metal-organic compounds
Bis(tetraphenylphosphonium) bis[N-(octylsulfonyl)dithiocarbimato(2–)-κ2S,S′]nickelate(II)
aDepartamento de Química, UFV, 36570-000 Viçosa, MG, Brazil, and bInstituto de Física, UFG, Caixa Postal 131, 74001-970 Goiânia, Brazil
*Correspondence e-mail: jrsabino@if.ufg.br
The Ni atom in the title complex, (C24H20P)2[Ni(C9H17NO2S3)2], lies on a twofold axis within a square-planar geometry defined by four S atoms derived from two dithiocarbimate dianions, each forming a four-membered chelate ring. A small distortion, described by a deviation of the NiII atom by 0.083 (1) Å from the plane through the four S atoms, and also by the torsion angles about the Ni—S bonds, implies a folded conformation for the chelate ring.
Related literature
The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N=CS2)2]2− (Hummel et al., 1989; Franca et al., 2006; Oliveira et al., 1997, 1999, 2003). The literature describes only two other complexes of this class having tetraphenylphosphonium as counter-ion (Hummel & Korn, 1989; Allen, 2002). For other related literature, see: Hogarth (2005); Vogel (1966); Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807065014/tk2230sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807065014/tk2230Isup2.hkl
The octanesulfonamide was prepared from octanesulfonyl chloride in a similar procedure as described elsewhere (Vogel, 1966). Potassium N-(octylsulfonyl)dithiocarbimate was prepared from the sulfonamide using procedures described in the literature for analogous compounds Complex (I) was prepared in 1:1 (10 ml) methanol:water mixture from NiCl2.6H2O (1.0 mmol), potassium N-(octylsulfonyl)dithiocarbimate dihydrate (1.0 mmol) and tetraphenylphosphonium bromide (2 mmol). The reaction mixture was stirred for 1 h at room temperature. The green solid obtained was filtered, washed with distilled water and dried under reduced pressure for 1 day. Suitable crystals of (I) were obtained by slow evaporation of the solvent water/methanol (1:1 v/v); m. pt. 427.5–429.1 K. Analysis found: C 62.43, H 5.81, N 2.42, Ni 4.59; C66H74N2NiO4P2S6 requires: C 62.30, H 5.86, N 2.20, Ni 4.61%. IR (most important bands, cm-1): 1398 ν(C=N); 1268 νasym(SO2); 1123 νsym(SO2); 936 νasym(CS2) and 381 ν(NiS).
All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl-H atoms and Uiso(H) = 1.2 Ueq(C) for other atoms. The bond distances C4–C5, C5–C6, C6–C7, C7–C8 and C8–C9 were restrained to 1.54 Å. The atoms C5 to C9 are very disordered and any attempt to model this disorder over multiple sites was not reliable.
We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel
by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula [Ni(RSO2N=CS2)2]2- (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 1997; Oliveira et al., 1999; Oliveira et al., 2003). However, only two of these complexes have the tetraphenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira et al., 1997; Franca et al., 2006). Variations in the counter-ions and in the R group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2(Ni(C8H17SO2N=CS2)2)2-, Figs 1 & 2.The NiII ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1i—Ni—S2—C1 and S2i—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -x, y, -z + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in (C14H10N2NiO4S6)2-.2(C24H20P)+ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.
The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: trans, gauche, trans, trans, cis, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.
The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N?CS2)2]2- (Hummel et al., 1989; Franca et al., 2006; Oliveira et al., 1997, 1999, 2003). The literature describes only two other complexes of this class having tetraphenylphosphonium as counter-ion (Hummel & Korn, 1989; Allen, 2002). For other related literature, see: Hogarth (2005); Vogel (1966); Cremer & Pople (1975).
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell
CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).(C24H20P)2[Ni(C9H17NO2S3)2] | F(000) = 2680 |
Mr = 1272.32 | Dx = 1.343 Mg m−3 |
Monoclinic, C2/c | Melting point: 428 K |
Hall symbol: -C 2yc | Cu Kα radiation, λ = 1.54180 Å |
a = 29.113 (4) Å | Cell parameters from 25 reflections |
b = 10.425 (2) Å | θ = 16.2–30.1° |
c = 22.966 (3) Å | µ = 3.17 mm−1 |
β = 115.50 (1)° | T = 297 K |
V = 6291.3 (18) Å3 | Prism, dark-yellow |
Z = 4 | 0.16 × 0.16 × 0.08 mm |
Enraf–Nonius CAD-4 diffractometer | 3927 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.079 |
Graphite monochromator | θmax = 68°, θmin = 3.4° |
non–profiled ω/2θ scans | h = −34→34 |
Absorption correction: gaussian (Spek, 2003) | k = −12→12 |
Tmin = 0.629, Tmax = 0.787 | l = −18→27 |
11798 measured reflections | 2 standard reflections every 120 min |
5696 independent reflections | intensity decay: 1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.061 | w = 1/[σ2(Fo2) + (0.1159P)2 + 8.6294P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.208 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.59 e Å−3 |
5696 reflections | Δρmin = −0.61 e Å−3 |
367 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.00064 (8) |
Secondary atom site location: difference Fourier map |
(C24H20P)2[Ni(C9H17NO2S3)2] | V = 6291.3 (18) Å3 |
Mr = 1272.32 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 29.113 (4) Å | µ = 3.17 mm−1 |
b = 10.425 (2) Å | T = 297 K |
c = 22.966 (3) Å | 0.16 × 0.16 × 0.08 mm |
β = 115.50 (1)° |
Enraf–Nonius CAD-4 diffractometer | 3927 reflections with I > 2σ(I) |
Absorption correction: gaussian (Spek, 2003) | Rint = 0.079 |
Tmin = 0.629, Tmax = 0.787 | 2 standard reflections every 120 min |
11798 measured reflections | intensity decay: 1% |
5696 independent reflections |
R[F2 > 2σ(F2)] = 0.061 | 5 restraints |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.59 e Å−3 |
5696 reflections | Δρmin = −0.61 e Å−3 |
367 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni | 0 | 0.82980 (10) | 0.25 | 0.0545 (3) | |
S1 | 0.07020 (4) | 0.82179 (13) | 0.34078 (6) | 0.0654 (4) | |
S2 | 0.05891 (4) | 0.82194 (12) | 0.21372 (5) | 0.0622 (3) | |
S3 | 0.18146 (4) | 0.73175 (12) | 0.27711 (5) | 0.0574 (3) | |
O2 | 0.17880 (14) | 0.8302 (3) | 0.23259 (18) | 0.0748 (9) | |
O1 | 0.23151 (12) | 0.6954 (4) | 0.32300 (17) | 0.0849 (11) | |
N1 | 0.15016 (13) | 0.7668 (4) | 0.31917 (17) | 0.0590 (9) | |
C1 | 0.10265 (16) | 0.7992 (4) | 0.2937 (2) | 0.0555 (10) | |
C2 | 0.15171 (18) | 0.5925 (5) | 0.2332 (3) | 0.0697 (12) | |
H2A | 0.1498 | 0.5287 | 0.2628 | 0.084* | |
H2B | 0.1172 | 0.6136 | 0.2028 | 0.084* | |
C3 | 0.1798 (2) | 0.5359 (5) | 0.1968 (3) | 0.0793 (15) | |
H3A | 0.1839 | 0.6016 | 0.1695 | 0.095* | |
H3B | 0.2134 | 0.509 | 0.2275 | 0.095* | |
C4 | 0.1522 (2) | 0.4229 (6) | 0.1558 (3) | 0.0872 (16) | |
H4A | 0.1425 | 0.3646 | 0.1816 | 0.105* | |
H4B | 0.1752 | 0.3773 | 0.1426 | 0.105* | |
C5 | 0.1043 (2) | 0.4607 (7) | 0.0953 (3) | 0.113 (2) | |
H5A | 0.1126 | 0.5196 | 0.0686 | 0.136* | |
H5B | 0.0792 | 0.5003 | 0.1069 | 0.136* | |
C6 | 0.0845 (4) | 0.3320 (8) | 0.0602 (5) | 0.186 (5) | |
H6A | 0.109 | 0.2948 | 0.0468 | 0.224* | |
H6B | 0.0783 | 0.2716 | 0.0881 | 0.224* | |
C7 | 0.0349 (5) | 0.3651 (11) | 0.0013 (6) | 0.271 (9) | |
H7A | 0.0424 | 0.4276 | −0.0246 | 0.325* | |
H7B | 0.012 | 0.4056 | 0.0164 | 0.325* | |
C8 | 0.0069 (5) | 0.2514 (11) | −0.0422 (6) | 0.241 (8) | |
H8A | −0.0262 | 0.2494 | −0.0414 | 0.289* | |
H8B | 0.0005 | 0.2784 | −0.0855 | 0.289* | |
C9 | 0.0228 (4) | 0.1100 (10) | −0.0385 (5) | 0.191 (5) | |
H9A | −0.0051 | 0.0606 | −0.0687 | 0.286* | |
H9B | 0.0321 | 0.0783 | 0.0044 | 0.286* | |
H9C | 0.0513 | 0.1029 | −0.0488 | 0.286* | |
P1 | 0.36685 (3) | 0.78525 (10) | 0.07711 (5) | 0.0464 (3) | |
C21 | 0.35663 (14) | 0.6605 (4) | 0.0188 (2) | 0.0511 (9) | |
C22 | 0.32109 (16) | 0.5653 (4) | 0.0083 (2) | 0.0635 (11) | |
H22 | 0.3055 | 0.5556 | 0.0359 | 0.076* | |
C23 | 0.3090 (2) | 0.4840 (5) | −0.0440 (3) | 0.0807 (15) | |
H23 | 0.285 | 0.4197 | −0.0514 | 0.097* | |
C24 | 0.3315 (2) | 0.4963 (6) | −0.0847 (3) | 0.0868 (17) | |
H24 | 0.3226 | 0.4411 | −0.1197 | 0.104* | |
C25 | 0.3678 (2) | 0.5917 (6) | −0.0740 (2) | 0.0788 (15) | |
H25 | 0.3834 | 0.6006 | −0.1016 | 0.095* | |
C26 | 0.38034 (18) | 0.6729 (5) | −0.0218 (2) | 0.0664 (12) | |
H26 | 0.4048 | 0.7361 | −0.0138 | 0.08* | |
C31 | 0.43463 (14) | 0.8089 (4) | 0.12143 (19) | 0.0496 (9) | |
C32 | 0.46464 (16) | 0.7003 (4) | 0.1410 (2) | 0.0606 (11) | |
H32 | 0.4504 | 0.6194 | 0.1282 | 0.073* | |
C33 | 0.51645 (17) | 0.7136 (5) | 0.1802 (2) | 0.0703 (13) | |
H33 | 0.5369 | 0.641 | 0.1939 | 0.084* | |
C34 | 0.53720 (17) | 0.8314 (5) | 0.1985 (3) | 0.0727 (14) | |
H34 | 0.5718 | 0.8387 | 0.2253 | 0.087* | |
C35 | 0.50824 (18) | 0.9399 (5) | 0.1782 (3) | 0.0746 (14) | |
H35 | 0.5231 | 1.0203 | 0.1906 | 0.09* | |
C36 | 0.45635 (16) | 0.9291 (4) | 0.1388 (2) | 0.0621 (11) | |
H36 | 0.4364 | 1.0023 | 0.1242 | 0.075* | |
C41 | 0.33391 (14) | 0.9246 (4) | 0.03316 (18) | 0.0474 (9) | |
C42 | 0.30224 (14) | 0.9135 (4) | −0.03291 (19) | 0.0520 (9) | |
H42 | 0.299 | 0.835 | −0.0535 | 0.062* | |
C43 | 0.27604 (15) | 1.0182 (4) | −0.0673 (2) | 0.0556 (10) | |
H43 | 0.2546 | 1.0099 | −0.111 | 0.067* | |
C44 | 0.28115 (16) | 1.1355 (5) | −0.0377 (2) | 0.0618 (11) | |
H44 | 0.2638 | 1.2066 | −0.0615 | 0.074* | |
C45 | 0.31226 (17) | 1.1474 (4) | 0.0278 (2) | 0.0634 (11) | |
H45 | 0.3157 | 1.2266 | 0.0479 | 0.076* | |
C46 | 0.33794 (15) | 1.0433 (4) | 0.0630 (2) | 0.0546 (10) | |
H46 | 0.3582 | 1.0517 | 0.1071 | 0.065* | |
C11 | 0.34119 (14) | 0.7416 (4) | 0.13264 (19) | 0.0488 (9) | |
C12 | 0.36240 (16) | 0.6398 (4) | 0.1756 (2) | 0.0601 (11) | |
H12 | 0.3891 | 0.5926 | 0.1744 | 0.072* | |
C13 | 0.34362 (17) | 0.6096 (5) | 0.2196 (2) | 0.0639 (11) | |
H13 | 0.3582 | 0.5432 | 0.2488 | 0.077* | |
C14 | 0.30335 (18) | 0.6772 (5) | 0.2207 (2) | 0.0675 (13) | |
H14 | 0.2907 | 0.6549 | 0.2503 | 0.081* | |
C15 | 0.28174 (17) | 0.7762 (5) | 0.1792 (2) | 0.0649 (12) | |
H15 | 0.2547 | 0.8216 | 0.1806 | 0.078* | |
C16 | 0.30044 (16) | 0.8092 (4) | 0.1344 (2) | 0.0589 (11) | |
H16 | 0.2857 | 0.8763 | 0.1057 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0469 (5) | 0.0568 (6) | 0.0611 (6) | 0 | 0.0243 (5) | 0 |
S1 | 0.0547 (6) | 0.0852 (9) | 0.0590 (7) | 0.0010 (5) | 0.0271 (5) | −0.0024 (6) |
S2 | 0.0493 (6) | 0.0812 (8) | 0.0548 (6) | 0.0051 (5) | 0.0213 (5) | 0.0067 (5) |
S3 | 0.0461 (5) | 0.0688 (7) | 0.0559 (6) | 0.0026 (4) | 0.0206 (5) | −0.0007 (5) |
O2 | 0.088 (2) | 0.065 (2) | 0.087 (2) | −0.0014 (17) | 0.054 (2) | 0.0053 (17) |
O1 | 0.0511 (18) | 0.126 (3) | 0.069 (2) | 0.0167 (18) | 0.0180 (16) | −0.006 (2) |
N1 | 0.0489 (18) | 0.076 (2) | 0.0522 (19) | 0.0010 (17) | 0.0215 (15) | 0.0001 (18) |
C1 | 0.052 (2) | 0.054 (2) | 0.059 (2) | −0.0034 (18) | 0.0225 (19) | −0.0018 (19) |
C2 | 0.065 (3) | 0.066 (3) | 0.086 (3) | 0.000 (2) | 0.041 (3) | −0.003 (3) |
C3 | 0.075 (3) | 0.080 (4) | 0.097 (4) | −0.006 (3) | 0.051 (3) | −0.011 (3) |
C4 | 0.103 (4) | 0.078 (4) | 0.104 (4) | −0.005 (3) | 0.066 (4) | −0.006 (3) |
C5 | 0.102 (5) | 0.131 (6) | 0.117 (6) | −0.024 (4) | 0.058 (5) | −0.019 (5) |
C6 | 0.151 (9) | 0.249 (14) | 0.147 (9) | 0.014 (9) | 0.054 (7) | −0.079 (9) |
C7 | 0.259 (18) | 0.29 (2) | 0.175 (12) | −0.043 (14) | 0.007 (13) | −0.060 (14) |
C8 | 0.154 (10) | 0.306 (19) | 0.185 (12) | 0.055 (12) | 0.000 (9) | −0.129 (13) |
C9 | 0.182 (11) | 0.218 (14) | 0.141 (9) | −0.021 (10) | 0.040 (8) | 0.020 (9) |
P1 | 0.0402 (5) | 0.0469 (6) | 0.0489 (6) | 0.0006 (4) | 0.0164 (4) | 0.0005 (4) |
C21 | 0.0459 (19) | 0.049 (2) | 0.055 (2) | 0.0075 (16) | 0.0184 (17) | 0.0009 (18) |
C22 | 0.056 (2) | 0.051 (2) | 0.079 (3) | −0.0062 (19) | 0.025 (2) | −0.004 (2) |
C23 | 0.070 (3) | 0.060 (3) | 0.094 (4) | −0.005 (2) | 0.018 (3) | −0.019 (3) |
C24 | 0.087 (4) | 0.076 (4) | 0.083 (4) | 0.015 (3) | 0.022 (3) | −0.028 (3) |
C25 | 0.082 (3) | 0.090 (4) | 0.060 (3) | 0.011 (3) | 0.027 (3) | −0.013 (3) |
C26 | 0.062 (3) | 0.070 (3) | 0.067 (3) | −0.001 (2) | 0.028 (2) | −0.005 (2) |
C31 | 0.0409 (19) | 0.055 (2) | 0.050 (2) | −0.0031 (16) | 0.0177 (17) | 0.0007 (18) |
C32 | 0.048 (2) | 0.061 (3) | 0.069 (3) | 0.0011 (19) | 0.021 (2) | 0.002 (2) |
C33 | 0.047 (2) | 0.083 (3) | 0.078 (3) | 0.008 (2) | 0.023 (2) | 0.014 (3) |
C34 | 0.043 (2) | 0.096 (4) | 0.073 (3) | −0.010 (2) | 0.019 (2) | 0.007 (3) |
C35 | 0.056 (2) | 0.076 (3) | 0.089 (4) | −0.020 (2) | 0.028 (2) | −0.002 (3) |
C36 | 0.049 (2) | 0.062 (3) | 0.075 (3) | −0.0077 (19) | 0.027 (2) | 0.003 (2) |
C41 | 0.0435 (18) | 0.049 (2) | 0.047 (2) | 0.0023 (16) | 0.0167 (16) | 0.0017 (17) |
C42 | 0.047 (2) | 0.052 (2) | 0.051 (2) | −0.0022 (17) | 0.0163 (17) | −0.0052 (18) |
C43 | 0.052 (2) | 0.060 (3) | 0.050 (2) | 0.0046 (19) | 0.0181 (18) | 0.004 (2) |
C44 | 0.058 (2) | 0.057 (3) | 0.066 (3) | 0.013 (2) | 0.023 (2) | 0.009 (2) |
C45 | 0.068 (3) | 0.050 (2) | 0.067 (3) | 0.008 (2) | 0.024 (2) | −0.007 (2) |
C46 | 0.053 (2) | 0.054 (2) | 0.053 (2) | 0.0023 (18) | 0.0191 (18) | −0.0032 (19) |
C11 | 0.0417 (19) | 0.049 (2) | 0.051 (2) | −0.0034 (16) | 0.0154 (17) | −0.0023 (17) |
C12 | 0.054 (2) | 0.057 (2) | 0.067 (3) | 0.0031 (19) | 0.023 (2) | 0.007 (2) |
C13 | 0.061 (2) | 0.065 (3) | 0.063 (3) | −0.008 (2) | 0.024 (2) | 0.007 (2) |
C14 | 0.063 (3) | 0.084 (3) | 0.060 (3) | −0.021 (2) | 0.030 (2) | −0.008 (2) |
C15 | 0.056 (2) | 0.075 (3) | 0.073 (3) | 0.002 (2) | 0.037 (2) | −0.002 (3) |
C16 | 0.048 (2) | 0.064 (3) | 0.063 (3) | 0.0029 (18) | 0.0214 (19) | 0.004 (2) |
Ni—S1 | 2.2048 (12) | C22—H22 | 0.93 |
Ni—S1i | 2.2048 (12) | C23—C24 | 1.359 (8) |
Ni—S2i | 2.2075 (11) | C23—H23 | 0.93 |
Ni—S2 | 2.2075 (11) | C24—C25 | 1.394 (8) |
S1—C1 | 1.731 (4) | C24—H24 | 0.93 |
S2—C1 | 1.743 (4) | C25—C26 | 1.383 (7) |
S3—O2 | 1.427 (3) | C25—H25 | 0.93 |
S3—O1 | 1.434 (3) | C26—H26 | 0.93 |
S3—N1 | 1.629 (4) | C31—C32 | 1.381 (6) |
S3—C2 | 1.766 (5) | C31—C36 | 1.382 (6) |
N1—C1 | 1.294 (5) | C32—C33 | 1.391 (6) |
C2—C3 | 1.517 (7) | C32—H32 | 0.93 |
C2—H2A | 0.97 | C33—C34 | 1.353 (7) |
C2—H2B | 0.97 | C33—H33 | 0.93 |
C3—C4 | 1.507 (7) | C34—C35 | 1.367 (7) |
C3—H3A | 0.97 | C34—H34 | 0.93 |
C3—H3B | 0.97 | C35—C36 | 1.392 (6) |
C4—C5 | 1.537 (9) | C35—H35 | 0.93 |
C4—H4A | 0.97 | C36—H36 | 0.93 |
C4—H4B | 0.97 | C41—C46 | 1.396 (6) |
C5—C6 | 1.543 (11) | C41—C42 | 1.400 (6) |
C5—H5A | 0.97 | C42—C43 | 1.370 (6) |
C5—H5B | 0.97 | C42—H42 | 0.93 |
C6—C7 | 1.534 (17) | C43—C44 | 1.376 (6) |
C6—H6A | 0.97 | C43—H43 | 0.93 |
C6—H6B | 0.97 | C44—C45 | 1.388 (7) |
C7—C8 | 1.538 (17) | C44—H44 | 0.93 |
C7—H7A | 0.97 | C45—C46 | 1.367 (6) |
C7—H7B | 0.97 | C45—H45 | 0.93 |
C8—C9 | 1.536 (18) | C46—H46 | 0.93 |
C8—H8A | 0.97 | C11—C16 | 1.395 (6) |
C8—H8B | 0.97 | C11—C12 | 1.399 (6) |
C9—H9A | 0.96 | C12—C13 | 1.377 (6) |
C9—H9B | 0.96 | C12—H12 | 0.93 |
C9—H9C | 0.96 | C13—C14 | 1.377 (7) |
P1—C11 | 1.792 (4) | C13—H13 | 0.93 |
P1—C41 | 1.793 (4) | C14—C15 | 1.362 (7) |
P1—C21 | 1.796 (4) | C14—H14 | 0.93 |
P1—C31 | 1.806 (4) | C15—C16 | 1.399 (6) |
C21—C22 | 1.378 (6) | C15—H15 | 0.93 |
C21—C26 | 1.385 (6) | C16—H16 | 0.93 |
C22—C23 | 1.386 (7) | ||
S1—Ni—S1i | 175.66 (8) | C22—C21—C26 | 120.2 (4) |
S1—Ni—S2i | 101.31 (4) | C22—C21—P1 | 121.6 (3) |
S1i—Ni—S2i | 78.52 (4) | C26—C21—P1 | 117.6 (3) |
S1—Ni—S2 | 78.52 (4) | C21—C22—C23 | 118.9 (5) |
S1i—Ni—S2 | 101.31 (4) | C21—C22—H22 | 120.5 |
S2i—Ni—S2 | 175.75 (8) | C23—C22—H22 | 120.5 |
C1—S1—Ni | 87.00 (15) | C24—C23—C22 | 121.4 (5) |
C1—S2—Ni | 86.61 (15) | C24—C23—H23 | 119.3 |
O2—S3—O1 | 116.2 (2) | C22—C23—H23 | 119.3 |
O2—S3—N1 | 113.0 (2) | C23—C24—C25 | 120.0 (5) |
O1—S3—N1 | 105.9 (2) | C23—C24—H24 | 120 |
O2—S3—C2 | 108.7 (2) | C25—C24—H24 | 120 |
O1—S3—C2 | 107.2 (2) | C26—C25—C24 | 119.1 (5) |
N1—S3—C2 | 105.1 (2) | C26—C25—H25 | 120.5 |
C1—N1—S3 | 123.6 (3) | C24—C25—H25 | 120.5 |
N1—C1—S1 | 121.2 (3) | C25—C26—C21 | 120.4 (5) |
N1—C1—S2 | 131.7 (4) | C25—C26—H26 | 119.8 |
S1—C1—S2 | 107.0 (2) | C21—C26—H26 | 119.8 |
C3—C2—S3 | 112.7 (3) | C32—C31—C36 | 120.1 (4) |
C3—C2—H2A | 109.1 | C32—C31—P1 | 117.1 (3) |
S3—C2—H2A | 109.1 | C36—C31—P1 | 122.6 (3) |
C3—C2—H2B | 109.1 | C31—C32—C33 | 119.2 (4) |
S3—C2—H2B | 109.1 | C31—C32—H32 | 120.4 |
H2A—C2—H2B | 107.8 | C33—C32—H32 | 120.4 |
C4—C3—C2 | 112.4 (4) | C34—C33—C32 | 120.4 (5) |
C4—C3—H3A | 109.1 | C34—C33—H33 | 119.8 |
C2—C3—H3A | 109.1 | C32—C33—H33 | 119.8 |
C4—C3—H3B | 109.1 | C33—C34—C35 | 121.2 (4) |
C2—C3—H3B | 109.1 | C33—C34—H34 | 119.4 |
H3A—C3—H3B | 107.9 | C35—C34—H34 | 119.4 |
C3—C4—C5 | 113.4 (5) | C34—C35—C36 | 119.5 (5) |
C3—C4—H4A | 108.9 | C34—C35—H35 | 120.3 |
C5—C4—H4A | 108.9 | C36—C35—H35 | 120.3 |
C3—C4—H4B | 108.9 | C31—C36—C35 | 119.6 (4) |
C5—C4—H4B | 108.9 | C31—C36—H36 | 120.2 |
H4A—C4—H4B | 107.7 | C35—C36—H36 | 120.2 |
C4—C5—C6 | 103.8 (6) | C46—C41—C42 | 118.8 (4) |
C4—C5—H5A | 111 | C46—C41—P1 | 122.1 (3) |
C6—C5—H5A | 111 | C42—C41—P1 | 119.1 (3) |
C4—C5—H5B | 111 | C43—C42—C41 | 120.2 (4) |
C6—C5—H5B | 111 | C43—C42—H42 | 119.9 |
H5A—C5—H5B | 109 | C41—C42—H42 | 119.9 |
C7—C6—C5 | 105.2 (7) | C42—C43—C44 | 120.5 (4) |
C7—C6—H6A | 110.7 | C42—C43—H43 | 119.7 |
C5—C6—H6A | 110.7 | C44—C43—H43 | 119.7 |
C7—C6—H6B | 110.7 | C43—C44—C45 | 119.7 (4) |
C5—C6—H6B | 110.7 | C43—C44—H44 | 120.1 |
H6A—C6—H6B | 108.8 | C45—C44—H44 | 120.1 |
C6—C7—C8 | 115.7 (9) | C46—C45—C44 | 120.4 (4) |
C6—C7—H7A | 108.4 | C46—C45—H45 | 119.8 |
C8—C7—H7A | 108.4 | C44—C45—H45 | 119.8 |
C6—C7—H7B | 108.4 | C45—C46—C41 | 120.3 (4) |
C8—C7—H7B | 108.4 | C45—C46—H46 | 119.8 |
H7A—C7—H7B | 107.4 | C41—C46—H46 | 119.8 |
C9—C8—C7 | 129.8 (11) | C16—C11—C12 | 119.1 (4) |
C9—C8—H8A | 104.8 | C16—C11—P1 | 120.8 (3) |
C7—C8—H8A | 104.8 | C12—C11—P1 | 120.1 (3) |
C9—C8—H8B | 104.8 | C13—C12—C11 | 119.8 (4) |
C7—C8—H8B | 104.8 | C13—C12—H12 | 120.1 |
H8A—C8—H8B | 105.8 | C11—C12—H12 | 120.1 |
C8—C9—H9A | 109.5 | C12—C13—C14 | 120.5 (5) |
C8—C9—H9B | 109.5 | C12—C13—H13 | 119.8 |
H9A—C9—H9B | 109.5 | C14—C13—H13 | 119.8 |
C8—C9—H9C | 109.5 | C15—C14—C13 | 121.0 (4) |
H9A—C9—H9C | 109.5 | C15—C14—H14 | 119.5 |
H9B—C9—H9C | 109.5 | C13—C14—H14 | 119.5 |
C11—P1—C41 | 108.68 (18) | C14—C15—C16 | 119.5 (4) |
C11—P1—C21 | 111.12 (19) | C14—C15—H15 | 120.2 |
C41—P1—C21 | 106.86 (19) | C16—C15—H15 | 120.2 |
C11—P1—C31 | 108.82 (19) | C11—C16—C15 | 120.1 (4) |
C41—P1—C31 | 113.36 (18) | C11—C16—H16 | 119.9 |
C21—P1—C31 | 108.01 (18) | C15—C16—H16 | 119.9 |
S2i—Ni—S1—C1 | 169.45 (15) | C11—P1—C31—C36 | −99.4 (4) |
S2—Ni—S1—C1 | −6.21 (15) | C41—P1—C31—C36 | 21.7 (4) |
S1—Ni—S2—C1 | 6.17 (15) | C21—P1—C31—C36 | 139.9 (4) |
S1i—Ni—S2—C1 | −169.41 (15) | C36—C31—C32—C33 | 2.3 (7) |
O2—S3—N1—C1 | 54.5 (5) | P1—C31—C32—C33 | −174.3 (4) |
O1—S3—N1—C1 | −177.2 (4) | C31—C32—C33—C34 | −0.4 (8) |
C2—S3—N1—C1 | −63.9 (4) | C32—C33—C34—C35 | −1.1 (8) |
S3—N1—C1—S1 | 174.3 (2) | C33—C34—C35—C36 | 0.9 (8) |
S3—N1—C1—S2 | −2.7 (7) | C32—C31—C36—C35 | −2.5 (7) |
Ni—S1—C1—N1 | −169.6 (4) | P1—C31—C36—C35 | 173.9 (4) |
Ni—S1—C1—S2 | 8.07 (19) | C34—C35—C36—C31 | 0.9 (8) |
Ni—S2—C1—N1 | 169.3 (5) | C11—P1—C41—C46 | 66.4 (4) |
Ni—S2—C1—S1 | −8.06 (19) | C21—P1—C41—C46 | −173.6 (3) |
O2—S3—C2—C3 | 65.5 (4) | C31—P1—C41—C46 | −54.8 (4) |
O1—S3—C2—C3 | −60.8 (5) | C11—P1—C41—C42 | −112.2 (3) |
N1—S3—C2—C3 | −173.2 (4) | C21—P1—C41—C42 | 7.8 (4) |
S3—C2—C3—C4 | −175.9 (4) | C31—P1—C41—C42 | 126.7 (3) |
C2—C3—C4—C5 | 73.1 (6) | C46—C41—C42—C43 | 0.3 (6) |
C3—C4—C5—C6 | 177.4 (6) | P1—C41—C42—C43 | 179.0 (3) |
C4—C5—C6—C7 | 176.9 (10) | C41—C42—C43—C44 | 1.1 (6) |
C5—C6—C7—C8 | −179.6 (12) | C42—C43—C44—C45 | −1.4 (7) |
C6—C7—C8—C9 | −5 (3) | C43—C44—C45—C46 | 0.2 (7) |
C11—P1—C21—C22 | 17.5 (4) | C44—C45—C46—C41 | 1.2 (7) |
C41—P1—C21—C22 | −100.9 (4) | C42—C41—C46—C45 | −1.5 (6) |
C31—P1—C21—C22 | 136.8 (3) | P1—C41—C46—C45 | 179.9 (3) |
C11—P1—C21—C26 | −171.4 (3) | C41—P1—C11—C16 | 2.8 (4) |
C41—P1—C21—C26 | 70.1 (4) | C21—P1—C11—C16 | −114.5 (4) |
C31—P1—C21—C26 | −52.1 (4) | C31—P1—C11—C16 | 126.7 (3) |
C26—C21—C22—C23 | −1.1 (7) | C41—P1—C11—C12 | −176.3 (3) |
P1—C21—C22—C23 | 169.7 (4) | C21—P1—C11—C12 | 66.4 (4) |
C21—C22—C23—C24 | 0.2 (7) | C31—P1—C11—C12 | −52.4 (4) |
C22—C23—C24—C25 | 0.4 (8) | C16—C11—C12—C13 | −1.4 (6) |
C23—C24—C25—C26 | −0.1 (8) | P1—C11—C12—C13 | 177.8 (3) |
C24—C25—C26—C21 | −0.8 (8) | C11—C12—C13—C14 | 1.4 (7) |
C22—C21—C26—C25 | 1.4 (7) | C12—C13—C14—C15 | −1.0 (7) |
P1—C21—C26—C25 | −169.7 (4) | C13—C14—C15—C16 | 0.5 (7) |
C11—P1—C31—C32 | 77.1 (4) | C12—C11—C16—C15 | 0.9 (6) |
C41—P1—C31—C32 | −161.9 (3) | P1—C11—C16—C15 | −178.3 (3) |
C21—P1—C31—C32 | −43.6 (4) | C14—C15—C16—C11 | −0.5 (7) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···S2 | 0.97 | 2.83 | 3.490 (5) | 126 |
C13—H13···O2ii | 0.93 | 2.58 | 3.276 (6) | 132 |
Symmetry code: (ii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C24H20P)2[Ni(C9H17NO2S3)2] |
Mr | 1272.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 29.113 (4), 10.425 (2), 22.966 (3) |
β (°) | 115.50 (1) |
V (Å3) | 6291.3 (18) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.17 |
Crystal size (mm) | 0.16 × 0.16 × 0.08 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | Gaussian (Spek, 2003) |
Tmin, Tmax | 0.629, 0.787 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11798, 5696, 3927 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.208, 1.05 |
No. of reflections | 5696 |
No. of parameters | 367 |
No. of restraints | 5 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.61 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), WinGX (Farrugia, 1999).
Ni—S1 | 2.2048 (12) | S2—C1 | 1.743 (4) |
Ni—S2 | 2.2075 (11) | N1—C1 | 1.294 (5) |
S1—C1 | 1.731 (4) | ||
S1—Ni—S2 | 78.52 (4) | C1—S2—Ni | 86.61 (15) |
C1—S1—Ni | 87.00 (15) | S1—C1—S2 | 107.0 (2) |
S2i—Ni—S1—C1 | 169.45 (15) | C2—S3—N1—C1 | −63.9 (4) |
S1i—Ni—S2—C1 | −169.41 (15) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···S2 | 0.97 | 2.83 | 3.490 (5) | 126 |
C13—H13···O2ii | 0.93 | 2.58 | 3.276 (6) | 132 |
Symmetry code: (ii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
The authors are grateful to PRPPG-UFG and CNPq for financial support and LMGC acknowledges a fellowship from CNPq.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126. CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71–561. Web of Science CrossRef CAS Google Scholar
Hummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci. 44, 29–34. CAS Google Scholar
Oliveira, M. R. L., De Bellis, V. M. & Fernandes, N. G. (1997). Struct. Chem. 8, 205–209. CSD CrossRef CAS Web of Science Google Scholar
Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561–1566. Web of Science CSD CrossRef CAS Google Scholar
Oliveira, M. R. L., Graúdo, J. E. J. C., Speziali, N. L. & De Bellis, V. M. (1999). Struct. Chem. 10, 41–45. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vogel, A. I. (1966). A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, p. 543. London: Logmans, Green and Co. Ltd. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel sulfides by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula [Ni(RSO2N=CS2)2]2- (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 1997; Oliveira et al., 1999; Oliveira et al., 2003). However, only two of these complexes have the tetraphenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira et al., 1997; Franca et al., 2006). Variations in the counter-ions and in the R group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2(Ni(C8H17SO2N=CS2)2)2-, Figs 1 & 2.
The NiII ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1i—Ni—S2—C1 and S2i—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -x, y, -z + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in (C14H10N2NiO4S6)2-.2(C24H20P)+ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.
The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: trans, gauche, trans, trans, cis, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.