organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cinnamoyl-L-phenyl­alanine methyl ester

aEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia
*Correspondence e-mail: Alan.White@griffith.edu.au

(Received 29 October 2007; accepted 5 November 2007; online 6 December 2007)

As part of an ongoing investigation into the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry, we report the structure of the title compound, C19H19NO3. This compound crystallizes as discrete mol­ecules. The cinnamoyl group is non-planar, with the phenyl ring and the amide twisted out of the ethyl­ene plane. The benzyl and ester groups lie above and below the amide plane. The mol­ecules stack along the crystallographic c axis, connecting through C(4) chains of N—H⋯O hydrogen bonds, with the extended structure stabilized by C—H⋯O inter­actions and ππ inter­actions [centroid-to-centroid distances 3.547 (8) and 3.536 (8) Å].

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Bornaghi et al. (2004[Bornaghi, L. F., Poulsen, S.-A. & Healy, P. C. (2004). Acta Cryst. E60, o383-o385.], 2005[Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61, o1665-o1667.], 2007[Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o44-o46.]); Poulsen et al. (2003[Poulsen, S.-A., Noack, C. L. & Healy, P. C. (2003). Acta Cryst. E59, o967-o968.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO3

  • Mr = 309.35

  • Orthorhombic, P 21 21 21

  • a = 15.041 (3) Å

  • b = 22.550 (4) Å

  • c = 4.9896 (15) Å

  • V = 1692.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295.1 K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: none

  • 2291 measured reflections

  • 1757 independent reflections

  • 972 reflections with F2 > 2σ(F2)

  • Rint = 0.018

  • 3 standard reflections every 150 reflections intensity decay: 0.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 0.94

  • 1757 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Selected torsion angles (°)

C9—N1—C10—C18 −82.0 (5)
C2—C1—C7—C8 22.1 (7)
C7—C8—C9—O1 16.7 (7)
C7—C8—C9—N1 −165.1 (4)
C10—C11—C12—C13 89.9 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 2.21 3.042 (4) 169
C7—H7⋯O1 0.93 2.57 2.876 (5) 100
Symmetry code: (i) x, y, z+1.

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Software for Windows. Version 1.02. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC7 Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: CrystalStructure; program(s) used to refine structure: CrystalStructure and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In a previous paper we reported the structure of N-cinnamoyl-L-valine methyl ester (Bornaghi et al., 2007). This work is part of an ongoing investigation in the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry (Poulsen et al., 2003; Bornaghi et al., 2004; Bornaghi et al., 2005). In the present communication, we report the structure of N-cinnamoyl-L-phenylalanine methyl ester.

The molecular structure of the title compound is shown in Fig. 1. Unlike the L-valine analogue (Bornaghi et al., 2007), the cinnamoyl portion of the molecule is not planar, with the torsion angles C2—C1—C7—C8 = 22.1 (7) and C7—C8—C9—O1 = 16.7 (7)°. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the short crystallographic c axis, connecting through C(4) chains of N—H···O hydrogen bonds (Bernstein et al., 1995) (Fig. 2, Table 2). The macro structure is stabilized by short C—H···O contact interactions between the molecules in stacks and with adjacent neighbours. Fig. 3 displays how the molecular stacks interlock about the benzyl group. The stacks are held in close proximity through the short contact O1···H15ii = 2.7 Å [symmetry code ii: -x + 1/2, -y + 1, z - 1/2]. Adjacent macro structures are oriented about the ester group through π interactions with benzyl rings (C13···C17v = 3.547 (8) and C14···C16v = 3.536 (8) Å) [symmetry code v: x, y, z + 1] and C—H···O interactions with the cinnamoyl rings.

Related literature top

For related literature, see: Bernstein et al. (1995); Bornaghi et al. (2004, 2005, 2007); Poulsen et al. (2003).

Experimental top

Triethylamine (0.93 g, 9.2 mmol) was added dropwise to a solution of L-phenylalanine methyl ester hydrochloride (0.5 g, 2.3 mmol) and cinnamoyl chloride (367 mg, 2.2 mmol) in anhydrous dichloromethane (10 ml). The reaction mixture was stirred at room temperature (298 K) for 3 days before being washed with 2 M HCl (2 x 100 ml), and saturated brine solution (100 ml), then dried over MgSO4. Solvent was removed under reduced pressure to give a clear solid residue. The title compound was obtained in 83% yield after crystallization from an ethyl acetate/hexane solution. 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 3.07–3.21 (m, 2H, βCH), 3.67 (s, 3H, OCH3), 4.95–5.01 (m, 1H, αCH), 6.10 (br d, 1H, NH), 6.33 (d, 1H, J = 15.6 Hz, ?CHCO), 7.03–7.50 (m, 10H, ArH), 7.57 (d, 1H, J =15.6 Hz, ?CHPh); 13C NMR (CDCl3, 75 MHz, p.p.m.): δ = 37.9 (βCH), 52.5 (OCH3), 53.3 (αCH), 119.9 (?CHCO), 127.2, 127.9, 128.4, 128.9, 129.4, 129.9, 130.7 (CH from Ar), 134.6, 135.8 (C from Ar), 142.0 (?CHPh), 165.4 (CONH), 172.1 (COOCH3); MS (LRMSES): m/z 310.0 [M+H]+, 332.1 [M+Na]+; mp 361.8 K.

Refinement top

H1 attached to N1 and H10 attached to C10 were located in Fourier maps and constrained with N—H = 0.84 and C—H = 0.98 Å respectively. All other H atoms were placed in calculated positions and constrained as riding with C—H = 0.93–0.97 Å. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration of the title compound was assigned on the basis of the known configuration of the starting material.

Structure description top

In a previous paper we reported the structure of N-cinnamoyl-L-valine methyl ester (Bornaghi et al., 2007). This work is part of an ongoing investigation in the development of N-substituted amino acids as building blocks for dynamic combinatorial chemistry (Poulsen et al., 2003; Bornaghi et al., 2004; Bornaghi et al., 2005). In the present communication, we report the structure of N-cinnamoyl-L-phenylalanine methyl ester.

The molecular structure of the title compound is shown in Fig. 1. Unlike the L-valine analogue (Bornaghi et al., 2007), the cinnamoyl portion of the molecule is not planar, with the torsion angles C2—C1—C7—C8 = 22.1 (7) and C7—C8—C9—O1 = 16.7 (7)°. The benzyl and ester groups lie above and below the amide plane. The molecules stack along the short crystallographic c axis, connecting through C(4) chains of N—H···O hydrogen bonds (Bernstein et al., 1995) (Fig. 2, Table 2). The macro structure is stabilized by short C—H···O contact interactions between the molecules in stacks and with adjacent neighbours. Fig. 3 displays how the molecular stacks interlock about the benzyl group. The stacks are held in close proximity through the short contact O1···H15ii = 2.7 Å [symmetry code ii: -x + 1/2, -y + 1, z - 1/2]. Adjacent macro structures are oriented about the ester group through π interactions with benzyl rings (C13···C17v = 3.547 (8) and C14···C16v = 3.536 (8) Å) [symmetry code v: x, y, z + 1] and C—H···O interactions with the cinnamoyl rings.

For related literature, see: Bernstein et al. (1995); Bornaghi et al. (2004, 2005, 2007); Poulsen et al. (2003).

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2004); program(s) used to refine structure: CrystalStructure (Rigaku/MSC, 2004) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are included as spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the C(4) N—H···O hydrogen bonding along the c axis. Hydrogen bonding is shown with dashed lines.
[Figure 3] Fig. 3. View of the crystal packing projected on to the ab plane. Hydrogen bonding is shown with dashed lines.
N-Cinnamoyl-L-phenylalanine methyl ester top
Crystal data top
C19H19NO3Dx = 1.214 Mg m3
Mr = 309.35Melting point: 361.8 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 20 reflections
a = 15.041 (3) Åθ = 9.8–10.0°
b = 22.550 (4) ŵ = 0.08 mm1
c = 4.9896 (15) ÅT = 295 K
V = 1692.4 (7) Å3Prismatic, colourless
Z = 40.50 × 0.30 × 0.30 mm
F(000) = 656.00
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.018
Radiation source: Rigaku rotating anodeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 817
ω scansk = 026
2291 measured reflectionsl = 52
1757 independent reflections3 standard reflections every 150 reflections
972 reflections with F2 > 2σ(F2) intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0501P)2]
where P = (Fo2 + 2Fc2)/3
1757 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H19NO3V = 1692.4 (7) Å3
Mr = 309.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 15.041 (3) ŵ = 0.08 mm1
b = 22.550 (4) ÅT = 295 K
c = 4.9896 (15) Å0.50 × 0.30 × 0.30 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.018
2291 measured reflections3 standard reflections every 150 reflections
1757 independent reflections intensity decay: 0.6%
972 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.94Δρmax = 0.13 e Å3
1757 reflectionsΔρmin = 0.15 e Å3
209 parameters
Special details top

Experimental. The scan width was (0.89 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5025 (2)0.57628 (13)0.1198 (6)0.0679 (11)
O20.5528 (2)0.71550 (16)0.5337 (8)0.0997 (14)
O30.4596 (2)0.74577 (14)0.2226 (8)0.1010 (14)
N10.4640 (2)0.60588 (14)0.5364 (6)0.0571 (11)
C10.6624 (3)0.43634 (19)0.4699 (10)0.0617 (17)
C20.6329 (3)0.4040 (2)0.6869 (12)0.0847 (19)
C30.6806 (4)0.3555 (2)0.7816 (15)0.108 (3)
C40.7582 (4)0.3394 (2)0.6570 (17)0.107 (3)
C50.7888 (4)0.3713 (3)0.4499 (16)0.103 (3)
C60.7406 (3)0.4194 (2)0.3554 (12)0.088 (2)
C70.6124 (3)0.48703 (18)0.3641 (9)0.0623 (17)
C80.5533 (3)0.51934 (17)0.4910 (9)0.0543 (14)
C90.5062 (3)0.56890 (18)0.3631 (9)0.0520 (14)
C100.4203 (3)0.65879 (17)0.4456 (9)0.0543 (16)
C110.3434 (3)0.67665 (17)0.6256 (10)0.0657 (17)
C120.2658 (3)0.63417 (19)0.6032 (10)0.0583 (17)
C130.2587 (3)0.5853 (2)0.7655 (10)0.0763 (17)
C140.1888 (4)0.5462 (2)0.7362 (12)0.093 (2)
C150.1263 (3)0.5546 (2)0.5393 (12)0.084 (2)
C160.1342 (3)0.6024 (3)0.3770 (12)0.094 (2)
C170.2032 (3)0.6424 (2)0.4064 (12)0.0817 (19)
C180.4866 (3)0.70907 (19)0.4097 (10)0.0627 (17)
C190.5177 (4)0.7956 (2)0.1654 (14)0.138 (3)
H10.479100.601700.697100.0640*
H20.580200.414900.771400.1020*
H30.659900.334100.928200.1300*
H40.789600.306400.716200.1290*
H50.842500.361200.369500.1240*
H60.762200.440700.209600.1050*
H70.623800.497400.187100.0750*
H80.540800.510500.669200.0650*
H100.395300.650100.268500.0650*
H130.301500.578400.896500.0920*
H140.183900.513900.851100.1110*
H150.079600.527900.517900.1010*
H160.092200.608500.242800.1130*
H170.207200.674900.292600.0980*
H1110.363700.677800.810100.0780*
H1120.323800.716200.577300.0780*
H1910.577700.781700.147200.1660*
H1920.514400.823700.309500.1660*
H1930.499300.814200.001600.1660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.088 (2)0.079 (2)0.0367 (17)0.0117 (18)0.0021 (17)0.0012 (17)
O20.085 (2)0.095 (2)0.119 (3)0.021 (2)0.039 (3)0.023 (3)
O30.107 (2)0.082 (2)0.114 (3)0.021 (2)0.033 (3)0.045 (2)
N10.071 (2)0.060 (2)0.0402 (18)0.015 (2)0.0017 (18)0.0019 (18)
C10.055 (3)0.056 (3)0.074 (3)0.002 (2)0.007 (3)0.006 (3)
C20.078 (3)0.063 (3)0.113 (4)0.010 (3)0.016 (3)0.003 (3)
C30.118 (5)0.071 (4)0.136 (6)0.017 (4)0.007 (5)0.021 (4)
C40.084 (4)0.069 (4)0.169 (7)0.018 (3)0.021 (5)0.008 (5)
C50.066 (3)0.086 (4)0.158 (7)0.012 (3)0.012 (4)0.004 (5)
C60.082 (4)0.074 (3)0.107 (4)0.005 (3)0.025 (4)0.002 (4)
C70.066 (3)0.065 (3)0.056 (3)0.004 (3)0.000 (3)0.004 (3)
C80.060 (3)0.056 (2)0.047 (2)0.001 (2)0.001 (2)0.003 (2)
C90.056 (3)0.049 (2)0.051 (2)0.005 (2)0.001 (2)0.003 (2)
C100.058 (3)0.052 (2)0.053 (3)0.000 (2)0.006 (2)0.005 (2)
C110.078 (3)0.058 (3)0.061 (3)0.012 (2)0.003 (3)0.013 (3)
C120.059 (3)0.061 (3)0.055 (3)0.005 (2)0.007 (3)0.007 (3)
C130.088 (3)0.075 (3)0.066 (3)0.004 (3)0.002 (3)0.003 (3)
C140.106 (4)0.083 (3)0.089 (4)0.017 (3)0.004 (4)0.014 (4)
C150.072 (3)0.093 (4)0.088 (4)0.022 (3)0.006 (4)0.010 (4)
C160.060 (3)0.119 (4)0.102 (4)0.006 (3)0.012 (3)0.014 (4)
C170.069 (3)0.085 (3)0.091 (4)0.002 (3)0.011 (3)0.024 (4)
C180.063 (3)0.060 (3)0.065 (3)0.007 (3)0.006 (3)0.007 (3)
C190.151 (6)0.089 (4)0.175 (7)0.044 (4)0.027 (6)0.052 (5)
Geometric parameters (Å, º) top
O1—C91.227 (5)C14—C151.373 (8)
O2—C181.181 (6)C15—C161.353 (8)
O3—C181.312 (6)C16—C171.383 (7)
O3—C191.452 (6)C2—H20.9300
N1—C91.359 (5)C3—H30.9300
N1—C101.436 (5)C4—H40.9300
N1—H10.8400C5—H50.9300
C1—C61.362 (7)C6—H60.9300
C1—C71.467 (6)C7—H70.9300
C1—C21.379 (7)C8—H80.9300
C2—C31.391 (7)C10—H100.9800
C3—C41.371 (9)C11—H1110.9700
C4—C51.341 (10)C11—H1120.9700
C5—C61.387 (8)C13—H130.9300
C7—C81.312 (6)C14—H140.9300
C8—C91.469 (6)C15—H150.9300
C10—C111.519 (6)C16—H160.9300
C10—C181.521 (6)C17—H170.9300
C11—C121.514 (6)C19—H1910.9600
C12—C171.373 (7)C19—H1920.9600
C12—C131.372 (7)C19—H1930.9600
C13—C141.380 (7)
O1···N1i3.042 (4)H1···O22.9100
O1···C183.334 (5)H1···H82.2600
O2···N12.810 (5)H1···H1112.5100
O1···H1i2.2100H2···C82.7700
O1···H72.5700H2···H82.2900
O1···H102.4300H4···O2iv2.8900
O1···H15ii2.7000H5···O2iii2.8800
O1···H8i2.7500H6···H72.4500
O2···H12.9100H6···C7iii3.0300
O2···H1912.4700H7···O12.5700
O2···H1922.7500H7···H62.4500
O2···H4iii2.8900H8···O1v2.7500
O2···H5iv2.8800H8···C22.7700
O3···H1122.7800H8···H12.2600
N1···O1v3.042 (4)H8···H22.2900
N1···O22.810 (5)H10···O12.4300
N1···C133.325 (6)H10···C172.9800
C3···C6v3.330 (9)H10···H111i2.4200
C6···C3i3.330 (9)H13···H1112.4700
C13···C17v3.547 (8)H14···C14viii3.0300
C13···N13.325 (6)H15···O1viii2.7000
C14···C16v3.536 (8)H15···C9viii3.0700
C16···C14i3.536 (8)H16···H193ix2.5500
C17···C13i3.547 (8)H17···H1122.4400
C18···O13.334 (5)H111···H12.5100
C2···H193vi2.9900H111···H10v2.4200
C2···H82.7700H111···H132.4700
C7···H6iv3.0300H112···O32.7800
C8···H22.7700H112···H172.4400
C9···H15ii3.0700H191···O22.4700
C14···H14ii3.0300H192···O22.7500
C16···H192vii2.9100H192···C16x2.9100
C17···H102.9800H193···H16xi2.5500
H1···O1v2.2100H193···C2xii2.9900
C18—O3—C19116.2 (4)C4—C3—H3120.00
C9—N1—C10121.5 (3)C3—C4—H4120.00
C10—N1—H1121.00C5—C4—H4120.00
C9—N1—H1114.00C4—C5—H5120.00
C2—C1—C7122.0 (4)C6—C5—H5120.00
C6—C1—C7120.7 (4)C1—C6—H6119.00
C2—C1—C6117.3 (4)C5—C6—H6119.00
C1—C2—C3121.1 (5)C1—C7—H7116.00
C2—C3—C4119.6 (6)C8—C7—H7116.00
C3—C4—C5120.0 (5)C7—C8—H8119.00
C4—C5—C6120.1 (6)C9—C8—H8119.00
C1—C6—C5121.9 (5)N1—C10—H10107.00
C1—C7—C8127.3 (4)C11—C10—H10107.00
C7—C8—C9122.7 (4)C18—C10—H10107.00
N1—C9—C8114.6 (4)C10—C11—H111109.00
O1—C9—N1121.7 (4)C10—C11—H112109.00
O1—C9—C8123.7 (4)C12—C11—H111109.00
C11—C10—C18111.8 (3)C12—C11—H112109.00
N1—C10—C18110.9 (4)H111—C11—H112108.00
N1—C10—C11112.5 (3)C12—C13—H13120.00
C10—C11—C12112.1 (4)C14—C13—H13120.00
C11—C12—C13121.7 (4)C13—C14—H14120.00
C11—C12—C17119.7 (4)C15—C14—H14120.00
C13—C12—C17118.5 (4)C14—C15—H15121.00
C12—C13—C14120.7 (5)C16—C15—H15121.00
C13—C14—C15120.6 (5)C15—C16—H16119.00
C14—C15—C16118.6 (4)C17—C16—H16119.00
C15—C16—C17121.5 (5)C12—C17—H17120.00
C12—C17—C16120.2 (5)C16—C17—H17120.00
O3—C18—C10110.6 (4)O3—C19—H191109.00
O2—C18—O3123.8 (4)O3—C19—H192109.00
O2—C18—C10125.6 (4)O3—C19—H193109.00
C1—C2—H2119.00H191—C19—H192110.00
C3—C2—H2120.00H191—C19—H193109.00
C2—C3—H3120.00H192—C19—H193110.00
C19—O3—C18—O21.9 (7)C7—C8—C9—N1165.1 (4)
C19—O3—C18—C10179.2 (4)N1—C10—C11—C1270.0 (5)
C10—N1—C9—O16.3 (6)C18—C10—C11—C12164.5 (4)
C10—N1—C9—C8175.5 (4)N1—C10—C18—O230.1 (6)
C9—N1—C10—C11151.9 (4)N1—C10—C18—O3151.0 (4)
C9—N1—C10—C1882.0 (5)C11—C10—C18—O296.3 (6)
C6—C1—C2—C31.0 (8)C11—C10—C18—O382.6 (5)
C7—C1—C2—C3179.0 (5)C10—C11—C12—C1389.9 (5)
C2—C1—C6—C50.6 (8)C10—C11—C12—C1786.4 (5)
C7—C1—C6—C5179.4 (5)C11—C12—C13—C14178.0 (5)
C2—C1—C7—C822.1 (7)C17—C12—C13—C141.8 (7)
C6—C1—C7—C8157.9 (5)C11—C12—C17—C16177.2 (5)
C1—C2—C3—C40.2 (9)C13—C12—C17—C160.9 (7)
C2—C3—C4—C51.8 (10)C12—C13—C14—C151.8 (8)
C3—C4—C5—C62.2 (10)C13—C14—C15—C160.8 (8)
C4—C5—C6—C11.0 (10)C14—C15—C16—C170.1 (8)
C1—C7—C8—C9179.2 (4)C15—C16—C17—C120.1 (8)
C7—C8—C9—O116.7 (7)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1, z1/2; (iii) x+3/2, y+1, z1/2; (iv) x+3/2, y+1, z+1/2; (v) x, y, z+1; (vi) x+1, y1/2, z+1/2; (vii) x1/2, y+3/2, z+1; (viii) x+1/2, y+1, z+1/2; (ix) x1/2, y+3/2, z; (x) x+1/2, y+3/2, z+1; (xi) x+1/2, y+3/2, z; (xii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1v0.842.213.042 (4)169
C7—H7···O10.932.572.876 (5)100
Symmetry code: (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H19NO3
Mr309.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)15.041 (3), 22.550 (4), 4.9896 (15)
V3)1692.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.30 × 0.30
Data collection
DiffractometerRigaku AFC7R
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2291, 1757, 972
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 0.94
No. of reflections1757
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999), CrystalStructure (Rigaku/MSC, 2004) and SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Selected torsion angles (º) top
C9—N1—C10—C1882.0 (5)C7—C8—C9—N1165.1 (4)
C2—C1—C7—C822.1 (7)C10—C11—C12—C1389.9 (5)
C7—C8—C9—O116.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.842.213.042 (4)169
C7—H7···O10.932.572.876 (5)100
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support of this work by Griffith University and the Eskitis Institute for Cell and Molecular Therapies.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBornaghi, L. F., Poulsen, S.-A. & Healy, P. C. (2004). Acta Cryst. E60, o383–o385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61, o1665–o1667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o44–o46.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Software for Windows. Version 1.02. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPoulsen, S.-A., Noack, C. L. & Healy, P. C. (2003). Acta Cryst. E59, o967–o968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds