24 | 0.9500 | C54—H54 | 0.9500 |
C25—C26 | 1.382 (6) | C55—C60 | 1.380 (6) |
C25—C30 | 1.393 (7) | C55—C56 | 1.404 (6) |
C26—C27 | 1.393 (7) | C56—C57 | 1.377 (6) |
C26—H26 | 0.9500 | C56—H56 | 0.9500 |
C27—C28 | 1.369 (8) | C57—C58 | 1.369 (7) |
C27—H27 | 0.9500 | C57—H57 | 0.9500 |
C28—C29 | 1.332 (7) | C58—C59 | 1.380 (6) |
C28—H28 | 0.9500 | C58—H58 | 0.9500 |
C29—C30 | 1.391 (7) | C59—C60 | 1.386 (6) |
C29—H29 | 0.9500 | C59—H59 | 0.9500 |
C30—H30 | 0.9500 | C60—H60 | 0.9500 |
O1—Si1—O2 | 104.71 (18) | O4—Si3—O3 | 112.18 (18) |
O1—Si1—C7 | 109.5 (2) | O4—Si3—C31 | 105.99 (19) |
O2—Si1—C7 | 110.8 (2) | O3—Si3—C31 | 107.02 (19) |
O1—Si1—C1 | 110.52 (19) | O4—Si3—C37 | 110.2 (2) |
O2—Si1—C1 | 108.2 (2) | O3—Si3—C37 | 108.71 (19) |
C7—Si1—C1 | 112.7 (2) | C31—Si3—C37 | 112.7 (2) |
O1—Si2—C13 | 108.3 (2) | O3—Si4—C43 | 105.9 (2) |
O1—Si2—C25 | 109.7 (2) | O3—Si4—C55 | 109.85 (19) |
C13—Si2—C25 | 112.2 (2) | C43—Si4—C55 | 108.6 (2) |
O1—Si2—C19 | 107.69 (19) | O3—Si4—C49 | 109.6 (2) |
C13—Si2—C19 | 110.5 (2) | C43—Si4—C49 | 115.4 (2) |
C25—Si2—C19 | 108.3 (2) | C55—Si4—C49 | 107.5 (2) |
Si1—O1—Si2 | 166.0 (2) | Si3—O3—Si4 | 147.7 (2) |
Si1—O2—H2 | 109.5 | Si3—O4—H4 | 109.5 |
C2—C1—C6 | 117.3 (4) | C36—C31—C32 | 116.5 (4) |
C2—C1—Si1 | 120.8 (4) | C36—C31—Si3 | 120.7 (4) |
C6—C1—Si1 | 121.9 (4) | C32—C31—Si3 | 122.8 (4) |
C1—C2—C3 | 120.9 (5) | C33—C32—C31 | 121.1 (5) |
C1—C2—H2A | 119.6 | C33—C32—H32 | 119.5 |
C3—C2—H2A | 119.6 | C31—C32—H32 | 119.5 |
C4—C3—C2 | 119.6 (5) | C34—C33—C32 | 120.4 (5) |
C4—C3—H3 | 120.2 | C34—C33—H33 | 119.8 |
C2—C3—H3 | 120.2 | C32—C33—H33 | 119.8 |
C5—C4—C3 | 120.7 (5) | C33—C34—C35 | 120.3 (5) |
C5—C4—H4A | 119.6 | C33—C34—H34 | 119.8 |
C3—C4—H4A | 119.6 | C35—C34—H34 | 119.8 |
C4—C5—C6 | 119.6 (5) | C34—C35—C36 | 119.3 (5) |
C4—C5—H5 | 120.2 | C34—C35—H35 | 120.3 |
C6—C5—H5 | 120.2 | C36—C35—H35 | 120.3 |
C5—C6—C1 | 121.8 (5) | C35—C36—C31 | 122.4 (5) |
C5—C6—H6 | 119.1 | C35—C36—H36 | 118.8 |
C1—C6—H6 | 119.1 | C31—C36—H36 | 118.8 |
C8—C7—C12 | 117.9 (5) | C38—C37—C42 | 116.3 (5) |
C8—C7—Si1 | 121.9 (4) | C38—C37—Si3 | 121.6 (4) |
C12—C7—Si1 | 120.2 (4) | C42—C37—Si3 | 122.1 (4) |
C7—C8—C9 | 120.5 (5) | C37—C38—C39 | 122.9 (5) |
C7—C8—H8 | 119.7 | C37—C38—H38 | 118.6 |
C9—C8—H8 | 119.7 | C39—C38—H38 | 118.6 |
C10—C9—C8 | 119.7 (5) | C40—C39—C38 | 119.7 (5) |
C10—C9—H9 | 120.1 | C40—C39—H39 | 120.1 |
C8—C9—H9 | 120.1 | C38—C39—H39 | 120.1 |
C11—C10—C9 | 120.0 (6) | C41—C40—C39 | 119.1 (5) |
C11—C10—H10 | 120.0 | C41—C40—H40 | 120.5 |
C9—C10—H10 | 120.0 | C39—C40—H40 | 120.5 |
C12—C11—C10 | 121.0 (6) | C40—C41—C42 | 120.2 (5) |
C12—C11—H11 | 119.5 | C40—C41—H41 | 119.9 |
C10—C11—H11 | 119.5 | C42—C41—H41 | 119.9 |
C11—C12—C7 | 120.8 (5) | C37—C42—C41 | 121.8 (5) |
C11—C12—H12 | 119.6 | C37—C42—H42 | 119.1 |
C7—C12—H12 | 119.6 | C41—C42—H42 | 119.1 |
C14—C13—C18 | 116.4 (5) | C44—C43—C48 | 116.9 (5) |
C14—C13—Si2 | 123.6 (4) | C44—C43—Si4 | 121.9 (4) |
C18—C13—Si2 | 120.0 (4) | C48—C43—Si4 | 121.0 (4) |
C13—C14—C15 | 122.4 (5) | C43—C44—C45 | 122.0 (5) |
C13—C14—H14 | 118.8 | C43—C44—H44 | 119.0 |
C15—C14—H14 | 118.8 | C45—C44—H44 | 119.0 |
C16—C15—C14 | 119.5 (5) | C46—C45—C44 | 119.4 (6) |
C16—C15—H15 | 120.3 | C46—C45—H45 | 120.3 |
C14—C15—H15 | 120.3 | C44—C45—H45 | 120.3 |
C15—C16—C17 | 120.4 (5) | C45—C46—C47 | 120.6 (5) |
C15—C16—H16 | 119.8 | C45—C46—H46 | 119.7 |
C17—C16—H16 | 119.8 | C47—C46—H46 | 119.7 |
C13—C18—C17 | 121.6 (5) | C46—C47—C48 | 119.6 (5) |
C13—C18—H18 | 119.2 | C46—C47—H47 | 120.2 |
C17—C18—H18 | 119.2 | C48—C47—H47 | 120.2 |
C16—C17—C18 | 119.5 (5) | C47—C48—C43 | 121.5 (5) |
C16—C17—H17 | 120.2 | C47—C48—H48 | 119.3 |
C18—C17—H17 | 120.2 | C43—C48—H48 | 119.3 |
C20—C19—C24 | 116.9 (5) | C50—C49—C54 | 116.3 (5) |
C20—C19—Si2 | 121.3 (4) | C50—C49—Si4 | 121.2 (4) |
C24—C19—Si2 | 121.8 (4) | C54—C49—Si4 | 122.3 (4) |
C21—C20—C19 | 121.8 (5) | C51—C50—C49 | 122.2 (5) |
C21—C20—H20 | 119.1 | C51—C50—H50 | 118.9 |
C19—C20—H20 | 119.1 | C49—C50—H50 | 118.9 |
C20—C21—C22 | 120.4 (5) | C52—C51—C50 | 120.3 (5) |
C20—C21—H21 | 119.8 | C52—C51—H51 | 119.8 |
C22—C21—H21 | 119.8 | C50—C51—H51 | 119.8 |
C23—C22—C21 | 119.5 (5) | C51—C52—C53 | 120.2 (5) |
C23—C22—H22 | 120.2 | C51—C52—H52 | 119.9 |
C21—C22—H22 | 120.2 | C53—C52—H52 | 119.9 |
C22—C23—C24 | 119.9 (5) | C52—C53—C54 | 119.5 (5) |
C22—C23—H23 | 120.0 | C52—C53—H53 | 120.2 |
C24—C23—H23 | 120.0 | C54—C53—H53 | 120.2 |
C23—C24—C19 | 121.4 (5) | C53—C54—C49 | 121.5 (5) |
C23—C24—H24 | 119.3 | C53—C54—H54 | 119.3 |
C19—C24—H24 | 119.3 | C49—C54—H54 | 119.3 |
C26—C25—C30 | 116.8 (5) | C60—C55—C56 | 116.6 (4) |
C26—C25—Si2 | 122.9 (4) | C60—C55—Si4 | 123.3 (4) |
C30—C25—Si2 | 120.1 (4) | C56—C55—Si4 | 120.1 (4) |
C25—C26—C27 | 122.0 (5) | C57—C56—C55 | 121.9 (5) |
C25—C26—H26 | 119.0 | C57—C56—H56 | 119.1 |
C27—C26—H26 | 119.0 | C55—C56—H56 | 119.1 |
C28—C27—C26 | 118.0 (6) | C58—C57—C56 | 120.0 (5) |
C28—C27—H27 | 121.0 | C58—C57—H57 | 120.0 |
C26—C27—H27 | 121.0 | C56—C57—H57 | 120.0 |
C29—C28—C27 | 122.5 (6) | C57—C58—C59 | 119.8 (5) |
C29—C28—H28 | 118.7 | C57—C58—H58 | 120.1 |
C27—C28—H28 | 118.7 | C59—C58—H58 | 120.1 |
C28—C29—C30 | 119.3 (6) | C58—C59—C60 | 119.9 (5) |
C28—C29—H29 | 120.4 | C58—C59—H59 | 120.0 |
C30—C29—H29 | 120.4 | C60—C59—H59 | 120.0 |
C29—C30—C25 | 121.4 (5) | C55—C60—C59 | 121.8 (5) |
C29—C30—H30 | 119.3 | C55—C60—H60 | 119.1 |
C25—C30—H30 | 119.3 | C59—C60—H60 | 119.1 |
O2—Si1—O1—Si2 | 144.4 (9) | O4—Si3—O3—Si4 | −27.6 (4) |
C7—Si1—O1—Si2 | −96.7 (9) | C31—Si3—O3—Si4 | −143.4 (4) |
C1—Si1—O1—Si2 | 28.1 (10) | C37—Si3—O3—Si4 | 94.6 (4) |
C13—Si2—O1—Si1 | −87.0 (9) | C43—Si4—O3—Si3 | −146.9 (4) |
C25—Si2—O1—Si1 | 35.8 (10) | C55—Si4—O3—Si3 | −29.8 (5) |
C19—Si2—O1—Si1 | 153.5 (9) | C49—Si4—O3—Si3 | 88.1 (4) |
O1—Si1—C1—C2 | −65.9 (4) | O4—Si3—C31—C36 | 45.6 (4) |
O2—Si1—C1—C2 | 180.0 (4) | O3—Si3—C31—C36 | 165.5 (3) |
C7—Si1—C1—C2 | 57.0 (5) | C37—Si3—C31—C36 | −75.1 (4) |
O1—Si1—C1—C6 | 114.5 (4) | O4—Si3—C31—C32 | −133.3 (4) |
O2—Si1—C1—C6 | 0.3 (4) | O3—Si3—C31—C32 | −13.4 (5) |
C7—Si1—C1—C6 | −122.6 (4) | C37—Si3—C31—C32 | 106.1 (4) |
C6—C1—C2—C3 | −0.9 (7) | C36—C31—C32—C33 | 1.9 (7) |
Si1—C1—C2—C3 | 179.4 (4) | Si3—C31—C32—C33 | −179.2 (4) |
C1—C2—C3—C4 | −0.9 (7) | C31—C32—C33—C34 | −0.5 (8) |
C2—C3—C4—C5 | 1.7 (7) | C32—C33—C34—C35 | −1.1 (8) |
C3—C4—C5—C6 | −0.5 (7) | C33—C34—C35—C36 | 1.1 (8) |
C4—C5—C6—C1 | −1.5 (7) | C34—C35—C36—C31 | 0.3 (7) |
C2—C1—C6—C5 | 2.2 (7) | C32—C31—C36—C35 | −1.8 (7) |
Si1—C1—C6—C5 | −178.2 (4) | Si3—C31—C36—C35 | 179.3 (4) |
O1—Si1—C7—C8 | −23.1 (5) | O4—Si3—C37—C38 | −177.1 (4) |
O2—Si1—C7—C8 | 91.9 (5) | O3—Si3—C37—C38 | 59.6 (5) |
C1—Si1—C7—C8 | −146.6 (4) | C31—Si3—C37—C38 | −58.9 (5) |
O1—Si1—C7—C12 | 156.8 (4) | O4—Si3—C37—C42 | 1.5 (5) |
O2—Si1—C7—C12 | −88.2 (5) | O3—Si3—C37—C42 | −121.8 (4) |
C1—Si1—C7—C12 | 33.3 (5) | C31—Si3—C37—C42 | 119.7 (4) |
C12—C7—C8—C9 | −0.5 (8) | C42—C37—C38—C39 | −0.7 (8) |
Si1—C7—C8—C9 | 179.4 (5) | Si3—C37—C38—C39 | 178.0 (4) |
C7—C8—C9—C10 | 2.1 (10) | C37—C38—C39—C40 | −0.5 (8) |
C8—C9—C10—C11 | −1.9 (11) | C38—C39—C40—C41 | 2.4 (8) |
C9—C10—C11—C12 | 0.1 (11) | C39—C40—C41—C42 | −3.0 (8) |
C10—C11—C12—C7 | 1.5 (10) | C38—C37—C42—C41 | 0.0 (8) |
C8—C7—C12—C11 | −1.3 (9) | Si3—C37—C42—C41 | −178.6 (4) |
Si1—C7—C12—C11 | 178.8 (5) | C40—C41—C42—C37 | 1.8 (9) |
O1—Si2—C13—C14 | 26.6 (5) | O3—Si4—C43—C44 | −17.0 (4) |
C25—Si2—C13—C14 | −94.7 (5) | C55—Si4—C43—C44 | −134.9 (4) |
C19—Si2—C13—C14 | 144.3 (4) | C49—Si4—C43—C44 | 104.4 (4) |
O1—Si2—C13—C18 | −153.2 (4) | O3—Si4—C43—C48 | 159.4 (3) |
C25—Si2—C13—C18 | 85.5 (5) | C55—Si4—C43—C48 | 41.5 (4) |
C19—Si2—C13—C18 | −35.5 (5) | C49—Si4—C43—C48 | −79.2 (4) |
C18—C13—C14—C15 | −3.2 (8) | C48—C43—C44—C45 | −1.8 (7) |
Si2—C13—C14—C15 | 177.0 (4) | Si4—C43—C44—C45 | 174.7 (4) |
C13—C14—C15—C16 | 0.5 (8) | C43—C44—C45—C46 | 0.1 (8) |
C14—C15—C16—C17 | 1.9 (8) | C44—C45—C46—C47 | 1.9 (8) |
C14—C13—C18—C17 | 3.7 (8) | C45—C46—C47—C48 | −2.3 (8) |
Si2—C13—C18—C17 | −176.5 (5) | C46—C47—C48—C43 | 0.6 (7) |
C15—C16—C17—C18 | −1.4 (9) | C44—C43—C48—C47 | 1.4 (7) |
C13—C18—C17—C16 | −1.5 (10) | Si4—C43—C48—C47 | −175.1 (4) |
O1—Si2—C19—C20 | 31.0 (5) | O3—Si4—C49—C50 | −23.3 (5) |
C13—Si2—C19—C20 | −87.1 (5) | C43—Si4—C49—C50 | −142.7 (4) |
C25—Si2—C19—C20 | 149.6 (4) | C55—Si4—C49—C50 | 96.0 (4) |
O1—Si2—C19—C24 | −148.6 (4) | O3—Si4—C49—C54 | 162.3 (4) |
C13—Si2—C19—C24 | 93.3 (5) | C43—Si4—C49—C54 | 42.9 (5) |
C25—Si2—C19—C24 | −30.0 (5) | C55—Si4—C49—C54 | −78.4 (4) |
C24—C19—C20—C21 | −0.9 (8) | C54—C49—C50—C51 | −1.4 (7) |
Si2—C19—C20—C21 | 179.5 (4) | Si4—C49—C50—C51 | −176.1 (4) |
C19—C20—C21—C22 | −0.7 (9) | C49—C50—C51—C52 | 2.3 (8) |
C20—C21—C22—C23 | 1.4 (9) | C50—C51—C52—C53 | −2.1 (8) |
C21—C22—C23—C24 | −0.3 (9) | C51—C52—C53—C54 | 1.2 (8) |
C22—C23—C24—C19 | −1.4 (9) | C52—C53—C54—C49 | −0.3 (8) |
C20—C19—C24—C23 | 2.0 (8) | C50—C49—C54—C53 | 0.4 (7) |
Si2—C19—C24—C23 | −178.4 (4) | Si4—C49—C54—C53 | 175.1 (4) |
O1—Si2—C25—C26 | −142.9 (4) | O3—Si4—C55—C60 | 126.9 (4) |
C13—Si2—C25—C26 | −22.4 (5) | C43—Si4—C55—C60 | −117.7 (4) |
C19—Si2—C25—C26 | 99.8 (4) | C49—Si4—C55—C60 | 7.8 (4) |
O1—Si2—C25—C30 | 42.0 (5) | O3—Si4—C55—C56 | −53.8 (4) |
C13—Si2—C25—C30 | 162.5 (4) | C43—Si4—C55—C56 | 61.6 (4) |
C19—Si2—C25—C30 | −75.3 (5) | C49—Si4—C55—C56 | −172.9 (3) |
C30—C25—C26—C27 | 0.8 (7) | C60—C55—C56—C57 | −0.8 (6) |
Si2—C25—C26—C27 | −174.4 (4) | Si4—C55—C56—C57 | 179.9 (3) |
C25—C26—C27—C28 | −1.9 (8) | C55—C56—C57—C58 | −0.4 (7) |
C26—C27—C28—C29 | 1.2 (9) | C56—C57—C58—C59 | 1.0 (7) |
C27—C28—C29—C30 | 0.6 (9) | C57—C58—C59—C60 | −0.4 (7) |
C28—C29—C30—C25 | −1.8 (9) | C56—C55—C60—C59 | 1.4 (7) |
C26—C25—C30—C29 | 1.0 (8) | Si4—C55—C60—C59 | −179.3 (4) |
Si2—C25—C30—C29 | 176.4 (4) | C58—C59—C60—C55 | −0.9 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2 | 0.84 | 1.94 | 2.742 (4) | 160 |
O2—H2···Cg(C55–C60) | 0.84 | 2.44 | 3.181 (2) | 147 |
Experimental details
Crystal data | |
Chemical formula | C30H26O2Si2 |
Mr | 474.69 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 10.3611 (6), 14.2844 (8), 18.4367 (9) |
α, β, γ (°) | 99.421 (4), 98.492 (4), 107.415 (4) |
V (Å3) | 2511.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.14 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Bruker X8 KappaCCD APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.977, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33504, 9155, 4059 |
Rint | 0.140 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.185, 0.98 |
No. of reflections | 9155 |
No. of parameters | 615 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.37 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Bruker 2001), DIAMOND (Brandenburg, 2006).
Si1—O1 | 1.605 (3) | Si3—O4 | 1.612 (3) |
Si1—O2 | 1.637 (3) | Si3—O3 | 1.620 (3) |
Si1—C7 | 1.841 (5) | Si3—C31 | 1.841 (5) |
Si1—C1 | 1.854 (5) | Si3—C37 | 1.858 (5) |
Si2—O1 | 1.612 (3) | Si4—O3 | 1.620 (3) |
Si2—C13 | 1.844 (5) | Si4—C43 | 1.848 (5) |
Si2—C25 | 1.852 (5) | Si4—C55 | 1.854 (5) |
Si2—C19 | 1.861 (5) | Si4—C49 | 1.861 (5) |
O1—Si1—O2 | 104.71 (18) | O4—Si3—O3 | 112.18 (18) |
O1—Si1—C7 | 109.5 (2) | O4—Si3—C31 | 105.99 (19) |
O2—Si1—C7 | 110.8 (2) | O3—Si3—C31 | 107.02 (19) |
O1—Si1—C1 | 110.52 (19) | O4—Si3—C37 | 110.2 (2) |
O2—Si1—C1 | 108.2 (2) | O3—Si3—C37 | 108.71 (19) |
C7—Si1—C1 | 112.7 (2) | C31—Si3—C37 | 112.7 (2) |
O1—Si2—C13 | 108.3 (2) | O3—Si4—C43 | 105.9 (2) |
O1—Si2—C25 | 109.7 (2) | O3—Si4—C55 | 109.85 (19) |
C13—Si2—C25 | 112.2 (2) | C43—Si4—C55 | 108.6 (2) |
O1—Si2—C19 | 107.69 (19) | O3—Si4—C49 | 109.6 (2) |
C13—Si2—C19 | 110.5 (2) | C43—Si4—C49 | 115.4 (2) |
C25—Si2—C19 | 108.3 (2) | C55—Si4—C49 | 107.5 (2) |
Si1—O1—Si2 | 166.0 (2) | Si3—O3—Si4 | 147.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2 | 0.84 | 1.94 | 2.742 (4) | 160 |
O2—H2···Cg(C55–C60) | 0.84 | 2.44 | 3.181 (2) | 147 |
Acknowledgements
We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support and also for specific funding toward the purchase of the single-crystal diffractometer.
References
Abrantes, M., Valente, A. A., Pillinger, M., Gonçalves, I. S., Rocha, J. & Romão, C. C. (2002). Inorg. Chem. Commun. 5, 1069–1072. Web of Science CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Amarante, T. R., Coelho, A. C., Klinowski, J., Gonçalves, I. S. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o239. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Version 2.1-RC13. Bruker–Nonius, Delft, The Netherlands. Google Scholar
Bruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298–308. Web of Science CrossRef PubMed CAS Google Scholar
Bruno, S. M., Pereira, C. C. L., Balula, M. S., Nolasco, M., Valente, A. A., Hazell, A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2007). J. Mol. Catal. A Chem. 261, 79–87. Web of Science CSD CrossRef CAS Google Scholar
Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 124–128. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Hönle, W., Manríquez, V. & von Schnering, H. G. (1990). Acta Cryst. C46, 1982–1984. CSD CrossRef Web of Science IUCr Journals Google Scholar
Morosin, B. & Harrah, L. A. (1981). Acta Cryst. B37, 579–586. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380–4390. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany. Google Scholar
Suwińska, K., Palenik, G. J. & Gerdil, R. (1986). Acta Cryst. C42, 615–620. CSD CrossRef Web of Science IUCr Journals Google Scholar
Wojnowski, D. W., Becker, B., Peters, K., Peters, E.-M. & von Schnering, H. G. (2004). Z. Anorg. Allg. Chem. 563, 48–52. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Even though derivatives of triphenylsilane, SiH(Ph)3, have been widely used in organometallic chemistry and chemistry in general for many years, disiloxanes (i.e., compounds having two Si centres bridged via an oxo group) in which one Si centre is bound to a hydroxyl group are unknown as revealed by a search of the literature in conjunction with another of the Cambridge Structural Database (CSD, Version 5.28 with three updates - August 2007; Allen, 2002). Moreover, disiloxanes having one of the two Si centres bound to three phenyl groups are scarce, with only a handful of compounds being available in the literature (Glidewell & Liles, 1978; Hönle et al., 1990; Morosin & Harrah, 1981; Suwińska et al., 1986; Wojnowski et al., 2004). Following our on-going research toward the synthesis, structural characterization and catalytic application of novel triphenylsiloxy derivatives (Abrantes et al., 2002; Bruno et al., 2006, 2007; Nunes et al., 2003), we have recently isolated the unprecedented [Si2O(OH)(Ph)5] disiloxane, in which one Si(Ph)3 residue is bound to another Si(OH)(Ph)2 residue via a non-linear Si—O—Si bridge.
The crystal structure of the title compound, (I), at the low temperature of 100 K is fully described in the triclinic P1 space group with the asymmetric unit being composed of two crystallographically independent [Si2O(OH)(Ph)5] molecular units, Fig. 1 & Table 1. Within each binuclear unit, the two Si centres exhibit distinct coordination environments, even though the µ2-bridging oxo group is common to the two Si centres. While one Si is coordinated to three phenyl groups, {SiC3O}, the other is bound to two phenyl groups plus a hydroxyl moiety,{SiC2O2}. For the two independent molecular units, the Si—C and Si—O bond lengths were found in the 1.841 (5)–1.861 (5) and 1.605 (3)–1.637 (3) Å ranges, respectively, in good agreement with those found in related materials.
It is of considerable importance to note that while for the disiloxanes which have identical coordination environments for the Si centres the internal Si—O—Si bridge is almost linear, such as for the compounds reported by Glidewell & Liles (1978), Hönle et al. (1990) and Suwińska et al. (1986), the presence of distinct coordinating chemical moieties and their interaction with adjacent species in (I) induces a kink in this µ2-bridge. Indeed, the Si—O—Si bond angles for (I) range from 147.7 (2)° to 166.0 (2)°, values which are consistent with that reported by Wojnowski et al. (2004) for [Si2O(H)(Ph)5] (ca 163°). We also note the markedly distinct nature of the bridging angles for the two molecular units, a structural feature which can be rationalized taking into consideration the strongest intermolecular interactions present. Indeed, besides the very strong and linear O—H···O hydrogen bonding interaction connecting adjacent [Si2O(OH)(Ph)5] units, the O2-hydroxyl group is further engaged in a O—H···π interaction with the neighbouring C55→C60 phenyl group, Table 2. Consequently, in order to maximize these two interactions the Si3—O3—Si4 angle decreases, while the Si1—O1—Si2 approaches linearity so to minimize steric hindrance between coordinating moieties.
The two interactions described above (O—H···O and O—H···π) create a supramolecular entity (Fig. 1) which packs in a parallel fashion in the ab plane of the unit cell forming layers (Fig. 2). Adjacent layers alternate along the [001] direction of the unit cell with a number of C—H···π contacts mediating the interactions between adjacent phenyl groups (not shown).