inorganic compounds
Octadecabromidobis(dicarbido)decadysprosium, [Dy10Br18(C2)2]
aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de
Single crystals of [Dy10Br18(C2)2] were obtained during the reaction of DyBr3 with dysprosium metal and graphite in a sealed tantalum container. In the the Dy atoms form dimers of edge-sharing octahedra, each encapsulating a C2 unit. The metal atoms are surrounded by Br atoms above the cluster edges and vertices, respectively. The dimers are connected to each other by Br atoms, leading to a three-dimensional network. [Dy10Br18(C2)2] is isotypic with its iodido analogue [Dy10I18(C2)2].
Related literature
Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb or Er, have been studied by Liess (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994). Recently, the first dysprosium compound belonging to this structural family, [Dy10I18(C2)2], was reported by Mattausch et al. (2007). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807066111/wm2169sup1.cif
contains datablocks global_, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066111/wm2169Isup2.hkl
Black parallelepipedic crystals of [{Dy10(C2)2}Br18] were obtained by the reaction of DyBr3 (150 mg) with dysprosium powder (85 mg, Chempur, 99,9%) and graphite (8 mg, Merck, p.a.) in a tantalum container at 1273 K. DyBr3 had been synthesized previously according to the ammonium bromide route (Meyer et al., 1987), followed by
in high vacuum for purification. Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled (M. Braun, Garching, Germany).The highest peak in the final difference Fourier map is 0.99 Å from atom Dy4 and the deepest hole is 0.88 Å from the same atom.
A number of ternary and quaternary halides of the general formulae [{RE10(C2)2}Xn] with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17–19 and Ax[{RE10(C2)2}Xn] with A = K, Rb, Cs; x = 1–3; n = 18–21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula [{RE10(C2)2}Br18], where RE is Gd, Tb, and Er, are known and were structurally studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994).
The
of the title compound is isotypic with the iodide analogue [{Dy10(C2)2}I18] studied recently by Mattausch et al. (2007). As many reduced rare earth halides, the cluster compound [{Dy10(C2)2}Br18] consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C2 dumbbell. The dysprosium octahedra are connected via common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C2 units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in [{Dy10(C2)2}Br18] vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.Details of ternary and quaternary halides of the rare earth elements have been compiled by Meyer & Wickleder (2000). Bromides with the formula [RE10Br18(C2)2], where RE is Gd, Tb and Er, have been studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994). Recently, the first dysprosium compound, [Dy10I18(C2)2], belonging to this structural family, was reported by Mattausch et al. (2007). [Dy10Br18(C2)2] is obtained by reduction of DyBr3 with dysprosium and graphite. For the synthesis of the starting material DyBr3, see Meyer et al. (1987).
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).[Dy10Br18(C2)2] | F(000) = 2628 |
Mr = 3111.42 | Dx = 5.710 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 14525 reflections |
a = 9.7399 (12) Å | θ = 2.1–27.1° |
b = 16.3398 (15) Å | µ = 40.24 mm−1 |
c = 13.2469 (19) Å | T = 293 K |
β = 120.869 (9)° | Parallelepiped, black |
V = 1809.6 (4) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 2 |
Stoe IPDSII diffractometer | 3935 independent reflections |
Radiation source: fine-focus sealed tube | 2989 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
φ scans | θmax = 27.3°, θmin = 2.2° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −12→12 |
Tmin = 0.015, Tmax = 0.063 | k = −20→20 |
23768 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0351P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 2.44 e Å−3 |
3935 reflections | Δρmin = −1.75 e Å−3 |
136 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00038 (3) |
[Dy10Br18(C2)2] | V = 1809.6 (4) Å3 |
Mr = 3111.42 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7399 (12) Å | µ = 40.24 mm−1 |
b = 16.3398 (15) Å | T = 293 K |
c = 13.2469 (19) Å | 0.20 × 0.20 × 0.20 mm |
β = 120.869 (9)° |
Stoe IPDSII diffractometer | 3935 independent reflections |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | 2989 reflections with I > 2σ(I) |
Tmin = 0.015, Tmax = 0.063 | Rint = 0.096 |
23768 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 136 parameters |
wR(F2) = 0.079 | 0 restraints |
S = 1.01 | Δρmax = 2.44 e Å−3 |
3935 reflections | Δρmin = −1.75 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.72140 (7) | −0.18631 (3) | 0.55464 (5) | 0.01642 (12) | |
Dy2 | 0.86572 (6) | −0.05763 (3) | 0.81405 (4) | 0.01581 (12) | |
Dy3 | 0.49120 (6) | 0.16312 (3) | 0.27712 (5) | 0.01646 (13) | |
Dy4 | 0.66436 (6) | 0.04537 (3) | 0.53869 (5) | 0.01672 (12) | |
Dy5 | 0.49942 (6) | −0.05623 (3) | 0.23673 (5) | 0.01640 (12) | |
Br1 | 0.79002 (15) | 0.17718 (7) | 0.46836 (11) | 0.0267 (3) | |
Br2 | 0.18295 (15) | −0.05866 (7) | 0.03920 (11) | 0.0261 (3) | |
Br3 | 0.81121 (14) | −0.06564 (6) | 0.44345 (10) | 0.0199 (2) | |
Br4 | 0.19236 (15) | 0.18349 (7) | 0.05984 (11) | 0.0270 (3) | |
Br5 | 0.60176 (17) | −0.19122 (6) | 0.14246 (12) | 0.0282 (3) | |
Br6 | 0.59583 (16) | 0.06929 (7) | 0.14910 (12) | 0.0273 (3) | |
Br7 | 1.01722 (16) | −0.18152 (7) | 0.75532 (12) | 0.0274 (3) | |
Br8 | 0.97720 (15) | 0.06689 (7) | 0.73923 (11) | 0.0265 (3) | |
Br9 | 0.58632 (14) | 0.19733 (6) | 0.66855 (10) | 0.0198 (2) | |
C1 | 0.6314 (13) | −0.0891 (5) | 0.6212 (9) | 0.0118 (18)* | |
C2 | 0.4262 (13) | 0.0309 (6) | 0.3277 (9) | 0.0144 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.0185 (3) | 0.0131 (2) | 0.0193 (3) | 0.00139 (17) | 0.0109 (2) | −0.00086 (17) |
Dy2 | 0.0133 (3) | 0.0157 (2) | 0.0161 (3) | −0.00058 (17) | 0.0058 (2) | 0.00070 (17) |
Dy3 | 0.0170 (3) | 0.0136 (2) | 0.0190 (3) | −0.00068 (17) | 0.0094 (2) | 0.00148 (17) |
Dy4 | 0.0136 (3) | 0.0162 (2) | 0.0177 (3) | −0.00185 (17) | 0.0061 (2) | 0.00218 (17) |
Dy5 | 0.0162 (3) | 0.0138 (2) | 0.0191 (3) | 0.00202 (17) | 0.0089 (2) | −0.00146 (17) |
Br1 | 0.0196 (6) | 0.0273 (5) | 0.0261 (6) | −0.0087 (4) | 0.0066 (5) | 0.0045 (4) |
Br2 | 0.0170 (6) | 0.0321 (6) | 0.0209 (6) | 0.0031 (4) | 0.0037 (5) | −0.0070 (5) |
Br3 | 0.0161 (6) | 0.0213 (5) | 0.0235 (6) | 0.0005 (4) | 0.0110 (5) | 0.0020 (4) |
Br4 | 0.0214 (7) | 0.0287 (5) | 0.0247 (6) | −0.0059 (4) | 0.0073 (5) | 0.0103 (4) |
Br5 | 0.0435 (8) | 0.0148 (5) | 0.0400 (7) | 0.0018 (4) | 0.0313 (7) | −0.0017 (4) |
Br6 | 0.0361 (7) | 0.0225 (5) | 0.0354 (7) | −0.0012 (5) | 0.0271 (6) | 0.0002 (5) |
Br7 | 0.0191 (6) | 0.0298 (5) | 0.0281 (7) | 0.0066 (4) | 0.0083 (5) | −0.0031 (4) |
Br8 | 0.0182 (6) | 0.0291 (5) | 0.0248 (6) | −0.0074 (4) | 0.0057 (5) | 0.0056 (4) |
Br9 | 0.0189 (6) | 0.0163 (4) | 0.0235 (6) | −0.0005 (4) | 0.0104 (5) | −0.0009 (4) |
Dy1—C1 | 2.205 (9) | Dy4—C2 | 2.568 (11) |
Dy1—Br7 | 2.7413 (15) | Dy4—C1ii | 2.652 (10) |
Dy1—Br5i | 2.8473 (12) | Dy4—C2ii | 2.659 (10) |
Dy1—Br3 | 2.8539 (12) | Dy4—Br8 | 2.8564 (14) |
Dy1—Br9ii | 2.9434 (14) | Dy4—Br1 | 2.8591 (12) |
Dy1—Br4iii | 2.9730 (12) | Dy4—Br3 | 2.9630 (12) |
Dy1—Dy2 | 3.6399 (8) | Dy4—Dy4ii | 3.1832 (11) |
Dy1—Dy3ii | 3.7595 (9) | Dy4—Br9 | 3.3231 (12) |
Dy1—Dy4 | 3.8163 (7) | Dy5—C2 | 2.207 (10) |
Dy2—C1 | 2.453 (10) | Dy5—Br6 | 2.7485 (12) |
Dy2—C2ii | 2.515 (11) | Dy5—Br2 | 2.8413 (14) |
Dy2—Br8 | 2.7213 (12) | Dy5—Br3 | 2.8655 (14) |
Dy2—Br7 | 2.8388 (13) | Dy5—Br9ii | 2.9432 (12) |
Dy2—Br4ii | 2.8827 (12) | Dy5—Br5 | 2.9488 (12) |
Dy2—Br2ii | 2.9258 (13) | Dy5—Dy2ii | 3.7560 (8) |
Dy2—Br2iv | 2.9978 (14) | Br2—Dy2ii | 2.9258 (13) |
Dy2—Dy3ii | 3.4938 (8) | Br2—Dy2vii | 2.9978 (14) |
Dy2—Dy4 | 3.5558 (9) | Br4—Dy2ii | 2.8827 (12) |
Dy2—Dy5ii | 3.7560 (8) | Br4—Dy1v | 2.9730 (12) |
Dy3—C2 | 2.439 (9) | Br5—Dy1viii | 2.8473 (12) |
Dy3—C1ii | 2.520 (10) | Br5—Dy3iii | 2.9340 (12) |
Dy3—Br1 | 2.7157 (15) | Br9—Dy5ii | 2.9432 (12) |
Dy3—Br6 | 2.8354 (13) | Br9—Dy1ii | 2.9434 (14) |
Dy3—Br4 | 2.8759 (14) | Br9—Dy3ix | 3.0812 (12) |
Dy3—Br5v | 2.9340 (12) | C1—C2ii | 1.437 (13) |
Dy3—Br9vi | 3.0812 (12) | C1—Dy3ii | 2.520 (10) |
Dy3—Dy2ii | 3.4938 (8) | C1—Dy4ii | 2.652 (10) |
Dy3—Dy4 | 3.5434 (8) | C2—C1ii | 1.437 (13) |
Dy3—Dy5 | 3.6309 (7) | C2—Dy2ii | 2.515 (11) |
Dy3—Dy1ii | 3.7595 (8) | C2—Dy4ii | 2.659 (10) |
Dy4—C1 | 2.547 (9) | ||
C1—Dy1—Br7 | 91.6 (3) | C2—Dy4—C2ii | 105.0 (3) |
C1—Dy1—Br5i | 90.7 (2) | C1ii—Dy4—C2ii | 93.6 (3) |
Br7—Dy1—Br5i | 94.05 (4) | C1—Dy4—Br8 | 90.9 (2) |
C1—Dy1—Br3 | 89.9 (2) | C2—Dy4—Br8 | 163.8 (2) |
Br7—Dy1—Br3 | 91.88 (4) | C1ii—Dy4—Br8 | 155.9 (2) |
Br5i—Dy1—Br3 | 174.01 (4) | C2ii—Dy4—Br8 | 89.9 (2) |
C1—Dy1—Br9ii | 92.1 (3) | C1—Dy4—Br1 | 163.6 (2) |
Br7—Dy1—Br9ii | 176.15 (4) | C2—Dy4—Br1 | 90.8 (2) |
Br5i—Dy1—Br9ii | 87.03 (4) | C1ii—Dy4—Br1 | 90.5 (2) |
Br3—Dy1—Br9ii | 87.00 (4) | C2ii—Dy4—Br1 | 156.1 (2) |
C1—Dy1—Br4iii | 173.6 (3) | Br8—Dy4—Br1 | 77.27 (4) |
Br7—Dy1—Br4iii | 94.80 (4) | C1—Dy4—Br3 | 81.3 (2) |
Br5i—Dy1—Br4iii | 89.28 (4) | C2—Dy4—Br3 | 81.0 (2) |
Br3—Dy1—Br4iii | 89.40 (4) | C1ii—Dy4—Br3 | 112.9 (2) |
Br9ii—Dy1—Br4iii | 81.51 (4) | C2ii—Dy4—Br3 | 113.2 (2) |
C1—Dy1—Dy2 | 41.1 (3) | Br8—Dy4—Br3 | 87.35 (4) |
Br7—Dy1—Dy2 | 50.46 (3) | Br1—Dy4—Br3 | 86.65 (4) |
Br5i—Dy1—Dy2 | 93.50 (3) | C1—Dy4—Dy4ii | 53.8 (2) |
Br3—Dy1—Dy2 | 90.92 (3) | C2—Dy4—Dy4ii | 53.8 (2) |
Br9ii—Dy1—Dy2 | 133.21 (3) | C1ii—Dy4—Dy4ii | 50.8 (2) |
Br4iii—Dy1—Dy2 | 145.25 (3) | C2ii—Dy4—Dy4ii | 51.2 (2) |
C1—Dy1—Dy3ii | 40.3 (2) | Br8—Dy4—Dy4ii | 140.68 (4) |
Br7—Dy1—Dy3ii | 92.68 (3) | Br1—Dy4—Dy4ii | 140.71 (4) |
Br5i—Dy1—Dy3ii | 50.45 (2) | Br3—Dy4—Dy4ii | 101.73 (3) |
Br3—Dy1—Dy3ii | 130.11 (3) | C1—Dy4—Br9 | 108.0 (2) |
Br9ii—Dy1—Dy3ii | 90.85 (3) | C2—Dy4—Br9 | 108.3 (2) |
Br4iii—Dy1—Dy3ii | 139.48 (3) | C1ii—Dy4—Br9 | 76.7 (2) |
Dy2—Dy1—Dy3ii | 56.324 (16) | C2ii—Dy4—Br9 | 76.3 (2) |
C1—Dy1—Dy4 | 39.8 (2) | Br8—Dy4—Br9 | 81.07 (4) |
Br7—Dy1—Dy4 | 94.36 (3) | Br1—Dy4—Br9 | 81.70 (4) |
Br5i—Dy1—Dy4 | 129.89 (3) | Br3—Dy4—Br9 | 165.10 (3) |
Br3—Dy1—Dy4 | 50.25 (2) | Dy4ii—Dy4—Br9 | 93.17 (3) |
Br9ii—Dy1—Dy4 | 87.75 (2) | C1—Dy4—Dy3 | 141.9 (2) |
Br4iii—Dy1—Dy4 | 138.84 (3) | C2—Dy4—Dy3 | 43.5 (2) |
Dy2—Dy1—Dy4 | 56.906 (14) | C1ii—Dy4—Dy3 | 45.2 (2) |
Dy3ii—Dy1—Dy4 | 79.866 (14) | C2ii—Dy4—Dy3 | 138.7 (2) |
C1—Dy2—C2ii | 33.6 (3) | Br8—Dy4—Dy3 | 126.02 (3) |
C1—Dy2—Br8 | 96.3 (2) | Br1—Dy4—Dy3 | 48.77 (3) |
C2ii—Dy2—Br8 | 96.2 (2) | Br3—Dy4—Dy3 | 90.43 (3) |
C1—Dy2—Br7 | 84.4 (2) | Dy4ii—Dy4—Dy3 | 92.44 (2) |
C2ii—Dy2—Br7 | 117.8 (2) | Br9—Dy4—Dy3 | 88.85 (3) |
Br8—Dy2—Br7 | 94.17 (4) | C1—Dy4—Dy2 | 43.6 (2) |
C1—Dy2—Br4ii | 95.7 (2) | C2—Dy4—Dy2 | 142.0 (2) |
C2ii—Dy2—Br4ii | 94.2 (2) | C1ii—Dy4—Dy2 | 138.4 (2) |
Br8—Dy2—Br4ii | 167.98 (4) | C2ii—Dy4—Dy2 | 44.9 (2) |
Br7—Dy2—Br4ii | 86.23 (4) | Br8—Dy4—Dy2 | 48.74 (3) |
C1—Dy2—Br2ii | 116.5 (2) | Br1—Dy4—Dy2 | 126.00 (3) |
C2ii—Dy2—Br2ii | 82.9 (2) | Br3—Dy4—Dy2 | 90.82 (3) |
Br8—Dy2—Br2ii | 89.27 (4) | Dy4ii—Dy4—Dy2 | 92.53 (2) |
Br7—Dy2—Br2ii | 158.35 (4) | Br9—Dy4—Dy2 | 88.56 (3) |
Br4ii—Dy2—Br2ii | 86.07 (4) | Dy3—Dy4—Dy2 | 174.519 (19) |
C1—Dy2—Br2iv | 165.5 (2) | C1—Dy4—Dy1 | 33.6 (2) |
C2ii—Dy2—Br2iv | 159.6 (2) | C2—Dy4—Dy1 | 89.6 (2) |
Br8—Dy2—Br2iv | 88.07 (4) | C1ii—Dy4—Dy1 | 112.27 (19) |
Br7—Dy2—Br2iv | 81.56 (4) | C2ii—Dy4—Dy1 | 65.6 (2) |
Br4ii—Dy2—Br2iv | 80.09 (4) | Br8—Dy4—Dy1 | 90.87 (3) |
Br2ii—Dy2—Br2iv | 77.19 (4) | Br1—Dy4—Dy1 | 133.69 (3) |
C1—Dy2—Dy3ii | 46.2 (2) | Br3—Dy4—Dy1 | 47.77 (2) |
C2ii—Dy2—Dy3ii | 44.3 (2) | Dy4ii—Dy4—Dy1 | 69.484 (18) |
Br8—Dy2—Dy3ii | 139.04 (3) | Br9—Dy4—Dy1 | 141.07 (3) |
Br7—Dy2—Dy3ii | 96.80 (3) | Dy3—Dy4—Dy1 | 125.134 (19) |
Br4ii—Dy2—Dy3ii | 52.56 (3) | Dy2—Dy4—Dy1 | 59.047 (14) |
Br2ii—Dy2—Dy3ii | 94.50 (3) | C2—Dy5—Br6 | 91.4 (3) |
Br2iv—Dy2—Dy3ii | 132.53 (3) | C2—Dy5—Br2 | 90.6 (3) |
C1—Dy2—Dy4 | 45.7 (2) | Br6—Dy5—Br2 | 93.77 (4) |
C2ii—Dy2—Dy4 | 48.3 (2) | C2—Dy5—Br3 | 89.6 (3) |
Br8—Dy2—Dy4 | 52.09 (3) | Br6—Dy5—Br3 | 91.11 (4) |
Br7—Dy2—Dy4 | 98.46 (3) | Br2—Dy5—Br3 | 175.10 (4) |
Br4ii—Dy2—Dy4 | 139.75 (3) | C2—Dy5—Br9ii | 91.8 (3) |
Br2ii—Dy2—Dy4 | 100.49 (3) | Br6—Dy5—Br9ii | 176.15 (4) |
Br2iv—Dy2—Dy4 | 140.15 (3) | Br2—Dy5—Br9ii | 88.32 (4) |
Dy3ii—Dy2—Dy4 | 87.228 (19) | Br3—Dy5—Br9ii | 86.79 (3) |
C1—Dy2—Dy1 | 36.2 (2) | C2—Dy5—Br5 | 171.1 (3) |
C2ii—Dy2—Dy1 | 69.8 (2) | Br6—Dy5—Br5 | 96.68 (4) |
Br8—Dy2—Dy1 | 96.95 (3) | Br2—Dy5—Br5 | 92.42 (4) |
Br7—Dy2—Dy1 | 48.13 (3) | Br3—Dy5—Br5 | 86.67 (4) |
Br4ii—Dy2—Dy1 | 92.26 (3) | Br9ii—Dy5—Br5 | 79.99 (3) |
Br2ii—Dy2—Dy1 | 152.46 (3) | C2—Dy5—Dy3 | 41.0 (3) |
Br2iv—Dy2—Dy1 | 129.62 (3) | Br6—Dy5—Dy3 | 50.49 (3) |
Dy3ii—Dy2—Dy1 | 63.568 (16) | Br2—Dy5—Dy3 | 93.10 (3) |
Dy4—Dy2—Dy1 | 64.047 (17) | Br3—Dy5—Dy3 | 90.27 (2) |
C1—Dy2—Dy5ii | 68.1 (2) | Br9ii—Dy5—Dy3 | 132.68 (3) |
C2ii—Dy2—Dy5ii | 34.5 (2) | Br5—Dy5—Dy3 | 146.99 (3) |
Br8—Dy2—Dy5ii | 94.73 (3) | C2—Dy5—Dy2ii | 40.2 (3) |
Br7—Dy2—Dy5ii | 151.85 (3) | Br6—Dy5—Dy2ii | 92.98 (3) |
Br4ii—Dy2—Dy5ii | 90.45 (3) | Br2—Dy5—Dy2ii | 50.35 (3) |
Br2ii—Dy2—Dy5ii | 48.39 (3) | Br3—Dy5—Dy2ii | 129.76 (3) |
Br2iv—Dy2—Dy5ii | 125.37 (3) | Br9ii—Dy5—Dy2ii | 90.84 (3) |
Dy3ii—Dy2—Dy5ii | 59.980 (16) | Br5—Dy5—Dy2ii | 142.13 (3) |
Dy4—Dy2—Dy5ii | 66.960 (16) | Dy3—Dy5—Dy2ii | 56.425 (13) |
Dy1—Dy2—Dy5ii | 104.213 (19) | C2—Dy5—Dy4 | 39.8 (3) |
C2—Dy3—C1ii | 33.6 (3) | Br6—Dy5—Dy4 | 93.80 (3) |
C2—Dy3—Br1 | 97.1 (3) | Br2—Dy5—Dy4 | 129.92 (3) |
C1ii—Dy3—Br1 | 96.7 (2) | Br3—Dy5—Dy4 | 49.90 (3) |
C2—Dy3—Br6 | 84.8 (2) | Br9ii—Dy5—Dy4 | 87.31 (3) |
C1ii—Dy3—Br6 | 118.3 (2) | Br5—Dy5—Dy4 | 135.47 (3) |
Br1—Dy3—Br6 | 93.53 (4) | Dy3—Dy5—Dy4 | 56.545 (13) |
C2—Dy3—Br4 | 96.1 (3) | Dy2ii—Dy5—Dy4 | 79.862 (17) |
C1ii—Dy3—Br4 | 94.4 (2) | Dy3—Br1—Dy4 | 78.88 (3) |
Br1—Dy3—Br4 | 166.85 (4) | Dy5—Br2—Dy2ii | 81.26 (3) |
Br6—Dy3—Br4 | 87.35 (4) | Dy5—Br2—Dy2vii | 173.49 (5) |
C2—Dy3—Br5v | 116.5 (2) | Dy2ii—Br2—Dy2vii | 102.81 (4) |
C1ii—Dy3—Br5v | 82.9 (2) | Dy1—Br3—Dy5 | 94.31 (4) |
Br1—Dy3—Br5v | 88.59 (4) | Dy1—Br3—Dy4 | 81.98 (3) |
Br6—Dy3—Br5v | 158.19 (4) | Dy5—Br3—Dy4 | 82.40 (3) |
Br4—Dy3—Br5v | 85.82 (4) | Dy3—Br4—Dy2ii | 74.70 (3) |
C2—Dy3—Br9vi | 165.0 (2) | Dy3—Br4—Dy1v | 100.81 (4) |
C1ii—Dy3—Br9vi | 160.6 (2) | Dy2ii—Br4—Dy1v | 175.51 (5) |
Br1—Dy3—Br9vi | 86.44 (4) | Dy1viii—Br5—Dy3iii | 81.11 (3) |
Br6—Dy3—Br9vi | 80.48 (3) | Dy1viii—Br5—Dy5 | 175.47 (5) |
Br4—Dy3—Br9vi | 80.76 (3) | Dy3iii—Br5—Dy5 | 102.63 (4) |
Br5v—Dy3—Br9vi | 77.99 (3) | Dy5—Br6—Dy3 | 81.10 (3) |
C2—Dy3—Dy2ii | 46.0 (3) | Dy1—Br7—Dy2 | 81.41 (4) |
C1ii—Dy3—Dy2ii | 44.6 (2) | Dy2—Br8—Dy4 | 79.17 (3) |
Br1—Dy3—Dy2ii | 139.84 (3) | Dy5ii—Br9—Dy1ii | 90.85 (3) |
Br6—Dy3—Dy2ii | 97.22 (3) | Dy5ii—Br9—Dy3ix | 99.30 (4) |
Br4—Dy3—Dy2ii | 52.74 (3) | Dy1ii—Br9—Dy3ix | 96.84 (4) |
Br5v—Dy3—Dy2ii | 95.05 (3) | Dy5ii—Br9—Dy4 | 79.96 (3) |
Br9vi—Dy3—Dy2ii | 133.46 (3) | Dy1ii—Br9—Dy4 | 79.62 (3) |
C2—Dy3—Dy4 | 46.4 (3) | Dy3ix—Br9—Dy4 | 176.35 (4) |
C1ii—Dy3—Dy4 | 48.3 (2) | C2ii—C1—Dy1 | 174.9 (7) |
Br1—Dy3—Dy4 | 52.35 (3) | C2ii—C1—Dy2 | 75.6 (6) |
Br6—Dy3—Dy4 | 98.89 (3) | Dy1—C1—Dy2 | 102.7 (4) |
Br4—Dy3—Dy4 | 140.45 (3) | C2ii—C1—Dy3ii | 70.1 (5) |
Br5v—Dy3—Dy4 | 99.56 (3) | Dy1—C1—Dy3ii | 105.2 (3) |
Br9vi—Dy3—Dy4 | 138.77 (3) | Dy2—C1—Dy3ii | 89.3 (3) |
Dy2ii—Dy3—Dy4 | 87.713 (18) | C2ii—C1—Dy4 | 78.3 (5) |
C2—Dy3—Dy5 | 36.4 (2) | Dy1—C1—Dy4 | 106.6 (4) |
C1ii—Dy3—Dy5 | 70.0 (2) | Dy2—C1—Dy4 | 90.7 (3) |
Br1—Dy3—Dy5 | 97.29 (3) | Dy3ii—C1—Dy4 | 147.4 (4) |
Br6—Dy3—Dy5 | 48.41 (2) | C2ii—C1—Dy4ii | 70.8 (6) |
Br4—Dy3—Dy5 | 93.11 (3) | Dy1—C1—Dy4ii | 111.5 (4) |
Br5v—Dy3—Dy5 | 152.68 (3) | Dy2—C1—Dy4ii | 145.5 (4) |
Br9vi—Dy3—Dy5 | 128.83 (3) | Dy3ii—C1—Dy4ii | 86.4 (3) |
Dy2ii—Dy3—Dy5 | 63.595 (14) | Dy4—C1—Dy4ii | 75.5 (3) |
Dy4—Dy3—Dy5 | 64.703 (15) | C1ii—C2—Dy5 | 175.8 (8) |
C2—Dy3—Dy1ii | 68.1 (2) | C1ii—C2—Dy3 | 76.3 (5) |
C1ii—Dy3—Dy1ii | 34.5 (2) | Dy5—C2—Dy3 | 102.7 (4) |
Br1—Dy3—Dy1ii | 95.23 (4) | C1ii—C2—Dy2ii | 70.8 (6) |
Br6—Dy3—Dy1ii | 152.30 (3) | Dy5—C2—Dy2ii | 105.2 (4) |
Br4—Dy3—Dy1ii | 89.95 (3) | Dy3—C2—Dy2ii | 89.7 (3) |
Br5v—Dy3—Dy1ii | 48.44 (2) | C1ii—C2—Dy4 | 77.3 (6) |
Br9vi—Dy3—Dy1ii | 126.24 (3) | Dy5—C2—Dy4 | 106.8 (4) |
Dy2ii—Dy3—Dy1ii | 60.109 (16) | Dy3—C2—Dy4 | 90.0 (3) |
Dy4—Dy3—Dy1ii | 66.772 (17) | Dy2ii—C2—Dy4 | 147.2 (4) |
Dy5—Dy3—Dy1ii | 104.320 (16) | C1ii—C2—Dy4ii | 69.7 (5) |
C1—Dy4—C2 | 98.4 (3) | Dy5—C2—Dy4ii | 111.8 (4) |
C1—Dy4—C1ii | 104.5 (3) | Dy3—C2—Dy4ii | 145.0 (4) |
C2—Dy4—C1ii | 31.9 (3) | Dy2ii—C2—Dy4ii | 86.8 (3) |
C1—Dy4—C2ii | 32.0 (3) | Dy4—C2—Dy4ii | 75.0 (3) |
Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1, y, z+1; (v) −x+1, y+1/2, −z+1/2; (vi) x, −y+1/2, z−1/2; (vii) x−1, y, z−1; (viii) x, −y−1/2, z−1/2; (ix) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Dy10Br18(C2)2] |
Mr | 3111.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.7399 (12), 16.3398 (15), 13.2469 (19) |
β (°) | 120.869 (9) |
V (Å3) | 1809.6 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 40.24 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Stoe IPDSII |
Absorption correction | Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] |
Tmin, Tmax | 0.015, 0.063 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23768, 3935, 2989 |
Rint | 0.096 |
(sin θ/λ)max (Å−1) | 0.645 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.079, 1.01 |
No. of reflections | 3935 |
No. of parameters | 136 |
Δρmax, Δρmin (e Å−3) | 2.44, −1.75 |
Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2005).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (SFB 608 `Complex transition metal compounds with spin and charge
and disorder').References
Brandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany. Google Scholar
Liess, H. (1996). Dr. rer. nat. dissertation, University of Hannover, Germany, pp. 59–64. Google Scholar
Mattausch, H., Hoch, C. & Simon, A. (2007). Z. Naturforsch. Teil B 62, 148–154. CAS Google Scholar
Mattausch, H., Oeckler, O. & Simon, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 458. Google Scholar
Meyer, G., Dötsch, S. & Staffel, T. (1987). J. Less-Common Met. 127, 155–160. CrossRef CAS Web of Science Google Scholar
Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr & L. Eyring, pp. 53–129. Amsterdam: Elsevier. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany. Google Scholar
Uhrlandt, S., Artelt, H. M. & Meyer, G. (1994). Z. Anorg. Allg. Chem. 620, 1532–1536. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of ternary and quaternary halides of the general formulae [{RE10(C2)2}Xn] with RE = Gd, Tb, Er, Y; X = Cl, Br, I; n = 17–19 and Ax[{RE10(C2)2}Xn] with A = K, Rb, Cs; x = 1–3; n = 18–21 have been observed and were compiled by Meyer and Wickleder (2000). Among these halides, three bromides with the formula [{RE10(C2)2}Br18], where RE is Gd, Tb, and Er, are known and were structurally studied by Lie\&s (1996), Mattausch et al. (2002) and Uhrlandt et al. (1994).
The crystal structure of the title compound is isotypic with the iodide analogue [{Dy10(C2)2}I18] studied recently by Mattausch et al. (2007). As many reduced rare earth halides, the cluster compound [{Dy10(C2)2}Br18] consists of an octahedral arrangement of dysprosium atoms stabilized by an interstitial C2 dumbbell. The dysprosium octahedra are connected via common edges leading to the formation of dimers. The cluster cores are surrounded by bromine atoms above the cluster edges and vertices, respectively (Fig. 1). Some of the bromine atoms belong to a single dimeric unit while others connect neighbouring dimers, thus leading to a three-dimensional network (Fig. 2). Due to the slight elongation of the dysprosium octahedra established roughly parallel to the axis of the C2 units, the Dy—Dy distances range from 3.1832 (11) to 4.0369 (9) Å. The Dy—Br distances in [{Dy10(C2)2}Br18] vary between 2.7157 (15) and 3.3231 (12) Å with the distances to the edge-bridging bromine atoms that are placed between two condensed octahedra significantly larger than those to the other ligands. The C—C bond length is 1.437 (13) Å.