inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­deca­bromidobis(dicarbido)deca­dysprosium, [Dy10Br18(C2)2]

aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de

(Received 22 November 2007; accepted 7 December 2007; online 12 December 2007)

Single crystals of [Dy10Br18(C2)2] were obtained during the reaction of DyBr3 with dysprosium metal and graphite in a sealed tantalum container. In the crystal structure, the Dy atoms form dimers of edge-sharing octa­hedra, each encapsulating a C2 unit. The metal atoms are surrounded by Br atoms above the cluster edges and vertices, respectively. The dimers are connected to each other by Br atoms, leading to a three-dimensional network. [Dy10Br18(C2)2] is isotypic with its iodido analogue [Dy10I18(C2)2].

Related literature

Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000[Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr & L. Eyring, pp. 53-129. Amsterdam: Elsevier.]). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb or Er, have been studied by Liess (1996[Liess, H. (1996). Dr. rer. nat. dissertation, University of Hannover, Germany, pp. 59-64.]), Mattausch et al. (2002[Mattausch, H., Oeckler, O. & Simon, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 458.]) and Uhrlandt et al. (1994[Uhrlandt, S., Artelt, H. M. & Meyer, G. (1994). Z. Anorg. Allg. Chem. 620, 1532-1536.]). Recently, the first dysprosium compound belonging to this structural family, [Dy10I18(C2)2], was reported by Mattausch et al. (2007[Mattausch, H., Hoch, C. & Simon, A. (2007). Z. Naturforsch. Teil B 62, 148-154.]). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987[Meyer, G., Dötsch, S. & Staffel, T. (1987). J. Less-Common Met. 127, 155-160.]).

Experimental

Crystal data
  • [Dy10Br18(C2)2]

  • Mr = 3111.42

  • Monoclinic, P 21 /c

  • a = 9.7399 (12) Å

  • b = 16.3398 (15) Å

  • c = 13.2469 (19) Å

  • β = 120.869 (9)°

  • V = 1809.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 40.24 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.015, Tmax = 0.063

  • 23768 measured reflections

  • 3935 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.01

  • 3935 reflections

  • 136 parameters

  • Δρmax = 2.44 e Å−3

  • Δρmin = −1.75 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A number of ternary and quaternary halides of the general formulae [{RE10(C2)2}Xn] with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17–19 and Ax[{RE10(C2)2}Xn] with A = K, Rb, Cs; x = 1–3; n = 18–21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula [{RE10(C2)2}Br18], where RE is Gd, Tb, and Er, are known and were structurally studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994).

The crystal structure of the title compound is isotypic with the iodide analogue [{Dy10(C2)2}I18] studied recently by Mattausch et al. (2007). As many reduced rare earth halides, the cluster compound [{Dy10(C2)2}Br18] consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C2 dumbbell. The dysprosium octahedra are connected via common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C2 units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in [{Dy10(C2)2}Br18] vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.

Related literature top

Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb and Er, have been studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994). Recently, the first dysprosium compound, [Dy10I18(C2)2], belonging to this structural family, was reported by Mattausch et al. (2007). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987).

Experimental top

Black parallelepipedic crystals of [{Dy10(C2)2}Br18] were obtained by the reaction of DyBr3 (150 mg) with dysprosium powder (85 mg, Chempur, 99,9%) and graphite (8 mg, Merck, p.a.) in a tantalum container at 1273 K. DyBr3 had been synthesized previously according to the ammonium bromide route (Meyer et al., 1987), followed by sublimation in high vacuum for purification. Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled glove box (M. Braun, Garching, Germany).

Refinement top

The highest peak in the final difference Fourier map is 0.99 Å from atom Dy4 and the deepest hole is 0.88 Å from the same atom.

Structure description top

A number of ternary and quaternary halides of the general formulae [{RE10(C2)2}Xn] with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17–19 and Ax[{RE10(C2)2}Xn] with A = K, Rb, Cs; x = 1–3; n = 18–21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula [{RE10(C2)2}Br18], where RE is Gd, Tb, and Er, are known and were structurally studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994).

The crystal structure of the title compound is isotypic with the iodide analogue [{Dy10(C2)2}I18] studied recently by Mattausch et al. (2007). As many reduced rare earth halides, the cluster compound [{Dy10(C2)2}Br18] consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C2 dumbbell. The dysprosium octahedra are connected via common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C2 units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in [{Dy10(C2)2}Br18] vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.

Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb and Er, have been studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994). Recently, the first dysprosium compound, [Dy10I18(C2)2], belonging to this structural family, was reported by Mattausch et al. (2007). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. : The dimeric unit in [{Dy10(C2)2}Br18] with displacement ellipsoids drawn at the 90% probability level [Symmetry codes: (i) 1 - x, 1/2 + y, 1.5 - z; (ii) x, 0.5 - y, 1/2 + z].
[Figure 2] Fig. 2. : View of the crystal structure of [{Dy10(C2)2}Br18] emphasizing the connection between the dimers via bromine atoms.
Octadecabromidobis(dicarbido)decadysprosium top
Crystal data top
[Dy10Br18(C2)2]F(000) = 2628
Mr = 3111.42Dx = 5.710 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14525 reflections
a = 9.7399 (12) Åθ = 2.1–27.1°
b = 16.3398 (15) ŵ = 40.24 mm1
c = 13.2469 (19) ÅT = 293 K
β = 120.869 (9)°Parallelepiped, black
V = 1809.6 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
3935 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
φ scansθmax = 27.3°, θmin = 2.2°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1212
Tmin = 0.015, Tmax = 0.063k = 2020
23768 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.01Δρmax = 2.44 e Å3
3935 reflectionsΔρmin = 1.75 e Å3
136 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00038 (3)
Crystal data top
[Dy10Br18(C2)2]V = 1809.6 (4) Å3
Mr = 3111.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7399 (12) ŵ = 40.24 mm1
b = 16.3398 (15) ÅT = 293 K
c = 13.2469 (19) Å0.20 × 0.20 × 0.20 mm
β = 120.869 (9)°
Data collection top
Stoe IPDSII
diffractometer
3935 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
2989 reflections with I > 2σ(I)
Tmin = 0.015, Tmax = 0.063Rint = 0.096
23768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033136 parameters
wR(F2) = 0.0790 restraints
S = 1.01Δρmax = 2.44 e Å3
3935 reflectionsΔρmin = 1.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.72140 (7)0.18631 (3)0.55464 (5)0.01642 (12)
Dy20.86572 (6)0.05763 (3)0.81405 (4)0.01581 (12)
Dy30.49120 (6)0.16312 (3)0.27712 (5)0.01646 (13)
Dy40.66436 (6)0.04537 (3)0.53869 (5)0.01672 (12)
Dy50.49942 (6)0.05623 (3)0.23673 (5)0.01640 (12)
Br10.79002 (15)0.17718 (7)0.46836 (11)0.0267 (3)
Br20.18295 (15)0.05866 (7)0.03920 (11)0.0261 (3)
Br30.81121 (14)0.06564 (6)0.44345 (10)0.0199 (2)
Br40.19236 (15)0.18349 (7)0.05984 (11)0.0270 (3)
Br50.60176 (17)0.19122 (6)0.14246 (12)0.0282 (3)
Br60.59583 (16)0.06929 (7)0.14910 (12)0.0273 (3)
Br71.01722 (16)0.18152 (7)0.75532 (12)0.0274 (3)
Br80.97720 (15)0.06689 (7)0.73923 (11)0.0265 (3)
Br90.58632 (14)0.19733 (6)0.66855 (10)0.0198 (2)
C10.6314 (13)0.0891 (5)0.6212 (9)0.0118 (18)*
C20.4262 (13)0.0309 (6)0.3277 (9)0.0144 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0185 (3)0.0131 (2)0.0193 (3)0.00139 (17)0.0109 (2)0.00086 (17)
Dy20.0133 (3)0.0157 (2)0.0161 (3)0.00058 (17)0.0058 (2)0.00070 (17)
Dy30.0170 (3)0.0136 (2)0.0190 (3)0.00068 (17)0.0094 (2)0.00148 (17)
Dy40.0136 (3)0.0162 (2)0.0177 (3)0.00185 (17)0.0061 (2)0.00218 (17)
Dy50.0162 (3)0.0138 (2)0.0191 (3)0.00202 (17)0.0089 (2)0.00146 (17)
Br10.0196 (6)0.0273 (5)0.0261 (6)0.0087 (4)0.0066 (5)0.0045 (4)
Br20.0170 (6)0.0321 (6)0.0209 (6)0.0031 (4)0.0037 (5)0.0070 (5)
Br30.0161 (6)0.0213 (5)0.0235 (6)0.0005 (4)0.0110 (5)0.0020 (4)
Br40.0214 (7)0.0287 (5)0.0247 (6)0.0059 (4)0.0073 (5)0.0103 (4)
Br50.0435 (8)0.0148 (5)0.0400 (7)0.0018 (4)0.0313 (7)0.0017 (4)
Br60.0361 (7)0.0225 (5)0.0354 (7)0.0012 (5)0.0271 (6)0.0002 (5)
Br70.0191 (6)0.0298 (5)0.0281 (7)0.0066 (4)0.0083 (5)0.0031 (4)
Br80.0182 (6)0.0291 (5)0.0248 (6)0.0074 (4)0.0057 (5)0.0056 (4)
Br90.0189 (6)0.0163 (4)0.0235 (6)0.0005 (4)0.0104 (5)0.0009 (4)
Geometric parameters (Å, º) top
Dy1—C12.205 (9)Dy4—C22.568 (11)
Dy1—Br72.7413 (15)Dy4—C1ii2.652 (10)
Dy1—Br5i2.8473 (12)Dy4—C2ii2.659 (10)
Dy1—Br32.8539 (12)Dy4—Br82.8564 (14)
Dy1—Br9ii2.9434 (14)Dy4—Br12.8591 (12)
Dy1—Br4iii2.9730 (12)Dy4—Br32.9630 (12)
Dy1—Dy23.6399 (8)Dy4—Dy4ii3.1832 (11)
Dy1—Dy3ii3.7595 (9)Dy4—Br93.3231 (12)
Dy1—Dy43.8163 (7)Dy5—C22.207 (10)
Dy2—C12.453 (10)Dy5—Br62.7485 (12)
Dy2—C2ii2.515 (11)Dy5—Br22.8413 (14)
Dy2—Br82.7213 (12)Dy5—Br32.8655 (14)
Dy2—Br72.8388 (13)Dy5—Br9ii2.9432 (12)
Dy2—Br4ii2.8827 (12)Dy5—Br52.9488 (12)
Dy2—Br2ii2.9258 (13)Dy5—Dy2ii3.7560 (8)
Dy2—Br2iv2.9978 (14)Br2—Dy2ii2.9258 (13)
Dy2—Dy3ii3.4938 (8)Br2—Dy2vii2.9978 (14)
Dy2—Dy43.5558 (9)Br4—Dy2ii2.8827 (12)
Dy2—Dy5ii3.7560 (8)Br4—Dy1v2.9730 (12)
Dy3—C22.439 (9)Br5—Dy1viii2.8473 (12)
Dy3—C1ii2.520 (10)Br5—Dy3iii2.9340 (12)
Dy3—Br12.7157 (15)Br9—Dy5ii2.9432 (12)
Dy3—Br62.8354 (13)Br9—Dy1ii2.9434 (14)
Dy3—Br42.8759 (14)Br9—Dy3ix3.0812 (12)
Dy3—Br5v2.9340 (12)C1—C2ii1.437 (13)
Dy3—Br9vi3.0812 (12)C1—Dy3ii2.520 (10)
Dy3—Dy2ii3.4938 (8)C1—Dy4ii2.652 (10)
Dy3—Dy43.5434 (8)C2—C1ii1.437 (13)
Dy3—Dy53.6309 (7)C2—Dy2ii2.515 (11)
Dy3—Dy1ii3.7595 (8)C2—Dy4ii2.659 (10)
Dy4—C12.547 (9)
C1—Dy1—Br791.6 (3)C2—Dy4—C2ii105.0 (3)
C1—Dy1—Br5i90.7 (2)C1ii—Dy4—C2ii93.6 (3)
Br7—Dy1—Br5i94.05 (4)C1—Dy4—Br890.9 (2)
C1—Dy1—Br389.9 (2)C2—Dy4—Br8163.8 (2)
Br7—Dy1—Br391.88 (4)C1ii—Dy4—Br8155.9 (2)
Br5i—Dy1—Br3174.01 (4)C2ii—Dy4—Br889.9 (2)
C1—Dy1—Br9ii92.1 (3)C1—Dy4—Br1163.6 (2)
Br7—Dy1—Br9ii176.15 (4)C2—Dy4—Br190.8 (2)
Br5i—Dy1—Br9ii87.03 (4)C1ii—Dy4—Br190.5 (2)
Br3—Dy1—Br9ii87.00 (4)C2ii—Dy4—Br1156.1 (2)
C1—Dy1—Br4iii173.6 (3)Br8—Dy4—Br177.27 (4)
Br7—Dy1—Br4iii94.80 (4)C1—Dy4—Br381.3 (2)
Br5i—Dy1—Br4iii89.28 (4)C2—Dy4—Br381.0 (2)
Br3—Dy1—Br4iii89.40 (4)C1ii—Dy4—Br3112.9 (2)
Br9ii—Dy1—Br4iii81.51 (4)C2ii—Dy4—Br3113.2 (2)
C1—Dy1—Dy241.1 (3)Br8—Dy4—Br387.35 (4)
Br7—Dy1—Dy250.46 (3)Br1—Dy4—Br386.65 (4)
Br5i—Dy1—Dy293.50 (3)C1—Dy4—Dy4ii53.8 (2)
Br3—Dy1—Dy290.92 (3)C2—Dy4—Dy4ii53.8 (2)
Br9ii—Dy1—Dy2133.21 (3)C1ii—Dy4—Dy4ii50.8 (2)
Br4iii—Dy1—Dy2145.25 (3)C2ii—Dy4—Dy4ii51.2 (2)
C1—Dy1—Dy3ii40.3 (2)Br8—Dy4—Dy4ii140.68 (4)
Br7—Dy1—Dy3ii92.68 (3)Br1—Dy4—Dy4ii140.71 (4)
Br5i—Dy1—Dy3ii50.45 (2)Br3—Dy4—Dy4ii101.73 (3)
Br3—Dy1—Dy3ii130.11 (3)C1—Dy4—Br9108.0 (2)
Br9ii—Dy1—Dy3ii90.85 (3)C2—Dy4—Br9108.3 (2)
Br4iii—Dy1—Dy3ii139.48 (3)C1ii—Dy4—Br976.7 (2)
Dy2—Dy1—Dy3ii56.324 (16)C2ii—Dy4—Br976.3 (2)
C1—Dy1—Dy439.8 (2)Br8—Dy4—Br981.07 (4)
Br7—Dy1—Dy494.36 (3)Br1—Dy4—Br981.70 (4)
Br5i—Dy1—Dy4129.89 (3)Br3—Dy4—Br9165.10 (3)
Br3—Dy1—Dy450.25 (2)Dy4ii—Dy4—Br993.17 (3)
Br9ii—Dy1—Dy487.75 (2)C1—Dy4—Dy3141.9 (2)
Br4iii—Dy1—Dy4138.84 (3)C2—Dy4—Dy343.5 (2)
Dy2—Dy1—Dy456.906 (14)C1ii—Dy4—Dy345.2 (2)
Dy3ii—Dy1—Dy479.866 (14)C2ii—Dy4—Dy3138.7 (2)
C1—Dy2—C2ii33.6 (3)Br8—Dy4—Dy3126.02 (3)
C1—Dy2—Br896.3 (2)Br1—Dy4—Dy348.77 (3)
C2ii—Dy2—Br896.2 (2)Br3—Dy4—Dy390.43 (3)
C1—Dy2—Br784.4 (2)Dy4ii—Dy4—Dy392.44 (2)
C2ii—Dy2—Br7117.8 (2)Br9—Dy4—Dy388.85 (3)
Br8—Dy2—Br794.17 (4)C1—Dy4—Dy243.6 (2)
C1—Dy2—Br4ii95.7 (2)C2—Dy4—Dy2142.0 (2)
C2ii—Dy2—Br4ii94.2 (2)C1ii—Dy4—Dy2138.4 (2)
Br8—Dy2—Br4ii167.98 (4)C2ii—Dy4—Dy244.9 (2)
Br7—Dy2—Br4ii86.23 (4)Br8—Dy4—Dy248.74 (3)
C1—Dy2—Br2ii116.5 (2)Br1—Dy4—Dy2126.00 (3)
C2ii—Dy2—Br2ii82.9 (2)Br3—Dy4—Dy290.82 (3)
Br8—Dy2—Br2ii89.27 (4)Dy4ii—Dy4—Dy292.53 (2)
Br7—Dy2—Br2ii158.35 (4)Br9—Dy4—Dy288.56 (3)
Br4ii—Dy2—Br2ii86.07 (4)Dy3—Dy4—Dy2174.519 (19)
C1—Dy2—Br2iv165.5 (2)C1—Dy4—Dy133.6 (2)
C2ii—Dy2—Br2iv159.6 (2)C2—Dy4—Dy189.6 (2)
Br8—Dy2—Br2iv88.07 (4)C1ii—Dy4—Dy1112.27 (19)
Br7—Dy2—Br2iv81.56 (4)C2ii—Dy4—Dy165.6 (2)
Br4ii—Dy2—Br2iv80.09 (4)Br8—Dy4—Dy190.87 (3)
Br2ii—Dy2—Br2iv77.19 (4)Br1—Dy4—Dy1133.69 (3)
C1—Dy2—Dy3ii46.2 (2)Br3—Dy4—Dy147.77 (2)
C2ii—Dy2—Dy3ii44.3 (2)Dy4ii—Dy4—Dy169.484 (18)
Br8—Dy2—Dy3ii139.04 (3)Br9—Dy4—Dy1141.07 (3)
Br7—Dy2—Dy3ii96.80 (3)Dy3—Dy4—Dy1125.134 (19)
Br4ii—Dy2—Dy3ii52.56 (3)Dy2—Dy4—Dy159.047 (14)
Br2ii—Dy2—Dy3ii94.50 (3)C2—Dy5—Br691.4 (3)
Br2iv—Dy2—Dy3ii132.53 (3)C2—Dy5—Br290.6 (3)
C1—Dy2—Dy445.7 (2)Br6—Dy5—Br293.77 (4)
C2ii—Dy2—Dy448.3 (2)C2—Dy5—Br389.6 (3)
Br8—Dy2—Dy452.09 (3)Br6—Dy5—Br391.11 (4)
Br7—Dy2—Dy498.46 (3)Br2—Dy5—Br3175.10 (4)
Br4ii—Dy2—Dy4139.75 (3)C2—Dy5—Br9ii91.8 (3)
Br2ii—Dy2—Dy4100.49 (3)Br6—Dy5—Br9ii176.15 (4)
Br2iv—Dy2—Dy4140.15 (3)Br2—Dy5—Br9ii88.32 (4)
Dy3ii—Dy2—Dy487.228 (19)Br3—Dy5—Br9ii86.79 (3)
C1—Dy2—Dy136.2 (2)C2—Dy5—Br5171.1 (3)
C2ii—Dy2—Dy169.8 (2)Br6—Dy5—Br596.68 (4)
Br8—Dy2—Dy196.95 (3)Br2—Dy5—Br592.42 (4)
Br7—Dy2—Dy148.13 (3)Br3—Dy5—Br586.67 (4)
Br4ii—Dy2—Dy192.26 (3)Br9ii—Dy5—Br579.99 (3)
Br2ii—Dy2—Dy1152.46 (3)C2—Dy5—Dy341.0 (3)
Br2iv—Dy2—Dy1129.62 (3)Br6—Dy5—Dy350.49 (3)
Dy3ii—Dy2—Dy163.568 (16)Br2—Dy5—Dy393.10 (3)
Dy4—Dy2—Dy164.047 (17)Br3—Dy5—Dy390.27 (2)
C1—Dy2—Dy5ii68.1 (2)Br9ii—Dy5—Dy3132.68 (3)
C2ii—Dy2—Dy5ii34.5 (2)Br5—Dy5—Dy3146.99 (3)
Br8—Dy2—Dy5ii94.73 (3)C2—Dy5—Dy2ii40.2 (3)
Br7—Dy2—Dy5ii151.85 (3)Br6—Dy5—Dy2ii92.98 (3)
Br4ii—Dy2—Dy5ii90.45 (3)Br2—Dy5—Dy2ii50.35 (3)
Br2ii—Dy2—Dy5ii48.39 (3)Br3—Dy5—Dy2ii129.76 (3)
Br2iv—Dy2—Dy5ii125.37 (3)Br9ii—Dy5—Dy2ii90.84 (3)
Dy3ii—Dy2—Dy5ii59.980 (16)Br5—Dy5—Dy2ii142.13 (3)
Dy4—Dy2—Dy5ii66.960 (16)Dy3—Dy5—Dy2ii56.425 (13)
Dy1—Dy2—Dy5ii104.213 (19)C2—Dy5—Dy439.8 (3)
C2—Dy3—C1ii33.6 (3)Br6—Dy5—Dy493.80 (3)
C2—Dy3—Br197.1 (3)Br2—Dy5—Dy4129.92 (3)
C1ii—Dy3—Br196.7 (2)Br3—Dy5—Dy449.90 (3)
C2—Dy3—Br684.8 (2)Br9ii—Dy5—Dy487.31 (3)
C1ii—Dy3—Br6118.3 (2)Br5—Dy5—Dy4135.47 (3)
Br1—Dy3—Br693.53 (4)Dy3—Dy5—Dy456.545 (13)
C2—Dy3—Br496.1 (3)Dy2ii—Dy5—Dy479.862 (17)
C1ii—Dy3—Br494.4 (2)Dy3—Br1—Dy478.88 (3)
Br1—Dy3—Br4166.85 (4)Dy5—Br2—Dy2ii81.26 (3)
Br6—Dy3—Br487.35 (4)Dy5—Br2—Dy2vii173.49 (5)
C2—Dy3—Br5v116.5 (2)Dy2ii—Br2—Dy2vii102.81 (4)
C1ii—Dy3—Br5v82.9 (2)Dy1—Br3—Dy594.31 (4)
Br1—Dy3—Br5v88.59 (4)Dy1—Br3—Dy481.98 (3)
Br6—Dy3—Br5v158.19 (4)Dy5—Br3—Dy482.40 (3)
Br4—Dy3—Br5v85.82 (4)Dy3—Br4—Dy2ii74.70 (3)
C2—Dy3—Br9vi165.0 (2)Dy3—Br4—Dy1v100.81 (4)
C1ii—Dy3—Br9vi160.6 (2)Dy2ii—Br4—Dy1v175.51 (5)
Br1—Dy3—Br9vi86.44 (4)Dy1viii—Br5—Dy3iii81.11 (3)
Br6—Dy3—Br9vi80.48 (3)Dy1viii—Br5—Dy5175.47 (5)
Br4—Dy3—Br9vi80.76 (3)Dy3iii—Br5—Dy5102.63 (4)
Br5v—Dy3—Br9vi77.99 (3)Dy5—Br6—Dy381.10 (3)
C2—Dy3—Dy2ii46.0 (3)Dy1—Br7—Dy281.41 (4)
C1ii—Dy3—Dy2ii44.6 (2)Dy2—Br8—Dy479.17 (3)
Br1—Dy3—Dy2ii139.84 (3)Dy5ii—Br9—Dy1ii90.85 (3)
Br6—Dy3—Dy2ii97.22 (3)Dy5ii—Br9—Dy3ix99.30 (4)
Br4—Dy3—Dy2ii52.74 (3)Dy1ii—Br9—Dy3ix96.84 (4)
Br5v—Dy3—Dy2ii95.05 (3)Dy5ii—Br9—Dy479.96 (3)
Br9vi—Dy3—Dy2ii133.46 (3)Dy1ii—Br9—Dy479.62 (3)
C2—Dy3—Dy446.4 (3)Dy3ix—Br9—Dy4176.35 (4)
C1ii—Dy3—Dy448.3 (2)C2ii—C1—Dy1174.9 (7)
Br1—Dy3—Dy452.35 (3)C2ii—C1—Dy275.6 (6)
Br6—Dy3—Dy498.89 (3)Dy1—C1—Dy2102.7 (4)
Br4—Dy3—Dy4140.45 (3)C2ii—C1—Dy3ii70.1 (5)
Br5v—Dy3—Dy499.56 (3)Dy1—C1—Dy3ii105.2 (3)
Br9vi—Dy3—Dy4138.77 (3)Dy2—C1—Dy3ii89.3 (3)
Dy2ii—Dy3—Dy487.713 (18)C2ii—C1—Dy478.3 (5)
C2—Dy3—Dy536.4 (2)Dy1—C1—Dy4106.6 (4)
C1ii—Dy3—Dy570.0 (2)Dy2—C1—Dy490.7 (3)
Br1—Dy3—Dy597.29 (3)Dy3ii—C1—Dy4147.4 (4)
Br6—Dy3—Dy548.41 (2)C2ii—C1—Dy4ii70.8 (6)
Br4—Dy3—Dy593.11 (3)Dy1—C1—Dy4ii111.5 (4)
Br5v—Dy3—Dy5152.68 (3)Dy2—C1—Dy4ii145.5 (4)
Br9vi—Dy3—Dy5128.83 (3)Dy3ii—C1—Dy4ii86.4 (3)
Dy2ii—Dy3—Dy563.595 (14)Dy4—C1—Dy4ii75.5 (3)
Dy4—Dy3—Dy564.703 (15)C1ii—C2—Dy5175.8 (8)
C2—Dy3—Dy1ii68.1 (2)C1ii—C2—Dy376.3 (5)
C1ii—Dy3—Dy1ii34.5 (2)Dy5—C2—Dy3102.7 (4)
Br1—Dy3—Dy1ii95.23 (4)C1ii—C2—Dy2ii70.8 (6)
Br6—Dy3—Dy1ii152.30 (3)Dy5—C2—Dy2ii105.2 (4)
Br4—Dy3—Dy1ii89.95 (3)Dy3—C2—Dy2ii89.7 (3)
Br5v—Dy3—Dy1ii48.44 (2)C1ii—C2—Dy477.3 (6)
Br9vi—Dy3—Dy1ii126.24 (3)Dy5—C2—Dy4106.8 (4)
Dy2ii—Dy3—Dy1ii60.109 (16)Dy3—C2—Dy490.0 (3)
Dy4—Dy3—Dy1ii66.772 (17)Dy2ii—C2—Dy4147.2 (4)
Dy5—Dy3—Dy1ii104.320 (16)C1ii—C2—Dy4ii69.7 (5)
C1—Dy4—C298.4 (3)Dy5—C2—Dy4ii111.8 (4)
C1—Dy4—C1ii104.5 (3)Dy3—C2—Dy4ii145.0 (4)
C2—Dy4—C1ii31.9 (3)Dy2ii—C2—Dy4ii86.8 (3)
C1—Dy4—C2ii32.0 (3)Dy4—C2—Dy4ii75.0 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x1, y, z1; (viii) x, y1/2, z1/2; (ix) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Dy10Br18(C2)2]
Mr3111.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7399 (12), 16.3398 (15), 13.2469 (19)
β (°) 120.869 (9)
V3)1809.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)40.24
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerStoe IPDSII
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.015, 0.063
No. of measured, independent and
observed [I > 2σ(I)] reflections
23768, 3935, 2989
Rint0.096
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.01
No. of reflections3935
No. of parameters136
Δρmax, Δρmin (e Å3)2.44, 1.75

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2005).

 

Acknowledgements

This work was supported by the Deutsche Forschungs­gemeinschaft (DFG) (SFB 608 `Complex transition metal compounds with spin and charge degrees of freedom and disorder').

References

First citationBrandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLiess, H. (1996). Dr. rer. nat. dissertation, University of Hannover, Germany, pp. 59–64.  Google Scholar
First citationMattausch, H., Hoch, C. & Simon, A. (2007). Z. Naturforsch. Teil B 62, 148–154.  CAS Google Scholar
First citationMattausch, H., Oeckler, O. & Simon, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 458.  Google Scholar
First citationMeyer, G., Dötsch, S. & Staffel, T. (1987). J. Less-Common Met. 127, 155–160.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr & L. Eyring, pp. 53–129. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUhrlandt, S., Artelt, H. M. & Meyer, G. (1994). Z. Anorg. Allg. Chem. 620, 1532–1536.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds