organic compounds
N-Cinnamoyl-L-phenylalanine methyl ester
aEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia
*Correspondence e-mail: Alan.White@griffith.edu.au
As part of an ongoing investigation into the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry, we report the structure of the title compound, C19H19NO3. This compound crystallizes as discrete molecules. The cinnamoyl group is non-planar, with the phenyl ring and the amide twisted out of the ethylene plane. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the crystallographic c axis, connecting through C(4) chains of N—H⋯O hydrogen bonds, with the extended structure stabilized by C—H⋯O interactions and π–π interactions [centroid-to-centroid distances 3.547 (8) and 3.536 (8) Å].
Related literature
For related literature, see: Bernstein et al. (1995); Bornaghi et al. (2004, 2005, 2007); Poulsen et al. (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell MSC/AFC7 Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: CrystalStructure; program(s) used to refine structure: CrystalStructure and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S1600536807055973/wn2217sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807055973/wn2217Isup2.hkl
Triethylamine (0.93 g, 9.2 mmol) was added dropwise to a solution of L-phenylalanine methyl ester hydrochloride (0.5 g, 2.3 mmol) and cinnamoyl chloride (367 mg, 2.2 mmol) in anhydrous dichloromethane (10 ml). The reaction mixture was stirred at room temperature (298 K) for 3 days before being washed with 2 M HCl (2 x 100 ml), and saturated brine solution (100 ml), then dried over MgSO4. Solvent was removed under reduced pressure to give a clear solid residue. The title compound was obtained in 83% yield after crystallization from an ethyl acetate/hexane solution. 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 3.07–3.21 (m, 2H, βCH), 3.67 (s, 3H, OCH3), 4.95–5.01 (m, 1H, αCH), 6.10 (br d, 1H, NH), 6.33 (d, 1H, J = 15.6 Hz, ?CHCO), 7.03–7.50 (m, 10H, ArH), 7.57 (d, 1H, J =15.6 Hz, ?CHPh); 13C NMR (CDCl3, 75 MHz, p.p.m.): δ = 37.9 (βCH), 52.5 (OCH3), 53.3 (αCH), 119.9 (?CHCO), 127.2, 127.9, 128.4, 128.9, 129.4, 129.9, 130.7 (CH from Ar), 134.6, 135.8 (C from Ar), 142.0 (?CHPh), 165.4 (CONH), 172.1 (COOCH3); MS (LRMSES): m/z 310.0 [M+H]+, 332.1 [M+Na]+; mp 361.8 K.
H1 attached to N1 and H10 attached to C10 were located in Fourier maps and constrained with N—H = 0.84 and C—H = 0.98 Å respectively. All other H atoms were placed in calculated positions and constrained as riding with C—H = 0.93–0.97 Å. In the absence of significant
effects, Friedel pairs were merged. The of the title compound was assigned on the basis of the known configuration of the starting material.In a previous paper we reported the structure of N-cinnamoyl-L-valine methyl ester (Bornaghi et al., 2007). This work is part of an ongoing investigation in the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry (Poulsen et al., 2003; Bornaghi et al., 2004; Bornaghi et al., 2005). In the present communication, we report the structure of N-cinnamoyl-L-phenylalanine methyl ester.
The molecular structure of the title compound is shown in Fig. 1. Unlike the L-valine analogue (Bornaghi et al., 2007), the cinnamoyl portion of the molecule is not planar, with the torsion angles C2—C1—C7—C8 = 22.1 (7) and C7—C8—C9—O1 = 16.7 (7)°. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the short crystallographic c axis, connecting through C(4) chains of N—H···O hydrogen bonds (Bernstein et al., 1995) (Fig. 2, Table 2). The macro structure is stabilized by short C—H···O contact interactions between the molecules in stacks and with adjacent neighbours. Fig. 3 displays how the molecular stacks interlock about the benzyl group. The stacks are held in close proximity through the short contact O1···H15ii = 2.7 Å [symmetry code ii: -x + 1/2, -y + 1, z - 1/2]. Adjacent macro structures are oriented about the ester group through π interactions with benzyl rings (C13···C17v = 3.547 (8) and C14···C16v = 3.536 (8) Å) [symmetry code v: x, y, z + 1] and C—H···O interactions with the cinnamoyl rings.
For related literature, see: Bernstein et al. (1995); Bornaghi et al. (2004, 2005, 2007); Poulsen et al. (2003).
Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell
MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2004); program(s) used to refine structure: CrystalStructure (Rigaku/MSC, 2004) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).C19H19NO3 | Dx = 1.214 Mg m−3 |
Mr = 309.35 | Melting point: 361.8 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 20 reflections |
a = 15.041 (3) Å | θ = 9.8–10.0° |
b = 22.550 (4) Å | µ = 0.08 mm−1 |
c = 4.9896 (15) Å | T = 295 K |
V = 1692.4 (7) Å3 | Prismatic, colourless |
Z = 4 | 0.50 × 0.30 × 0.30 mm |
F(000) = 656.00 |
Rigaku AFC7R diffractometer | Rint = 0.018 |
Radiation source: Rigaku rotating anode | θmax = 25.0°, θmin = 2.7° |
Graphite monochromator | h = −8→17 |
ω scans | k = 0→26 |
2291 measured reflections | l = −5→2 |
1757 independent reflections | 3 standard reflections every 150 reflections |
972 reflections with F2 > 2σ(F2) | intensity decay: 0.6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0501P)2] where P = (Fo2 + 2Fc2)/3 |
1757 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C19H19NO3 | V = 1692.4 (7) Å3 |
Mr = 309.35 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 15.041 (3) Å | µ = 0.08 mm−1 |
b = 22.550 (4) Å | T = 295 K |
c = 4.9896 (15) Å | 0.50 × 0.30 × 0.30 mm |
Rigaku AFC7R diffractometer | Rint = 0.018 |
2291 measured reflections | 3 standard reflections every 150 reflections |
1757 independent reflections | intensity decay: 0.6% |
972 reflections with F2 > 2σ(F2) |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.13 e Å−3 |
1757 reflections | Δρmin = −0.15 e Å−3 |
209 parameters |
Experimental. The scan width was (0.89 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5025 (2) | 0.57628 (13) | 0.1198 (6) | 0.0679 (11) | |
O2 | 0.5528 (2) | 0.71550 (16) | 0.5337 (8) | 0.0997 (14) | |
O3 | 0.4596 (2) | 0.74577 (14) | 0.2226 (8) | 0.1010 (14) | |
N1 | 0.4640 (2) | 0.60588 (14) | 0.5364 (6) | 0.0571 (11) | |
C1 | 0.6624 (3) | 0.43634 (19) | 0.4699 (10) | 0.0617 (17) | |
C2 | 0.6329 (3) | 0.4040 (2) | 0.6869 (12) | 0.0847 (19) | |
C3 | 0.6806 (4) | 0.3555 (2) | 0.7816 (15) | 0.108 (3) | |
C4 | 0.7582 (4) | 0.3394 (2) | 0.6570 (17) | 0.107 (3) | |
C5 | 0.7888 (4) | 0.3713 (3) | 0.4499 (16) | 0.103 (3) | |
C6 | 0.7406 (3) | 0.4194 (2) | 0.3554 (12) | 0.088 (2) | |
C7 | 0.6124 (3) | 0.48703 (18) | 0.3641 (9) | 0.0623 (17) | |
C8 | 0.5533 (3) | 0.51934 (17) | 0.4910 (9) | 0.0543 (14) | |
C9 | 0.5062 (3) | 0.56890 (18) | 0.3631 (9) | 0.0520 (14) | |
C10 | 0.4203 (3) | 0.65879 (17) | 0.4456 (9) | 0.0543 (16) | |
C11 | 0.3434 (3) | 0.67665 (17) | 0.6256 (10) | 0.0657 (17) | |
C12 | 0.2658 (3) | 0.63417 (19) | 0.6032 (10) | 0.0583 (17) | |
C13 | 0.2587 (3) | 0.5853 (2) | 0.7655 (10) | 0.0763 (17) | |
C14 | 0.1888 (4) | 0.5462 (2) | 0.7362 (12) | 0.093 (2) | |
C15 | 0.1263 (3) | 0.5546 (2) | 0.5393 (12) | 0.084 (2) | |
C16 | 0.1342 (3) | 0.6024 (3) | 0.3770 (12) | 0.094 (2) | |
C17 | 0.2032 (3) | 0.6424 (2) | 0.4064 (12) | 0.0817 (19) | |
C18 | 0.4866 (3) | 0.70907 (19) | 0.4097 (10) | 0.0627 (17) | |
C19 | 0.5177 (4) | 0.7956 (2) | 0.1654 (14) | 0.138 (3) | |
H1 | 0.47910 | 0.60170 | 0.69710 | 0.0640* | |
H2 | 0.58020 | 0.41490 | 0.77140 | 0.1020* | |
H3 | 0.65990 | 0.33410 | 0.92820 | 0.1300* | |
H4 | 0.78960 | 0.30640 | 0.71620 | 0.1290* | |
H5 | 0.84250 | 0.36120 | 0.36950 | 0.1240* | |
H6 | 0.76220 | 0.44070 | 0.20960 | 0.1050* | |
H7 | 0.62380 | 0.49740 | 0.18710 | 0.0750* | |
H8 | 0.54080 | 0.51050 | 0.66920 | 0.0650* | |
H10 | 0.39530 | 0.65010 | 0.26850 | 0.0650* | |
H13 | 0.30150 | 0.57840 | 0.89650 | 0.0920* | |
H14 | 0.18390 | 0.51390 | 0.85110 | 0.1110* | |
H15 | 0.07960 | 0.52790 | 0.51790 | 0.1010* | |
H16 | 0.09220 | 0.60850 | 0.24280 | 0.1130* | |
H17 | 0.20720 | 0.67490 | 0.29260 | 0.0980* | |
H111 | 0.36370 | 0.67780 | 0.81010 | 0.0780* | |
H112 | 0.32380 | 0.71620 | 0.57730 | 0.0780* | |
H191 | 0.57770 | 0.78170 | 0.14720 | 0.1660* | |
H192 | 0.51440 | 0.82370 | 0.30950 | 0.1660* | |
H193 | 0.49930 | 0.81420 | 0.00160 | 0.1660* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.088 (2) | 0.079 (2) | 0.0367 (17) | 0.0117 (18) | 0.0021 (17) | 0.0012 (17) |
O2 | 0.085 (2) | 0.095 (2) | 0.119 (3) | −0.021 (2) | −0.039 (3) | 0.023 (3) |
O3 | 0.107 (2) | 0.082 (2) | 0.114 (3) | −0.021 (2) | −0.033 (3) | 0.045 (2) |
N1 | 0.071 (2) | 0.060 (2) | 0.0402 (18) | 0.015 (2) | −0.0017 (18) | 0.0019 (18) |
C1 | 0.055 (3) | 0.056 (3) | 0.074 (3) | −0.002 (2) | 0.007 (3) | −0.006 (3) |
C2 | 0.078 (3) | 0.063 (3) | 0.113 (4) | 0.010 (3) | 0.016 (3) | 0.003 (3) |
C3 | 0.118 (5) | 0.071 (4) | 0.136 (6) | 0.017 (4) | 0.007 (5) | 0.021 (4) |
C4 | 0.084 (4) | 0.069 (4) | 0.169 (7) | 0.018 (3) | −0.021 (5) | −0.008 (5) |
C5 | 0.066 (3) | 0.086 (4) | 0.158 (7) | 0.012 (3) | 0.012 (4) | −0.004 (5) |
C6 | 0.082 (4) | 0.074 (3) | 0.107 (4) | 0.005 (3) | 0.025 (4) | 0.002 (4) |
C7 | 0.066 (3) | 0.065 (3) | 0.056 (3) | 0.004 (3) | 0.000 (3) | −0.004 (3) |
C8 | 0.060 (3) | 0.056 (2) | 0.047 (2) | −0.001 (2) | 0.001 (2) | 0.003 (2) |
C9 | 0.056 (3) | 0.049 (2) | 0.051 (2) | −0.005 (2) | 0.001 (2) | −0.003 (2) |
C10 | 0.058 (3) | 0.052 (2) | 0.053 (3) | 0.000 (2) | −0.006 (2) | 0.005 (2) |
C11 | 0.078 (3) | 0.058 (3) | 0.061 (3) | 0.012 (2) | −0.003 (3) | −0.013 (3) |
C12 | 0.059 (3) | 0.061 (3) | 0.055 (3) | 0.005 (2) | 0.007 (3) | −0.007 (3) |
C13 | 0.088 (3) | 0.075 (3) | 0.066 (3) | −0.004 (3) | −0.002 (3) | 0.003 (3) |
C14 | 0.106 (4) | 0.083 (3) | 0.089 (4) | −0.017 (3) | 0.004 (4) | 0.014 (4) |
C15 | 0.072 (3) | 0.093 (4) | 0.088 (4) | −0.022 (3) | 0.006 (4) | −0.010 (4) |
C16 | 0.060 (3) | 0.119 (4) | 0.102 (4) | −0.006 (3) | −0.012 (3) | 0.014 (4) |
C17 | 0.069 (3) | 0.085 (3) | 0.091 (4) | 0.002 (3) | −0.011 (3) | 0.024 (4) |
C18 | 0.063 (3) | 0.060 (3) | 0.065 (3) | 0.007 (3) | −0.006 (3) | 0.007 (3) |
C19 | 0.151 (6) | 0.089 (4) | 0.175 (7) | −0.044 (4) | −0.027 (6) | 0.052 (5) |
O1—C9 | 1.227 (5) | C14—C15 | 1.373 (8) |
O2—C18 | 1.181 (6) | C15—C16 | 1.353 (8) |
O3—C18 | 1.312 (6) | C16—C17 | 1.383 (7) |
O3—C19 | 1.452 (6) | C2—H2 | 0.9300 |
N1—C9 | 1.359 (5) | C3—H3 | 0.9300 |
N1—C10 | 1.436 (5) | C4—H4 | 0.9300 |
N1—H1 | 0.8400 | C5—H5 | 0.9300 |
C1—C6 | 1.362 (7) | C6—H6 | 0.9300 |
C1—C7 | 1.467 (6) | C7—H7 | 0.9300 |
C1—C2 | 1.379 (7) | C8—H8 | 0.9300 |
C2—C3 | 1.391 (7) | C10—H10 | 0.9800 |
C3—C4 | 1.371 (9) | C11—H111 | 0.9700 |
C4—C5 | 1.341 (10) | C11—H112 | 0.9700 |
C5—C6 | 1.387 (8) | C13—H13 | 0.9300 |
C7—C8 | 1.312 (6) | C14—H14 | 0.9300 |
C8—C9 | 1.469 (6) | C15—H15 | 0.9300 |
C10—C11 | 1.519 (6) | C16—H16 | 0.9300 |
C10—C18 | 1.521 (6) | C17—H17 | 0.9300 |
C11—C12 | 1.514 (6) | C19—H191 | 0.9600 |
C12—C17 | 1.373 (7) | C19—H192 | 0.9600 |
C12—C13 | 1.372 (7) | C19—H193 | 0.9600 |
C13—C14 | 1.380 (7) | ||
O1···N1i | 3.042 (4) | H1···O2 | 2.9100 |
O1···C18 | 3.334 (5) | H1···H8 | 2.2600 |
O2···N1 | 2.810 (5) | H1···H111 | 2.5100 |
O1···H1i | 2.2100 | H2···C8 | 2.7700 |
O1···H7 | 2.5700 | H2···H8 | 2.2900 |
O1···H10 | 2.4300 | H4···O2iv | 2.8900 |
O1···H15ii | 2.7000 | H5···O2iii | 2.8800 |
O1···H8i | 2.7500 | H6···H7 | 2.4500 |
O2···H1 | 2.9100 | H6···C7iii | 3.0300 |
O2···H191 | 2.4700 | H7···O1 | 2.5700 |
O2···H192 | 2.7500 | H7···H6 | 2.4500 |
O2···H4iii | 2.8900 | H8···O1v | 2.7500 |
O2···H5iv | 2.8800 | H8···C2 | 2.7700 |
O3···H112 | 2.7800 | H8···H1 | 2.2600 |
N1···O1v | 3.042 (4) | H8···H2 | 2.2900 |
N1···O2 | 2.810 (5) | H10···O1 | 2.4300 |
N1···C13 | 3.325 (6) | H10···C17 | 2.9800 |
C3···C6v | 3.330 (9) | H10···H111i | 2.4200 |
C6···C3i | 3.330 (9) | H13···H111 | 2.4700 |
C13···C17v | 3.547 (8) | H14···C14viii | 3.0300 |
C13···N1 | 3.325 (6) | H15···O1viii | 2.7000 |
C14···C16v | 3.536 (8) | H15···C9viii | 3.0700 |
C16···C14i | 3.536 (8) | H16···H193ix | 2.5500 |
C17···C13i | 3.547 (8) | H17···H112 | 2.4400 |
C18···O1 | 3.334 (5) | H111···H1 | 2.5100 |
C2···H193vi | 2.9900 | H111···H10v | 2.4200 |
C2···H8 | 2.7700 | H111···H13 | 2.4700 |
C7···H6iv | 3.0300 | H112···O3 | 2.7800 |
C8···H2 | 2.7700 | H112···H17 | 2.4400 |
C9···H15ii | 3.0700 | H191···O2 | 2.4700 |
C14···H14ii | 3.0300 | H192···O2 | 2.7500 |
C16···H192vii | 2.9100 | H192···C16x | 2.9100 |
C17···H10 | 2.9800 | H193···H16xi | 2.5500 |
H1···O1v | 2.2100 | H193···C2xii | 2.9900 |
C18—O3—C19 | 116.2 (4) | C4—C3—H3 | 120.00 |
C9—N1—C10 | 121.5 (3) | C3—C4—H4 | 120.00 |
C10—N1—H1 | 121.00 | C5—C4—H4 | 120.00 |
C9—N1—H1 | 114.00 | C4—C5—H5 | 120.00 |
C2—C1—C7 | 122.0 (4) | C6—C5—H5 | 120.00 |
C6—C1—C7 | 120.7 (4) | C1—C6—H6 | 119.00 |
C2—C1—C6 | 117.3 (4) | C5—C6—H6 | 119.00 |
C1—C2—C3 | 121.1 (5) | C1—C7—H7 | 116.00 |
C2—C3—C4 | 119.6 (6) | C8—C7—H7 | 116.00 |
C3—C4—C5 | 120.0 (5) | C7—C8—H8 | 119.00 |
C4—C5—C6 | 120.1 (6) | C9—C8—H8 | 119.00 |
C1—C6—C5 | 121.9 (5) | N1—C10—H10 | 107.00 |
C1—C7—C8 | 127.3 (4) | C11—C10—H10 | 107.00 |
C7—C8—C9 | 122.7 (4) | C18—C10—H10 | 107.00 |
N1—C9—C8 | 114.6 (4) | C10—C11—H111 | 109.00 |
O1—C9—N1 | 121.7 (4) | C10—C11—H112 | 109.00 |
O1—C9—C8 | 123.7 (4) | C12—C11—H111 | 109.00 |
C11—C10—C18 | 111.8 (3) | C12—C11—H112 | 109.00 |
N1—C10—C18 | 110.9 (4) | H111—C11—H112 | 108.00 |
N1—C10—C11 | 112.5 (3) | C12—C13—H13 | 120.00 |
C10—C11—C12 | 112.1 (4) | C14—C13—H13 | 120.00 |
C11—C12—C13 | 121.7 (4) | C13—C14—H14 | 120.00 |
C11—C12—C17 | 119.7 (4) | C15—C14—H14 | 120.00 |
C13—C12—C17 | 118.5 (4) | C14—C15—H15 | 121.00 |
C12—C13—C14 | 120.7 (5) | C16—C15—H15 | 121.00 |
C13—C14—C15 | 120.6 (5) | C15—C16—H16 | 119.00 |
C14—C15—C16 | 118.6 (4) | C17—C16—H16 | 119.00 |
C15—C16—C17 | 121.5 (5) | C12—C17—H17 | 120.00 |
C12—C17—C16 | 120.2 (5) | C16—C17—H17 | 120.00 |
O3—C18—C10 | 110.6 (4) | O3—C19—H191 | 109.00 |
O2—C18—O3 | 123.8 (4) | O3—C19—H192 | 109.00 |
O2—C18—C10 | 125.6 (4) | O3—C19—H193 | 109.00 |
C1—C2—H2 | 119.00 | H191—C19—H192 | 110.00 |
C3—C2—H2 | 120.00 | H191—C19—H193 | 109.00 |
C2—C3—H3 | 120.00 | H192—C19—H193 | 110.00 |
C19—O3—C18—O2 | 1.9 (7) | C7—C8—C9—N1 | −165.1 (4) |
C19—O3—C18—C10 | −179.2 (4) | N1—C10—C11—C12 | −70.0 (5) |
C10—N1—C9—O1 | −6.3 (6) | C18—C10—C11—C12 | 164.5 (4) |
C10—N1—C9—C8 | 175.5 (4) | N1—C10—C18—O2 | −30.1 (6) |
C9—N1—C10—C11 | 151.9 (4) | N1—C10—C18—O3 | 151.0 (4) |
C9—N1—C10—C18 | −82.0 (5) | C11—C10—C18—O2 | 96.3 (6) |
C6—C1—C2—C3 | −1.0 (8) | C11—C10—C18—O3 | −82.6 (5) |
C7—C1—C2—C3 | 179.0 (5) | C10—C11—C12—C13 | 89.9 (5) |
C2—C1—C6—C5 | 0.6 (8) | C10—C11—C12—C17 | −86.4 (5) |
C7—C1—C6—C5 | −179.4 (5) | C11—C12—C13—C14 | −178.0 (5) |
C2—C1—C7—C8 | 22.1 (7) | C17—C12—C13—C14 | −1.8 (7) |
C6—C1—C7—C8 | −157.9 (5) | C11—C12—C17—C16 | 177.2 (5) |
C1—C2—C3—C4 | −0.2 (9) | C13—C12—C17—C16 | 0.9 (7) |
C2—C3—C4—C5 | 1.8 (10) | C12—C13—C14—C15 | 1.8 (8) |
C3—C4—C5—C6 | −2.2 (10) | C13—C14—C15—C16 | −0.8 (8) |
C4—C5—C6—C1 | 1.0 (10) | C14—C15—C16—C17 | −0.1 (8) |
C1—C7—C8—C9 | −179.2 (4) | C15—C16—C17—C12 | 0.1 (8) |
C7—C8—C9—O1 | 16.7 (7) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, −y+1, z−1/2; (iii) −x+3/2, −y+1, z−1/2; (iv) −x+3/2, −y+1, z+1/2; (v) x, y, z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x−1/2, −y+3/2, −z+1; (viii) −x+1/2, −y+1, z+1/2; (ix) x−1/2, −y+3/2, −z; (x) x+1/2, −y+3/2, −z+1; (xi) x+1/2, −y+3/2, −z; (xii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1v | 0.84 | 2.21 | 3.042 (4) | 169 |
C7—H7···O1 | 0.93 | 2.57 | 2.876 (5) | 100 |
Symmetry code: (v) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H19NO3 |
Mr | 309.35 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 15.041 (3), 22.550 (4), 4.9896 (15) |
V (Å3) | 1692.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Rigaku AFC7R |
Absorption correction | – |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2291, 1757, 972 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.125, 0.94 |
No. of reflections | 1757 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.15 |
Computer programs: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999), CrystalStructure (Rigaku/MSC, 2004) and SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).
C9—N1—C10—C18 | −82.0 (5) | C7—C8—C9—N1 | −165.1 (4) |
C2—C1—C7—C8 | 22.1 (7) | C10—C11—C12—C13 | 89.9 (5) |
C7—C8—C9—O1 | 16.7 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.84 | 2.21 | 3.042 (4) | 169 |
C7—H7···O1 | 0.93 | 2.57 | 2.876 (5) | 100 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
The authors acknowledge financial support of this work by Griffith University and the Eskitis Institute for Cell and Molecular Therapies.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bornaghi, L. F., Poulsen, S.-A. & Healy, P. C. (2004). Acta Cryst. E60, o383–o385. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61, o1665–o1667. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o44–o46. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Software for Windows. Version 1.02. MSC, The Woodlands, Texas, USA. Google Scholar
Poulsen, S.-A., Noack, C. L. & Healy, P. C. (2003). Acta Cryst. E59, o967–o968. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In a previous paper we reported the structure of N-cinnamoyl-L-valine methyl ester (Bornaghi et al., 2007). This work is part of an ongoing investigation in the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry (Poulsen et al., 2003; Bornaghi et al., 2004; Bornaghi et al., 2005). In the present communication, we report the structure of N-cinnamoyl-L-phenylalanine methyl ester.
The molecular structure of the title compound is shown in Fig. 1. Unlike the L-valine analogue (Bornaghi et al., 2007), the cinnamoyl portion of the molecule is not planar, with the torsion angles C2—C1—C7—C8 = 22.1 (7) and C7—C8—C9—O1 = 16.7 (7)°. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the short crystallographic c axis, connecting through C(4) chains of N—H···O hydrogen bonds (Bernstein et al., 1995) (Fig. 2, Table 2). The macro structure is stabilized by short C—H···O contact interactions between the molecules in stacks and with adjacent neighbours. Fig. 3 displays how the molecular stacks interlock about the benzyl group. The stacks are held in close proximity through the short contact O1···H15ii = 2.7 Å [symmetry code ii: -x + 1/2, -y + 1, z - 1/2]. Adjacent macro structures are oriented about the ester group through π interactions with benzyl rings (C13···C17v = 3.547 (8) and C14···C16v = 3.536 (8) Å) [symmetry code v: x, y, z + 1] and C—H···O interactions with the cinnamoyl rings.