organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Oxydi-p-phenyl­ene)diphthalimide

aKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: lytm1234@yahoo.com.cn

(Received 5 November 2007; accepted 9 November 2007; online 6 December 2007)

The title compound, C28H16N2O5, is a bis-imide derivative in which two phthalimide units are linked by an oxydi-p-phenyl­ene bridge. The dihedral angle between the planes of the two central benzene rings is 86.1 (4)°. The isoindole groups make dihedral angles of 46.0 (14) and 77.5 (13)° with the attached benzene rings. Inter­molecular C—H⋯O hydrogen bonds contribute to the stability of the structure.

Related literature

For details of the biological activity and uses of bis-imide derivatives, see: Rich et al. (1975[Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004-1010.]); Degenhardt et al. (2002[Degenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723-726.]); Mallakpour & Kowsari (2004[Mallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992-3000.]); Zhang et al. (1999[Zhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. M. (1999). New J. Chem. 23, 897-903.]); Langhals & Kirner (2000[Langhals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365-380.]); Yakimov & Forrest (2002[Yakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085-3087.]). For a related structure, see: Li et al. (2007[Li, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, o3420.]).

[Scheme 1]

Experimental

Crystal data
  • C28H16N2O5

  • Mr = 460.43

  • Orthorhombic, P 21 21 21

  • a = 7.5059 (11) Å

  • b = 16.480 (3) Å

  • c = 17.551 (3) Å

  • V = 2171.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 13091 measured reflections

  • 2925 independent reflections

  • 2644 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.23

  • 2925 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O5i 0.93 2.47 3.222 (4) 138
C19—H19⋯O5ii 0.93 2.56 3.298 (4) 136
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bisimides are heterocyclic compounds, some of which have biological activity (Rich et al., 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt et al., 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang et al., 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimide derivatives (Li et al., 2007), we report here the structure of the title compound (Fig. 1). The two phthalimide units are linked by a (phenoxy)phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 86.1 (4)° The isoindole groups make dihedral angles of 46.0 (14)° and 77.5 (13)° with the attached benzene rings. Compared to a similar structure, N,N'-(methylenedi-p-phenylene)diphthalimide (Li et al., 2007), the packing pattern is different; this may be due to the bridging methylene group being replaced by the bridging O atom. Intermolecular C—H···O hydrogen bonds contribute to the stability of the structure (Table 1).

Related literature top

For details of the biological activity and uses of bis-imide derivatives, see: Rich et al. (1975); Degenhardt et al. (2002); Mallakpour & Kowsari (2004); Zhang et al. (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li et al. (2007).

Experimental top

A solution of phthaloyl dichoride (420 mg, 2 mmol) was added slowly over a period of 10 min to a solution of 4-aminophenyl ether (400 mg, 2 mmol) in dichloromethane (25 ml) at 273 K to yield a light yellow precipitate. Triethylamine (5 ml) was then added to dissolve the precipitate which became a yellow suspension after stirring for 12 h. The compound was filtered and dried (yield 510 mg, 70%). Single crystals of the title compound were obtained by recrystallization from dimethylformamide at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map; they were then placed in calculated positions and constrained to ride on their parent atoms, with C—-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Structure description top

Bisimides are heterocyclic compounds, some of which have biological activity (Rich et al., 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt et al., 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang et al., 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimide derivatives (Li et al., 2007), we report here the structure of the title compound (Fig. 1). The two phthalimide units are linked by a (phenoxy)phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 86.1 (4)° The isoindole groups make dihedral angles of 46.0 (14)° and 77.5 (13)° with the attached benzene rings. Compared to a similar structure, N,N'-(methylenedi-p-phenylene)diphthalimide (Li et al., 2007), the packing pattern is different; this may be due to the bridging methylene group being replaced by the bridging O atom. Intermolecular C—H···O hydrogen bonds contribute to the stability of the structure (Table 1).

For details of the biological activity and uses of bis-imide derivatives, see: Rich et al. (1975); Degenhardt et al. (2002); Mallakpour & Kowsari (2004); Zhang et al. (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids. H atoms have been omitted.
N,N'-(Oxydi-p-phenylene)diphthalimide top
Crystal data top
C28H16N2O5F(000) = 952
Mr = 460.43Dx = 1.409 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5562 reflections
a = 7.5059 (11) Åθ = 2.3–25.9°
b = 16.480 (3) ŵ = 0.10 mm1
c = 17.551 (3) ÅT = 292 K
V = 2171.0 (6) Å3Block, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
φ and ω scansh = 89
13091 measured reflectionsk = 2117
2925 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.06P)2 + 0.1294P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max = 0.017
316 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H16N2O5V = 2171.0 (6) Å3
Mr = 460.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5059 (11) ŵ = 0.10 mm1
b = 16.480 (3) ÅT = 292 K
c = 17.551 (3) Å0.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2644 reflections with I > 2σ(I)
13091 measured reflectionsRint = 0.027
2925 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.23Δρmax = 0.16 e Å3
2925 reflectionsΔρmin = 0.26 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8558 (3)0.62700 (13)1.04648 (13)0.0449 (5)
C20.9322 (4)0.70185 (14)1.05712 (13)0.0492 (5)
H20.95880.72021.10590.059*
C30.9691 (4)0.74958 (14)0.99444 (15)0.0492 (6)
H31.02310.79991.00090.059*
C40.9259 (3)0.72283 (12)0.92192 (12)0.0432 (5)
C50.8447 (4)0.64854 (13)0.91224 (12)0.0474 (5)
H50.81240.63130.86370.057*
C60.8115 (4)0.59984 (13)0.97454 (13)0.0485 (5)
H60.75950.54910.96810.058*
C70.9251 (4)0.85440 (13)0.84975 (13)0.0474 (5)
C81.0414 (4)0.74006 (15)0.78915 (14)0.0506 (6)
C90.9801 (3)0.87704 (15)0.77128 (14)0.0491 (5)
C101.0480 (3)0.80952 (15)0.73544 (13)0.0494 (5)
C111.1046 (4)0.81216 (19)0.66035 (15)0.0616 (7)
H111.15110.76650.63630.074*
C121.0891 (5)0.8850 (2)0.62283 (15)0.0712 (9)
H121.12500.88860.57220.085*
C131.0219 (4)0.9526 (2)0.65846 (17)0.0706 (9)
H131.01311.00090.63130.085*
C140.9667 (4)0.95066 (17)0.73407 (16)0.0598 (7)
H140.92280.99660.75840.072*
C150.8345 (4)0.49870 (14)1.10677 (13)0.0493 (6)
C160.6860 (4)0.45102 (17)1.11019 (18)0.0634 (7)
H160.57300.47421.11050.076*
C170.7065 (4)0.36759 (17)1.11325 (19)0.0649 (7)
H170.60660.33431.11560.078*
C180.8727 (4)0.33395 (13)1.11278 (13)0.0484 (6)
C191.0208 (4)0.38264 (17)1.1071 (2)0.0687 (8)
H191.13400.35981.10520.082*
C200.9999 (4)0.46591 (17)1.1043 (2)0.0693 (8)
H201.09930.49941.10060.083*
C210.9359 (4)0.20766 (15)1.18659 (14)0.0559 (6)
C220.8648 (4)0.19351 (15)1.05848 (15)0.0577 (7)
C230.9404 (4)0.12045 (15)1.16640 (15)0.0556 (6)
C240.8952 (4)0.11189 (15)1.09096 (15)0.0563 (6)
C250.8777 (5)0.03623 (17)1.0583 (2)0.0741 (9)
H250.84600.03001.00740.089*
C260.9095 (6)0.03000 (18)1.1046 (3)0.0897 (12)
H260.89720.08191.08440.108*
C270.9587 (6)0.0216 (2)1.1793 (3)0.0890 (12)
H270.98080.06761.20850.107*
C280.9758 (5)0.05402 (19)1.2116 (2)0.0757 (9)
H281.01010.06011.26220.091*
N10.9654 (3)0.77149 (11)0.85670 (10)0.0471 (5)
N20.8933 (3)0.24810 (11)1.11843 (11)0.0533 (5)
O10.8144 (3)0.58251 (10)1.11128 (10)0.0597 (5)
O20.8594 (3)0.89603 (10)0.89869 (11)0.0626 (5)
O31.0881 (3)0.67169 (11)0.77944 (11)0.0703 (6)
O40.9586 (4)0.24056 (13)1.24656 (11)0.0848 (8)
O50.8234 (4)0.21334 (12)0.99506 (11)0.0835 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0544 (13)0.0353 (10)0.0449 (11)0.0030 (10)0.0066 (10)0.0026 (9)
C20.0603 (14)0.0456 (12)0.0416 (10)0.0062 (11)0.0017 (11)0.0034 (9)
C30.0631 (15)0.0353 (9)0.0491 (11)0.0105 (10)0.0011 (11)0.0034 (9)
C40.0522 (12)0.0335 (9)0.0437 (10)0.0012 (9)0.0038 (10)0.0009 (9)
C50.0631 (14)0.0363 (11)0.0427 (11)0.0000 (10)0.0001 (11)0.0062 (9)
C60.0644 (14)0.0298 (9)0.0515 (12)0.0061 (10)0.0062 (11)0.0041 (9)
C70.0549 (13)0.0344 (10)0.0528 (13)0.0017 (10)0.0010 (11)0.0026 (9)
C80.0596 (15)0.0459 (13)0.0464 (12)0.0013 (11)0.0034 (11)0.0033 (10)
C90.0511 (13)0.0459 (12)0.0502 (12)0.0065 (10)0.0071 (11)0.0058 (10)
C100.0522 (13)0.0511 (13)0.0449 (12)0.0085 (11)0.0035 (10)0.0019 (10)
C110.0655 (17)0.0728 (17)0.0467 (12)0.0166 (14)0.0006 (12)0.0007 (12)
C120.0768 (19)0.090 (2)0.0469 (13)0.0275 (18)0.0038 (13)0.0141 (15)
C130.0731 (19)0.0712 (18)0.0674 (17)0.0239 (16)0.0144 (15)0.0306 (16)
C140.0633 (16)0.0489 (13)0.0673 (16)0.0089 (12)0.0110 (14)0.0154 (12)
C150.0711 (16)0.0379 (11)0.0387 (10)0.0051 (11)0.0079 (11)0.0024 (9)
C160.0620 (16)0.0486 (13)0.0797 (18)0.0008 (12)0.0009 (15)0.0064 (13)
C170.0617 (16)0.0456 (13)0.087 (2)0.0137 (12)0.0021 (15)0.0080 (14)
C180.0660 (15)0.0370 (10)0.0423 (11)0.0051 (11)0.0033 (11)0.0042 (9)
C190.0567 (15)0.0478 (14)0.102 (2)0.0010 (12)0.0124 (16)0.0028 (15)
C200.0626 (17)0.0446 (13)0.101 (2)0.0120 (13)0.0191 (16)0.0048 (15)
C210.0687 (17)0.0492 (14)0.0496 (13)0.0032 (13)0.0003 (12)0.0084 (11)
C220.0773 (18)0.0470 (13)0.0489 (13)0.0085 (13)0.0083 (13)0.0022 (10)
C230.0586 (14)0.0461 (12)0.0622 (14)0.0027 (12)0.0086 (12)0.0093 (11)
C240.0628 (15)0.0429 (12)0.0633 (14)0.0016 (11)0.0173 (13)0.0003 (11)
C250.088 (2)0.0525 (15)0.0818 (19)0.0029 (16)0.0251 (18)0.0115 (15)
C260.099 (3)0.0418 (14)0.128 (3)0.0071 (16)0.044 (3)0.0095 (18)
C270.094 (3)0.0545 (17)0.118 (3)0.0193 (18)0.030 (2)0.0254 (19)
C280.083 (2)0.0565 (17)0.088 (2)0.0114 (15)0.0092 (18)0.0242 (16)
N10.0628 (12)0.0349 (9)0.0436 (9)0.0002 (9)0.0033 (9)0.0016 (8)
N20.0771 (14)0.0392 (9)0.0437 (10)0.0040 (10)0.0006 (10)0.0045 (8)
O10.0951 (14)0.0372 (8)0.0470 (9)0.0010 (9)0.0187 (10)0.0013 (7)
O20.0824 (13)0.0389 (9)0.0666 (11)0.0050 (9)0.0175 (10)0.0008 (8)
O30.1010 (15)0.0449 (9)0.0649 (10)0.0095 (10)0.0192 (12)0.0044 (8)
O40.138 (2)0.0649 (12)0.0520 (11)0.0018 (14)0.0199 (13)0.0008 (9)
O50.142 (2)0.0636 (12)0.0452 (10)0.0148 (14)0.0081 (12)0.0031 (9)
Geometric parameters (Å, º) top
C1—C21.373 (3)C15—C201.354 (4)
C1—C61.380 (3)C15—C161.365 (4)
C1—O11.388 (3)C15—O11.392 (3)
C2—C31.380 (3)C16—C171.385 (4)
C2—H20.9300C16—H160.9300
C3—C41.385 (3)C17—C181.365 (4)
C3—H30.9300C17—H170.9300
C4—C51.378 (3)C18—C191.374 (4)
C4—N11.429 (3)C18—N21.427 (3)
C5—C61.379 (3)C19—C201.382 (4)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—O21.205 (3)C21—O41.196 (3)
C7—N11.405 (3)C21—N21.406 (3)
C7—C91.485 (3)C21—C231.481 (4)
C8—O31.192 (3)C22—O51.201 (3)
C8—N11.414 (3)C22—N21.401 (3)
C8—C101.484 (3)C22—C241.478 (4)
C9—C101.376 (4)C23—C241.374 (4)
C9—C141.382 (3)C23—C281.378 (4)
C10—C111.385 (4)C24—C251.378 (4)
C11—C121.374 (4)C25—C261.381 (5)
C11—H110.9300C25—H250.9300
C12—C131.374 (5)C26—C271.368 (6)
C12—H120.9300C26—H260.9300
C13—C141.391 (4)C27—C281.375 (5)
C13—H130.9300C27—H270.9300
C14—H140.9300C28—H280.9300
C2—C1—C6121.1 (2)C15—C16—H16120.6
C2—C1—O1117.2 (2)C17—C16—H16120.6
C6—C1—O1121.6 (2)C18—C17—C16120.3 (3)
C1—C2—C3119.2 (2)C18—C17—H17119.8
C1—C2—H2120.4C16—C17—H17119.8
C3—C2—H2120.4C17—C18—C19120.2 (2)
C2—C3—C4120.3 (2)C17—C18—N2120.1 (2)
C2—C3—H3119.9C19—C18—N2119.8 (3)
C4—C3—H3119.9C18—C19—C20119.4 (3)
C5—C4—C3120.0 (2)C18—C19—H19120.3
C5—C4—N1119.44 (19)C20—C19—H19120.3
C3—C4—N1120.60 (19)C15—C20—C19119.9 (3)
C4—C5—C6119.9 (2)C15—C20—H20120.0
C4—C5—H5120.0C19—C20—H20120.0
C6—C5—H5120.0O4—C21—N2124.5 (2)
C1—C6—C5119.5 (2)O4—C21—C23130.3 (2)
C1—C6—H6120.2N2—C21—C23105.2 (2)
C5—C6—H6120.2O5—C22—N2124.1 (2)
O2—C7—N1125.5 (2)O5—C22—C24130.1 (2)
O2—C7—C9129.2 (2)N2—C22—C24105.7 (2)
N1—C7—C9105.4 (2)C24—C23—C28121.4 (3)
O3—C8—N1125.8 (2)C24—C23—C21108.9 (2)
O3—C8—C10128.9 (2)C28—C23—C21129.6 (3)
N1—C8—C10105.29 (19)C23—C24—C25121.1 (3)
C10—C9—C14121.4 (2)C23—C24—C22108.4 (2)
C10—C9—C7108.9 (2)C25—C24—C22130.4 (3)
C14—C9—C7129.7 (3)C24—C25—C26117.0 (3)
C9—C10—C11121.5 (2)C24—C25—H25121.5
C9—C10—C8108.7 (2)C26—C25—H25121.5
C11—C10—C8129.7 (2)C27—C26—C25122.0 (3)
C12—C11—C10117.2 (3)C27—C26—H26119.0
C12—C11—H11121.4C25—C26—H26119.0
C10—C11—H11121.4C26—C27—C28120.8 (3)
C11—C12—C13121.4 (3)C26—C27—H27119.6
C11—C12—H12119.3C28—C27—H27119.6
C13—C12—H12119.3C27—C28—C23117.6 (3)
C12—C13—C14121.6 (3)C27—C28—H28121.2
C12—C13—H13119.2C23—C28—H28121.2
C14—C13—H13119.2C7—N1—C8111.74 (19)
C9—C14—C13116.7 (3)C7—N1—C4124.81 (19)
C9—C14—H14121.6C8—N1—C4123.36 (18)
C13—C14—H14121.6C22—N2—C21111.7 (2)
C20—C15—C16121.3 (2)C22—N2—C18124.6 (2)
C20—C15—O1119.8 (2)C21—N2—C18123.6 (2)
C16—C15—O1118.7 (3)C1—O1—C15116.95 (18)
C15—C16—C17118.8 (3)
C6—C1—C2—C31.7 (4)C28—C23—C24—C252.2 (5)
O1—C1—C2—C3177.4 (2)C21—C23—C24—C25175.8 (3)
C1—C2—C3—C41.4 (4)C28—C23—C24—C22179.7 (3)
C2—C3—C4—C50.5 (4)C21—C23—C24—C221.7 (3)
C2—C3—C4—N1179.3 (2)O5—C22—C24—C23180.0 (3)
C3—C4—C5—C62.0 (4)N2—C22—C24—C230.4 (3)
N1—C4—C5—C6177.8 (2)O5—C22—C24—C252.8 (6)
C2—C1—C6—C50.2 (4)N2—C22—C24—C25176.8 (3)
O1—C1—C6—C5175.7 (2)C23—C24—C25—C260.7 (5)
C4—C5—C6—C11.7 (4)C22—C24—C25—C26177.6 (4)
O2—C7—C9—C10179.7 (3)C24—C25—C26—C270.9 (6)
N1—C7—C9—C100.2 (3)C25—C26—C27—C281.0 (6)
O2—C7—C9—C141.5 (5)C26—C27—C28—C230.5 (6)
N1—C7—C9—C14178.4 (3)C24—C23—C28—C272.1 (5)
C14—C9—C10—C110.5 (4)C21—C23—C28—C27175.5 (3)
C7—C9—C10—C11177.8 (2)O2—C7—N1—C8179.9 (3)
C14—C9—C10—C8178.7 (2)C9—C7—N1—C80.1 (3)
C7—C9—C10—C80.4 (3)O2—C7—N1—C43.4 (4)
O3—C8—C10—C9179.8 (3)C9—C7—N1—C4176.5 (2)
N1—C8—C10—C90.4 (3)O3—C8—N1—C7179.9 (3)
O3—C8—C10—C112.2 (5)C10—C8—N1—C70.3 (3)
N1—C8—C10—C11177.6 (3)O3—C8—N1—C43.4 (4)
C9—C10—C11—C120.4 (4)C10—C8—N1—C4176.4 (2)
C8—C10—C11—C12177.4 (3)C5—C4—N1—C7131.9 (3)
C10—C11—C12—C130.6 (5)C3—C4—N1—C748.3 (4)
C11—C12—C13—C140.1 (5)C5—C4—N1—C844.3 (3)
C10—C9—C14—C131.2 (4)C3—C4—N1—C8135.5 (3)
C7—C9—C14—C13176.8 (3)O5—C22—N2—C21178.5 (3)
C12—C13—C14—C91.0 (4)C24—C22—N2—C211.1 (3)
C20—C15—C16—C171.8 (4)O5—C22—N2—C181.6 (5)
O1—C15—C16—C17173.8 (3)C24—C22—N2—C18178.0 (3)
C15—C16—C17—C180.0 (5)O4—C21—N2—C22176.6 (3)
C16—C17—C18—C191.8 (4)C23—C21—N2—C222.1 (3)
C16—C17—C18—N2178.0 (3)O4—C21—N2—C180.3 (5)
C17—C18—C19—C202.0 (5)C23—C21—N2—C18179.0 (3)
N2—C18—C19—C20177.8 (3)C17—C18—N2—C2277.1 (4)
C16—C15—C20—C191.7 (5)C19—C18—N2—C22103.1 (3)
O1—C15—C20—C19173.8 (3)C17—C18—N2—C2199.4 (3)
C18—C19—C20—C150.2 (5)C19—C18—N2—C2180.4 (4)
O4—C21—C23—C24176.3 (4)C2—C1—O1—C15144.7 (3)
N2—C21—C23—C242.3 (3)C6—C1—O1—C1539.6 (4)
O4—C21—C23—C281.5 (6)C20—C15—O1—C171.4 (3)
N2—C21—C23—C28179.9 (3)C16—C15—O1—C1113.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.473.222 (4)138
C19—H19···O5ii0.932.563.298 (4)136
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC28H16N2O5
Mr460.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)7.5059 (11), 16.480 (3), 17.551 (3)
V3)2171.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13091, 2925, 2644
Rint0.027
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.23
No. of reflections2925
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.473.222 (4)137.5
C19—H19···O5ii0.932.563.298 (4)136.2
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

The authors thank Dr Xiang-Gao Meng for the data collection.

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDegenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723–726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLanghals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365–380.  CrossRef Google Scholar
First citationLi, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, o3420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992–3000.  Web of Science CrossRef CAS Google Scholar
First citationRich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004–1010.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085–3087.  Web of Science CrossRef Google Scholar
First citationZhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. M. (1999). New J. Chem. 23, 897–903.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds