organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl­isoindoline-1,3-dione: a monoclinic polymorph

aInstitute of Research on Functional Materials, Department of Chemistry, University of FuZhou, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: wangjd@fzu.edu.cn

(Received 29 November 2007; accepted 4 December 2007; online 21 December 2007)

In the molecule of the title compound, C15H11NO2, the dihedral angle between the ring systems is 81.3 (2)°. In the crystal structure, mol­ecules are held together via C—H⋯O inter­actions.

Related literature

For the crystal structure of the triclinic form, see: Warzecha, Lex & Griesbeck (2006[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o2367-o2368.]). For related literature, see: Warzecha, Görner & Griesbeck (2006[Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.]); Orzeszko et al. (2000[Orzeszko, A., Kaminska, B., Orzesko, G. & Starosciak, J. (2000). Il Farmaco, 55, 619-623.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO2

  • Mr = 237.25

  • Monoclinic, P 21 /n

  • a = 8.8324 (6) Å

  • b = 5.3656 (4) Å

  • c = 25.1926 (18) Å

  • β = 98.851 (3)°

  • V = 1179.69 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.8 × 0.2 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 3668 measured reflections

  • 2083 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.192

  • S = 1.26

  • 2083 reflections

  • 208 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H7⋯O1i 1.03 (6) 2.43 (6) 3.425 (6) 161 (5)
C3—H1⋯O2ii 0.98 (5) 2.54 (5) 3.363 (7) 142 (4)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, N-Benzylphthalimide (2-benzylisoindoline-1,3-dione) (I), plays an important role in photoinduced electron transfer (PET) reactions (Warzecha, Görner & Griesbeck, 2006). Warzecha, Lex & Griesbeck (2006) also reported the crystal structure of the triclinic form of (I). Herein, the crystal structure of a monoclinic form is described.

The molecular structure of (I), Fig. 1, shows two planar subunits, i.e. a phthalimide moiety and a phenyl ring, being linked by a methylene-C9 atom with a N1—C9—C10 bond angle of 114.2 (5)°. The dihedral angle formed between the least-squares planes through each of the subunits is 81.3 (2)°. The C8—N1—C9—C10 and C7—N1—C9—C10 torsion angles of 91.3 (6)Å and -88.0 (6)°, respectively, highlight the orthogonal relationship within the molecule.

The crystal packing is stabilized by C—H···O interactions (Table 1).

Related literature top

For related literature, see: Warzecha, Görner & Griesbeck (2006); Warzecha, Lex & Griesbeck (2006>); Orzeszko et al. (2000).

Experimental top

Compound (I) was purified by silica-gel column chromatography with alcohol-hexane (v/v = 3/7) as eluent. Single crystals were obtained by slow evaporation of the eluting solution at room temperature.

Refinement top

The H atoms were refined: range of C—H = 0.91 (6) - 1.04 (6) Å.

Structure description top

The title compound, N-Benzylphthalimide (2-benzylisoindoline-1,3-dione) (I), plays an important role in photoinduced electron transfer (PET) reactions (Warzecha, Görner & Griesbeck, 2006). Warzecha, Lex & Griesbeck (2006) also reported the crystal structure of the triclinic form of (I). Herein, the crystal structure of a monoclinic form is described.

The molecular structure of (I), Fig. 1, shows two planar subunits, i.e. a phthalimide moiety and a phenyl ring, being linked by a methylene-C9 atom with a N1—C9—C10 bond angle of 114.2 (5)°. The dihedral angle formed between the least-squares planes through each of the subunits is 81.3 (2)°. The C8—N1—C9—C10 and C7—N1—C9—C10 torsion angles of 91.3 (6)Å and -88.0 (6)°, respectively, highlight the orthogonal relationship within the molecule.

The crystal packing is stabilized by C—H···O interactions (Table 1).

For related literature, see: Warzecha, Görner & Griesbeck (2006); Warzecha, Lex & Griesbeck (2006>); Orzeszko et al. (2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.
2-Benzylisoindoline-1,3-dione top
Crystal data top
C15H11NO2F(000) = 496
Mr = 237.25Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3962 reflections
a = 8.8324 (6) Åθ = 1.2–25.0°
b = 5.3656 (4) ŵ = 0.09 mm1
c = 25.1926 (18) ÅT = 298 K
β = 98.851 (3)°Needle, colorless
V = 1179.69 (15) Å30.8 × 0.2 × 0.1 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1439 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.048
Graphite Monochromator monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 109
3668 measured reflectionsk = 66
2083 independent reflectionsl = 2913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.097All H-atom parameters refined
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0216P)2 + 2.0256P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
2083 reflectionsΔρmax = 0.24 e Å3
208 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C15H11NO2V = 1179.69 (15) Å3
Mr = 237.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8324 (6) ŵ = 0.09 mm1
b = 5.3656 (4) ÅT = 298 K
c = 25.1926 (18) Å0.8 × 0.2 × 0.1 mm
β = 98.851 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1439 reflections with I > 2σ(I)
3668 measured reflectionsRint = 0.048
2083 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.192All H-atom parameters refined
S = 1.26Δρmax = 0.24 e Å3
2083 reflectionsΔρmin = 0.19 e Å3
208 parameters
Special details top

Experimental. collimator diameter: 0.800000 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5810 (4)0.7318 (7)0.08609 (13)0.0656 (10)
N10.7327 (4)1.0824 (8)0.09212 (14)0.0520 (11)
O10.8908 (4)1.4018 (7)0.07261 (13)0.0679 (11)
H10.579 (6)0.595 (10)0.030 (2)0.081*
H50.631 (6)1.076 (10)0.1573 (18)0.070 (15)*
H101.040 (6)1.130 (11)0.309 (2)0.085*
H40.895 (6)1.300 (11)0.042 (2)0.085*
H60.717 (7)1.326 (13)0.149 (2)0.11 (2)*
H110.834 (6)1.292 (12)0.244 (2)0.10 (2)*
H91.167 (6)0.743 (11)0.291 (2)0.090 (18)*
H20.666 (6)0.677 (11)0.112 (2)0.082 (17)*
H30.815 (6)1.037 (10)0.120 (2)0.081 (16)*
H81.099 (7)0.588 (12)0.204 (2)0.10 (2)*
H70.905 (7)0.729 (12)0.140 (2)0.115*
C10.7860 (5)1.0946 (9)0.00582 (17)0.0476 (12)
C20.6932 (5)0.8927 (9)0.00966 (17)0.0483 (12)
C30.6470 (6)0.7357 (11)0.0330 (2)0.0599 (14)
C40.6984 (7)0.7930 (12)0.0809 (2)0.0670 (15)
C50.7910 (6)0.9958 (12)0.0849 (2)0.0676 (16)
C60.8377 (6)1.1518 (11)0.0419 (2)0.0600 (14)
C70.8157 (5)1.2218 (9)0.05865 (18)0.0495 (12)
C80.6581 (5)0.8804 (10)0.06590 (18)0.0509 (12)
C90.7296 (7)1.1484 (13)0.1487 (2)0.0620 (14)
C100.8568 (5)1.0365 (9)0.18740 (17)0.0495 (12)
C110.8977 (7)1.1438 (12)0.2375 (2)0.0652 (15)
C121.0108 (8)1.0414 (13)0.2747 (2)0.0787 (19)
C131.0886 (7)0.8336 (13)0.2625 (2)0.0744 (17)
C141.0491 (7)0.7241 (13)0.2137 (2)0.0711 (16)
C150.9351 (6)0.8245 (10)0.1757 (2)0.0581 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.069 (2)0.063 (2)0.066 (2)0.012 (2)0.0146 (17)0.0088 (19)
N10.058 (2)0.052 (3)0.046 (2)0.001 (2)0.0091 (18)0.002 (2)
O10.073 (2)0.054 (2)0.077 (2)0.012 (2)0.0135 (18)0.015 (2)
C10.045 (2)0.041 (3)0.056 (3)0.003 (2)0.007 (2)0.004 (2)
C20.048 (2)0.049 (3)0.047 (2)0.008 (2)0.0045 (19)0.005 (2)
C30.058 (3)0.064 (4)0.056 (3)0.003 (3)0.004 (2)0.002 (3)
C40.075 (4)0.068 (4)0.057 (3)0.004 (3)0.008 (3)0.008 (3)
C50.070 (3)0.083 (4)0.052 (3)0.013 (3)0.016 (3)0.008 (3)
C60.058 (3)0.064 (4)0.060 (3)0.000 (3)0.017 (2)0.006 (3)
C70.048 (3)0.041 (3)0.059 (3)0.005 (2)0.004 (2)0.004 (2)
C80.049 (3)0.051 (3)0.053 (3)0.004 (3)0.005 (2)0.004 (3)
C90.069 (3)0.064 (4)0.055 (3)0.010 (3)0.017 (2)0.005 (3)
C100.060 (3)0.047 (3)0.045 (2)0.007 (3)0.017 (2)0.001 (2)
C110.080 (4)0.065 (4)0.052 (3)0.005 (3)0.014 (3)0.008 (3)
C120.101 (5)0.088 (5)0.044 (3)0.017 (4)0.002 (3)0.005 (3)
C130.074 (4)0.080 (5)0.067 (4)0.002 (4)0.004 (3)0.013 (4)
C140.072 (4)0.067 (4)0.074 (4)0.007 (3)0.011 (3)0.003 (3)
C150.064 (3)0.055 (3)0.056 (3)0.001 (3)0.012 (2)0.001 (3)
Geometric parameters (Å, º) top
O2—C81.210 (5)C6—H40.94 (6)
N1—C81.383 (6)C9—C101.496 (7)
N1—C71.413 (6)C9—H51.01 (5)
N1—C91.473 (6)C9—H60.96 (7)
O1—C71.193 (5)C10—C111.383 (6)
C1—C21.371 (6)C10—C151.386 (7)
C1—C61.384 (6)C11—C121.376 (8)
C1—C71.483 (6)C11—H111.00 (6)
C2—C31.377 (7)C12—C131.370 (8)
C2—C81.498 (6)C12—H100.99 (5)
C3—C41.388 (7)C13—C141.359 (8)
C3—H10.98 (5)C13—H91.04 (6)
C4—C51.374 (8)C14—C151.385 (7)
C4—H21.00 (5)C14—H80.91 (6)
C5—C61.382 (7)C15—H71.03 (6)
C5—H30.97 (5)
C8—N1—C7112.5 (4)N1—C8—C2105.3 (4)
C8—N1—C9124.9 (4)N1—C9—C10114.2 (4)
C7—N1—C9122.6 (4)N1—C9—H5105 (3)
C2—C1—C6121.1 (4)C10—C9—H5107 (3)
C2—C1—C7109.0 (4)N1—C9—H6105 (4)
C6—C1—C7129.8 (5)C10—C9—H6118 (4)
C1—C2—C3122.5 (4)H5—C9—H6106 (5)
C1—C2—C8108.3 (4)C11—C10—C15117.8 (5)
C3—C2—C8129.2 (5)C11—C10—C9119.5 (5)
C2—C3—C4116.5 (5)C15—C10—C9122.7 (4)
C2—C3—H1122 (3)C12—C11—C10121.1 (6)
C4—C3—H1122 (3)C12—C11—H11124 (3)
C5—C4—C3121.1 (5)C10—C11—H11114 (3)
C5—C4—H2123 (3)C13—C12—C11120.5 (6)
C3—C4—H2116 (3)C13—C12—H10121 (3)
C4—C5—C6122.1 (5)C11—C12—H10118 (3)
C4—C5—H3117 (3)C14—C13—C12119.2 (6)
C6—C5—H3120 (3)C14—C13—H9118 (3)
C5—C6—C1116.7 (5)C12—C13—H9122 (3)
C5—C6—H4127 (3)C13—C14—C15121.0 (6)
C1—C6—H4116 (3)C13—C14—H8122 (4)
O1—C7—N1124.6 (4)C15—C14—H8117 (4)
O1—C7—C1130.6 (5)C14—C15—C10120.4 (5)
N1—C7—C1104.8 (4)C14—C15—H7118 (3)
O2—C8—N1125.0 (4)C10—C15—H7122 (3)
O2—C8—C2129.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H7···O1i1.03 (6)2.43 (6)3.425 (6)161 (5)
C3—H1···O2ii0.98 (5)2.54 (5)3.363 (7)142 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11NO2
Mr237.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.8324 (6), 5.3656 (4), 25.1926 (18)
β (°) 98.851 (3)
V3)1179.69 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.8 × 0.2 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3668, 2083, 1439
Rint0.048
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.192, 1.26
No. of reflections2083
No. of parameters208
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H7···O1i1.03 (6)2.43 (6)3.425 (6)161 (5)
C3—H1···O2ii0.98 (5)2.54 (5)3.363 (7)142 (4)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Young Scientist Innovation Foundation of Fujian Province of China (No. 2006F3071).

References

First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationOrzeszko, A., Kaminska, B., Orzesko, G. & Starosciak, J. (2000). Il Farmaco, 55, 619-623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWarzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o2367–o2368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds