metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[4-(2-pyridylmethyl­ene­amino)phenol]iron(II) bis­­(perchlorate)

aDepartment of Inorganic Chemistry, University "Politehnica" of Bucharest, Polizu 1, 011061 Bucharest, Romania, and bInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: beatrice.calmuschi@ac.rwth-aachen.de

(Received 10 December 2007; accepted 12 December 2007; online 18 December 2007)

In the title compound, [Fe(C12H10N2O)3](ClO4)2, the metal center is coordinated by six N atoms from the three bidentate chelating ligands in a distorted octa­hedral coordination geometry, with overall formation of the meridional (OC-6-21) isomer. Inter­molecular O—H⋯O hydrogen bonds between the hydroxyl groups of the cation and the counter-anions form an infinite one-dimensional chain in the c-axis direction.

Related literature

For related literature, see: Cloete & Mapolie (2006[Cloete, J. & Mapolie, S. F. (2006). J. Mol. Catal. A, Chem. 243, 221-225.]); Osman (2006[Osman, A. H. (2006). Transition Met. Chem., 31, 35-41.]); Sharma & Dubey (1994[Sharma, P. K. & Dubey, S. N. (1994). Indian J. Chem. Sect. A, 33, 1113-1115.]); Thankarajan & Mohanan (1986[Thankarajan, N. & Mohanan, K. J. (1986). J. Ind. Chem. Soc. LXIII, 861-864.]); Dash et al. (1983[Dash, A. C., Dash, B., Mahapatra, P. K. & Patra, M. (1983). J. Chem. Soc. Dalton Trans. pp. 1503-1509.]); Dhar et al. (2005[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437-2444.]); Golcu et al. (2005[Golcu, A., Tumer, M., Demicell, H. & Wheatley, R. C. (2005). Inorg. Chim. Acta, 358, 1785-1797.]); Lacroxin et al. (2004[Lacroxin, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.]); Shaker et al. (2003[Shaker, A., M., Awad, A. M. & Nassr, L. A. E. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 103-117.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H10N2O)3](ClO4)2

  • Mr = 849.41

  • Monoclinic, P 21 /c

  • a = 16.201 (3) Å

  • b = 9.1222 (15) Å

  • c = 23.787 (4) Å

  • β = 91.089 (5)°

  • V = 3514.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 130 (2) K

  • 0.55 × 0.07 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.714, Tmax = 0.974

  • 20409 measured reflections

  • 7879 independent reflections

  • 4431 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.115

  • S = 1.01

  • 7879 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N4 1.963 (3)
Fe1—N6 1.971 (3)
Fe1—N1 1.974 (3)
Fe1—N3 1.997 (3)
Fe1—N2 2.002 (3)
Fe1—N5 2.015 (3)
N4—Fe1—N6 173.00 (12)
N4—Fe1—N1 89.66 (11)
N6—Fe1—N1 96.85 (12)
N4—Fe1—N3 81.32 (12)
N6—Fe1—N3 95.72 (11)
N1—Fe1—N3 92.83 (12)
N4—Fe1—N2 93.54 (11)
N6—Fe1—N2 90.05 (11)
N1—Fe1—N2 81.04 (12)
N3—Fe1—N2 172.06 (12)
N4—Fe1—N5 93.27 (11)
N6—Fe1—N5 80.00 (12)
N1—Fe1—N5 173.71 (12)
N3—Fe1—N5 82.12 (11)
N2—Fe1—N5 104.31 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.82 2.05 2.815 (4) 155
O2—H2⋯O4ii 0.82 1.92 2.733 (4) 174
O3—H3⋯O9iii 0.82 1.96 2.772 (4) 172
Symmetry codes: (i) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A large number of Schiff bases and their complexes have been studied for their interesting and important properties, such as their ability to reversibly bind oxygen, their catalytic activity in the hydrogenation of olefins and their photochromic properties (Osman, 2006). The synthesis of new Schiff bases and their metal complexes are the subject of ongoing research (Golcu et al., 2005; Lacroxin et al., 2004; Dhar et al., 2005). Similar to the ligands 2,2'-bipyridine and 1,10-phenanthroline, Schiff bases derived from 2-pyridinecarboxaldehyde provide the π-acidic α,α'-diimine fragment for metal coordination.

Very little effort has been spent in the preparation of Fe(II) Schiff base complexes (Thankarajan & Mohanan, 1986; Sharma & Dubey, 1994), despite their importance as complexes containing a metal in a low and potentially unstable oxidation state, as well as involving relatively unstable ligands, the Schiff bases (Shaker et al., 2003). Such ligands are hydrolytically unstable but the metal ions stabilize the aldimine linkage to hydrolytic splitting (Dash et al., 1983).

In this context, the title complex of Fe(II) with 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) has been prepared and its crystal structure is reported here. The central Fe atom is coordinated by three ligand molecules through the nitrogen atoms in a bidentate manner. The coordination geometry is distorted octahedral. The complex crystallizes as the meridional isomer in the monoclinic centrosymmetric space group P21/c. The meridional isomer is associated with two different orientations of the bidentate ligands in a 2:1 distribution. These two different types of geometry are reflected in different dihedral angles between the aromatic and heteroaromatic rings. For the ligands which have the same orientation (N1···N2 and N3···N4 bidentate ligands) the dihedral angles are similar, viz. 36.72 (16) and 34.21 (16)°, respectively, whereas for the bidentate ligand N5···N6 with different orientation the angle is 50.30 (17)°. The Fe(II)—N(pyridine) distances are shorter than the Fe(II)—N(imine) bonds (see Table 1). Classical intermolecular O—H···O hydrogen bonds between the OH groups of the cation and the anions form an infinite one-dimensional chain in the c direction.

Related literature top

For related literature, see: Cloete & Mapolie (2006); Osman (2006); Sharma & Dubey (1994); Thankarajan & Mohanan (1986); Dash et al. (1983); Dhar et al. (2005); Golcu et al. (2005); Lacroxin et al. (2004); Shaker et al. (2003).

Experimental top

Attempts to synthesize Fe(II) complexes with the Schiff base ligand 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) in a molar ratio M:L 1:1 or 1:2 resulted in the same crystalline complex [Fe(C12H10N2O)3](ClO4)2, independent of reactant stoichiometry. The ligand 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) was prepared following the procedure developed in the literature (Cloete & Mapolie, 2006). Stoichiometric amounts of Fe(ClO4)2.xH2O (0.255 g, 1 mmol) and 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) (0.198 g, 1 mmol respectively 0.296 g, 2 mmol) were dissolved in acetonitrile (40 ml) and stirred under reflux to promote the complete formation of the purple complex, [Fe(C12H10N2O)3](ClO4)2. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of diisopropyl ether into an acetonitrile solution of the complex at room temperature.

Refinement top

H atoms were placed in calculated positions and refined using a riding model with C—H distances of 0.93 Å, O—H distances of 0.82 Å, Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Structure description top

A large number of Schiff bases and their complexes have been studied for their interesting and important properties, such as their ability to reversibly bind oxygen, their catalytic activity in the hydrogenation of olefins and their photochromic properties (Osman, 2006). The synthesis of new Schiff bases and their metal complexes are the subject of ongoing research (Golcu et al., 2005; Lacroxin et al., 2004; Dhar et al., 2005). Similar to the ligands 2,2'-bipyridine and 1,10-phenanthroline, Schiff bases derived from 2-pyridinecarboxaldehyde provide the π-acidic α,α'-diimine fragment for metal coordination.

Very little effort has been spent in the preparation of Fe(II) Schiff base complexes (Thankarajan & Mohanan, 1986; Sharma & Dubey, 1994), despite their importance as complexes containing a metal in a low and potentially unstable oxidation state, as well as involving relatively unstable ligands, the Schiff bases (Shaker et al., 2003). Such ligands are hydrolytically unstable but the metal ions stabilize the aldimine linkage to hydrolytic splitting (Dash et al., 1983).

In this context, the title complex of Fe(II) with 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) has been prepared and its crystal structure is reported here. The central Fe atom is coordinated by three ligand molecules through the nitrogen atoms in a bidentate manner. The coordination geometry is distorted octahedral. The complex crystallizes as the meridional isomer in the monoclinic centrosymmetric space group P21/c. The meridional isomer is associated with two different orientations of the bidentate ligands in a 2:1 distribution. These two different types of geometry are reflected in different dihedral angles between the aromatic and heteroaromatic rings. For the ligands which have the same orientation (N1···N2 and N3···N4 bidentate ligands) the dihedral angles are similar, viz. 36.72 (16) and 34.21 (16)°, respectively, whereas for the bidentate ligand N5···N6 with different orientation the angle is 50.30 (17)°. The Fe(II)—N(pyridine) distances are shorter than the Fe(II)—N(imine) bonds (see Table 1). Classical intermolecular O—H···O hydrogen bonds between the OH groups of the cation and the anions form an infinite one-dimensional chain in the c direction.

For related literature, see: Cloete & Mapolie (2006); Osman (2006); Sharma & Dubey (1994); Thankarajan & Mohanan (1986); Dash et al. (1983); Dhar et al. (2005); Golcu et al. (2005); Lacroxin et al. (2004); Shaker et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plots (30% probability) of the cation. Hydrogen atoms and the anions have been omitted for clarity.
[Figure 2] Fig. 2. The packing of the structure in the unit cell. Hydrogen bonds are indicated by dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
Tris[4-(2-pyridylmethyleneamino)phenol]iron(II) bis(perchlorate) top
Crystal data top
[Fe(C12H10N2O)3](ClO4)2F(000) = 1744
Mr = 849.41Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.201 (3) ÅCell parameters from 8096 reflections
b = 9.1222 (15) Åθ = 2.1–27.4°
c = 23.787 (4) ŵ = 0.66 mm1
β = 91.089 (5)°T = 130 K
V = 3514.8 (10) Å3Rod, dark brown
Z = 40.55 × 0.07 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7879 independent reflections
Radiation source: fine-focus sealed tube4431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1921
Tmin = 0.714, Tmax = 0.974k = 1111
20409 measured reflectionsl = 2630
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
7879 reflections(Δ/σ)max < 0.001
505 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Fe(C12H10N2O)3](ClO4)2V = 3514.8 (10) Å3
Mr = 849.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.201 (3) ŵ = 0.66 mm1
b = 9.1222 (15) ÅT = 130 K
c = 23.787 (4) Å0.55 × 0.07 × 0.04 mm
β = 91.089 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7879 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4431 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.974Rint = 0.081
20409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.60 e Å3
7879 reflectionsΔρmin = 0.53 e Å3
505 parameters
Special details top

Experimental. The values of Tmin and Tmax are 0.764276 and 1.000000 from SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.25204 (3)0.69147 (6)0.15599 (2)0.02052 (14)
O10.44356 (17)1.3193 (3)0.27185 (11)0.0430 (7)
H10.43091.35140.30270.065*
O20.30912 (16)0.2248 (3)0.07599 (10)0.0376 (7)
H20.33840.15950.06280.056*
O30.03875 (16)1.2193 (3)0.01116 (10)0.0379 (7)
H30.02181.27350.03590.057*
N10.22735 (17)0.5285 (3)0.20764 (12)0.0243 (7)
N20.29799 (17)0.7776 (3)0.22739 (12)0.0230 (7)
N30.19351 (18)0.5951 (3)0.09126 (11)0.0221 (7)
N40.14110 (17)0.7711 (3)0.16764 (11)0.0210 (7)
N50.27866 (17)0.8410 (3)0.09666 (11)0.0211 (7)
N60.36340 (17)0.6253 (3)0.13568 (11)0.0199 (7)
C10.2528 (2)0.5509 (4)0.26149 (15)0.0238 (9)
C20.2939 (2)0.6898 (4)0.27008 (15)0.0255 (8)
H2A0.31650.71530.30490.031*
C30.3315 (2)0.9198 (4)0.23806 (14)0.0225 (8)
C40.3158 (2)0.9923 (4)0.28827 (14)0.0259 (9)
H40.28040.95020.31410.031*
C50.3519 (2)1.1253 (4)0.30015 (15)0.0288 (9)
H50.34121.17230.33390.035*
C60.4038 (2)1.1889 (4)0.26232 (15)0.0272 (9)
C70.4177 (2)1.1200 (4)0.21192 (15)0.0317 (10)
H70.45161.16430.18580.038*
C80.3822 (2)0.9875 (4)0.19971 (15)0.0277 (9)
H80.39220.94250.16540.033*
C90.2382 (2)0.4512 (4)0.30424 (15)0.0284 (9)
H90.25720.46950.34070.034*
C100.1950 (2)0.3248 (4)0.29190 (16)0.0335 (10)
H100.18540.25530.31960.040*
C110.1661 (2)0.3035 (4)0.23742 (16)0.0333 (10)
H110.13540.22070.22800.040*
C120.1839 (2)0.4077 (4)0.19731 (15)0.0282 (9)
H120.16420.39230.16080.034*
C130.2266 (2)0.5021 (4)0.04826 (14)0.0228 (8)
C140.2054 (2)0.5242 (4)0.00785 (14)0.0278 (9)
H140.17140.60240.01800.033*
C150.2342 (2)0.4314 (4)0.04842 (15)0.0323 (10)
H150.21980.44740.08600.039*
C160.2843 (2)0.3144 (4)0.03397 (15)0.0290 (9)
C170.3091 (2)0.2942 (4)0.02191 (15)0.0250 (9)
H170.34530.21890.03170.030*
C180.2791 (2)0.3878 (4)0.06279 (15)0.0244 (9)
H180.29450.37360.10030.029*
C190.1181 (2)0.6377 (4)0.08495 (15)0.0248 (9)
H190.08540.60400.05510.030*
C200.0859 (2)0.7398 (4)0.12569 (14)0.0229 (8)
C210.1159 (2)0.8625 (4)0.20802 (14)0.0247 (9)
H210.15090.87990.23870.030*
C220.0397 (2)0.9321 (4)0.20587 (15)0.0280 (9)
H220.02450.99580.23440.034*
C230.0129 (2)0.9057 (4)0.16097 (16)0.0328 (10)
H230.06280.95590.15760.039*
C240.0089 (2)0.8037 (4)0.12084 (15)0.0304 (9)
H240.02720.77900.09150.037*
C250.2220 (2)0.9464 (4)0.07386 (14)0.0221 (8)
C260.1963 (2)0.9394 (4)0.01779 (14)0.0271 (9)
H260.22020.87130.00600.032*
C270.1365 (2)1.0312 (4)0.00281 (15)0.0297 (9)
H270.12001.02610.04040.036*
C280.1004 (2)1.1321 (4)0.03266 (15)0.0260 (9)
C290.1265 (2)1.1410 (4)0.08820 (14)0.0238 (9)
H290.10291.20970.11190.029*
C300.1869 (2)1.0497 (4)0.10853 (15)0.0241 (9)
H300.20441.05700.14590.029*
C310.3439 (2)0.8096 (4)0.06834 (14)0.0248 (8)
H310.35750.86090.03600.030*
C320.3945 (2)0.6907 (4)0.08974 (14)0.0223 (8)
C330.4093 (2)0.5220 (4)0.16004 (15)0.0241 (9)
H330.39010.47800.19250.029*
C340.4844 (2)0.4767 (4)0.13958 (16)0.0304 (9)
H340.51460.40420.15820.036*
C350.5140 (2)0.5396 (4)0.09150 (17)0.0330 (10)
H350.56320.50790.07620.040*
C360.4691 (2)0.6504 (4)0.06662 (16)0.0306 (9)
H360.48840.69750.03480.037*
Cl10.56386 (6)0.08454 (11)0.08604 (4)0.0336 (3)
O40.59056 (18)0.0018 (3)0.03976 (10)0.0498 (8)
O50.48010 (18)0.1187 (4)0.08003 (13)0.0798 (12)
O60.6107 (3)0.2155 (4)0.08746 (18)0.1029 (14)
O70.58053 (19)0.0088 (4)0.13652 (11)0.0648 (10)
Cl20.07519 (6)0.85572 (12)0.36151 (4)0.0384 (3)
O80.10983 (19)0.9829 (3)0.33517 (11)0.0603 (10)
O90.03283 (17)0.9033 (3)0.41089 (11)0.0498 (8)
O100.1390 (2)0.7602 (4)0.37764 (16)0.0819 (12)
O110.0186 (2)0.7834 (4)0.32467 (12)0.0663 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0234 (3)0.0188 (3)0.0193 (3)0.0015 (2)0.0003 (2)0.0005 (2)
O10.062 (2)0.0289 (17)0.0377 (16)0.0113 (15)0.0031 (14)0.0074 (14)
O20.0576 (19)0.0300 (17)0.0254 (15)0.0163 (14)0.0023 (13)0.0022 (12)
O30.0444 (17)0.0399 (18)0.0290 (15)0.0151 (14)0.0073 (13)0.0052 (13)
N10.0273 (17)0.0210 (18)0.0245 (17)0.0019 (14)0.0037 (14)0.0032 (14)
N20.0220 (16)0.0204 (19)0.0265 (17)0.0042 (14)0.0002 (13)0.0000 (14)
N30.0285 (18)0.0171 (17)0.0209 (16)0.0005 (14)0.0035 (13)0.0002 (13)
N40.0256 (17)0.0206 (18)0.0167 (16)0.0016 (14)0.0009 (13)0.0017 (13)
N50.0257 (17)0.0153 (17)0.0221 (16)0.0029 (13)0.0021 (14)0.0002 (13)
N60.0227 (16)0.0181 (17)0.0189 (16)0.0026 (14)0.0018 (13)0.0004 (13)
C10.020 (2)0.023 (2)0.027 (2)0.0055 (17)0.0035 (16)0.0019 (18)
C20.029 (2)0.025 (2)0.022 (2)0.0014 (18)0.0028 (16)0.0033 (18)
C30.022 (2)0.019 (2)0.026 (2)0.0014 (17)0.0037 (16)0.0051 (17)
C40.030 (2)0.026 (2)0.022 (2)0.0002 (18)0.0019 (17)0.0018 (17)
C50.033 (2)0.031 (2)0.022 (2)0.0036 (19)0.0038 (18)0.0052 (18)
C60.032 (2)0.015 (2)0.034 (2)0.0023 (19)0.0095 (18)0.0030 (19)
C70.044 (3)0.026 (2)0.025 (2)0.008 (2)0.0053 (19)0.0007 (18)
C80.033 (2)0.026 (2)0.025 (2)0.0032 (19)0.0020 (18)0.0030 (18)
C90.030 (2)0.031 (2)0.024 (2)0.0003 (19)0.0033 (17)0.0047 (18)
C100.037 (2)0.024 (2)0.039 (2)0.004 (2)0.000 (2)0.0086 (19)
C110.036 (2)0.022 (2)0.042 (2)0.0021 (19)0.0037 (19)0.000 (2)
C120.035 (2)0.021 (2)0.029 (2)0.0057 (19)0.0014 (18)0.0003 (18)
C130.029 (2)0.015 (2)0.024 (2)0.0001 (17)0.0013 (17)0.0008 (16)
C140.038 (2)0.021 (2)0.024 (2)0.0073 (19)0.0034 (18)0.0003 (17)
C150.046 (3)0.034 (3)0.017 (2)0.011 (2)0.0044 (18)0.0031 (18)
C160.040 (2)0.023 (2)0.024 (2)0.005 (2)0.0053 (18)0.0031 (18)
C170.026 (2)0.017 (2)0.031 (2)0.0009 (17)0.0008 (17)0.0012 (18)
C180.033 (2)0.020 (2)0.020 (2)0.0081 (18)0.0031 (17)0.0005 (17)
C190.026 (2)0.023 (2)0.025 (2)0.0071 (18)0.0004 (17)0.0001 (17)
C200.026 (2)0.019 (2)0.024 (2)0.0005 (17)0.0029 (17)0.0037 (16)
C210.031 (2)0.027 (2)0.0156 (19)0.0036 (18)0.0017 (16)0.0018 (17)
C220.032 (2)0.030 (2)0.022 (2)0.0020 (19)0.0089 (18)0.0002 (18)
C230.026 (2)0.039 (3)0.034 (2)0.011 (2)0.0085 (19)0.007 (2)
C240.027 (2)0.039 (3)0.025 (2)0.001 (2)0.0051 (17)0.000 (2)
C250.026 (2)0.014 (2)0.026 (2)0.0007 (16)0.0010 (17)0.0020 (16)
C260.037 (2)0.020 (2)0.024 (2)0.0028 (18)0.0030 (18)0.0002 (17)
C270.040 (2)0.026 (2)0.023 (2)0.0027 (19)0.0034 (18)0.0015 (18)
C280.027 (2)0.021 (2)0.029 (2)0.0016 (18)0.0024 (17)0.0016 (18)
C290.027 (2)0.018 (2)0.027 (2)0.0040 (17)0.0034 (17)0.0047 (17)
C300.027 (2)0.021 (2)0.024 (2)0.0014 (17)0.0031 (17)0.0017 (17)
C310.029 (2)0.024 (2)0.0212 (19)0.0061 (19)0.0044 (17)0.0025 (18)
C320.0245 (19)0.017 (2)0.025 (2)0.0007 (17)0.0034 (16)0.0037 (17)
C330.026 (2)0.019 (2)0.027 (2)0.0009 (17)0.0038 (17)0.0027 (17)
C340.027 (2)0.019 (2)0.045 (3)0.0058 (18)0.0073 (19)0.0015 (19)
C350.025 (2)0.024 (2)0.051 (3)0.0050 (19)0.0047 (19)0.004 (2)
C360.031 (2)0.029 (2)0.032 (2)0.0013 (19)0.0080 (18)0.0022 (19)
Cl10.0392 (6)0.0342 (6)0.0273 (5)0.0127 (5)0.0016 (4)0.0004 (5)
O40.078 (2)0.0455 (19)0.0267 (16)0.0280 (17)0.0097 (15)0.0017 (14)
O50.046 (2)0.139 (4)0.054 (2)0.047 (2)0.0139 (17)0.024 (2)
O60.124 (4)0.036 (2)0.149 (4)0.007 (2)0.015 (3)0.023 (2)
O70.074 (2)0.089 (3)0.0317 (18)0.036 (2)0.0095 (16)0.0198 (18)
Cl20.0365 (6)0.0503 (7)0.0283 (6)0.0131 (5)0.0019 (5)0.0016 (5)
O80.078 (2)0.069 (2)0.0346 (17)0.0477 (19)0.0098 (16)0.0038 (16)
O90.056 (2)0.048 (2)0.0459 (18)0.0090 (16)0.0241 (16)0.0002 (15)
O100.064 (2)0.084 (3)0.097 (3)0.037 (2)0.015 (2)0.024 (2)
O110.077 (2)0.083 (3)0.0391 (18)0.052 (2)0.0175 (16)0.0084 (17)
Geometric parameters (Å, º) top
Fe1—N41.963 (3)C14—C151.372 (5)
Fe1—N61.971 (3)C14—H140.9300
Fe1—N11.974 (3)C15—C161.380 (5)
Fe1—N31.997 (3)C15—H150.9300
Fe1—N22.002 (3)C16—C171.394 (5)
Fe1—N52.015 (3)C17—C181.388 (5)
O1—C61.370 (4)C17—H170.9300
O1—H10.8200C18—H180.9300
O2—C161.358 (4)C19—C201.449 (5)
O2—H20.8200C19—H190.9300
O3—C281.369 (4)C20—C241.378 (5)
O3—H30.8200C21—C221.388 (5)
N1—C121.328 (4)C21—H210.9300
N1—C11.354 (4)C22—C231.375 (5)
N2—C21.296 (4)C22—H220.9300
N2—C31.426 (4)C23—C241.384 (5)
N3—C191.288 (4)C23—H230.9300
N3—C131.440 (4)C24—H240.9300
N4—C211.341 (4)C25—C301.382 (5)
N4—C201.358 (4)C25—C261.391 (5)
N5—C311.296 (4)C26—C271.365 (5)
N5—C251.429 (4)C26—H260.9300
N6—C331.327 (4)C27—C281.385 (5)
N6—C321.351 (4)C27—H270.9300
C1—C91.388 (5)C28—C291.382 (5)
C1—C21.444 (5)C29—C301.366 (5)
C2—H2A0.9300C29—H290.9300
C3—C81.385 (5)C30—H300.9300
C3—C41.393 (5)C31—C321.446 (5)
C4—C51.374 (5)C31—H310.9300
C4—H40.9300C32—C361.387 (5)
C5—C61.371 (5)C33—C341.382 (5)
C5—H50.9300C33—H330.9300
C6—C71.376 (5)C34—C351.374 (5)
C7—C81.368 (5)C34—H340.9300
C7—H70.9300C35—C361.372 (5)
C8—H80.9300C35—H350.9300
C9—C101.378 (5)C36—H360.9300
C9—H90.9300Cl1—O51.397 (3)
C10—C111.383 (5)Cl1—O71.407 (3)
C10—H100.9300Cl1—O61.416 (4)
C11—C121.381 (5)Cl1—O41.427 (3)
C11—H110.9300Cl2—O101.400 (3)
C12—H120.9300Cl2—O111.418 (3)
C13—C181.385 (5)Cl2—O81.438 (3)
C13—C141.387 (5)Cl2—O91.439 (3)
N4—Fe1—N6173.00 (12)C14—C15—C16120.6 (3)
N4—Fe1—N189.66 (11)C14—C15—H15119.7
N6—Fe1—N196.85 (12)C16—C15—H15119.7
N4—Fe1—N381.32 (12)O2—C16—C15117.6 (3)
N6—Fe1—N395.72 (11)O2—C16—C17122.6 (3)
N1—Fe1—N392.83 (12)C15—C16—C17119.8 (3)
N4—Fe1—N293.54 (11)C18—C17—C16119.2 (3)
N6—Fe1—N290.05 (11)C18—C17—H17120.4
N1—Fe1—N281.04 (12)C16—C17—H17120.4
N3—Fe1—N2172.06 (12)C13—C18—C17120.6 (3)
N4—Fe1—N593.27 (11)C13—C18—H18119.7
N6—Fe1—N580.00 (12)C17—C18—H18119.7
N1—Fe1—N5173.71 (12)N3—C19—C20118.0 (3)
N3—Fe1—N582.12 (11)N3—C19—H19121.0
N2—Fe1—N5104.31 (12)C20—C19—H19121.0
C6—O1—H1109.5N4—C20—C24123.7 (3)
C16—O2—H2109.5N4—C20—C19112.7 (3)
C28—O3—H3109.5C24—C20—C19123.6 (3)
C12—N1—C1116.8 (3)N4—C21—C22122.7 (3)
C12—N1—Fe1128.5 (2)N4—C21—H21118.6
C1—N1—Fe1114.4 (2)C22—C21—H21118.6
C2—N2—C3116.6 (3)C23—C22—C21119.1 (3)
C2—N2—Fe1113.5 (2)C23—C22—H22120.4
C3—N2—Fe1129.9 (2)C21—C22—H22120.4
C19—N3—C13117.4 (3)C22—C23—C24119.3 (3)
C19—N3—Fe1113.1 (2)C22—C23—H23120.3
C13—N3—Fe1129.0 (2)C24—C23—H23120.3
C21—N4—C20116.8 (3)C20—C24—C23118.0 (3)
C21—N4—Fe1128.5 (2)C20—C24—H24121.0
C20—N4—Fe1114.3 (2)C23—C24—H24121.0
C31—N5—C25118.4 (3)C30—C25—C26118.9 (3)
C31—N5—Fe1113.7 (2)C30—C25—N5120.1 (3)
C25—N5—Fe1125.2 (2)C26—C25—N5120.8 (3)
C33—N6—C32116.9 (3)C27—C26—C25120.9 (3)
C33—N6—Fe1128.2 (2)C27—C26—H26119.5
C32—N6—Fe1114.9 (2)C25—C26—H26119.5
N1—C1—C9122.8 (3)C26—C27—C28119.6 (3)
N1—C1—C2113.4 (3)C26—C27—H27120.2
C9—C1—C2123.8 (3)C28—C27—H27120.2
N2—C2—C1117.5 (3)O3—C28—C29122.1 (3)
N2—C2—H2A121.2O3—C28—C27118.2 (3)
C1—C2—H2A121.2C29—C28—C27119.8 (3)
C8—C3—C4118.2 (3)C30—C29—C28120.4 (3)
C8—C3—N2121.1 (3)C30—C29—H29119.8
C4—C3—N2120.6 (3)C28—C29—H29119.8
C5—C4—C3120.8 (4)C29—C30—C25120.3 (3)
C5—C4—H4119.6C29—C30—H30119.8
C3—C4—H4119.6C25—C30—H30119.8
C6—C5—C4120.1 (4)N5—C31—C32116.4 (3)
C6—C5—H5119.9N5—C31—H31121.8
C4—C5—H5119.9C32—C31—H31121.8
O1—C6—C5123.4 (3)N6—C32—C36123.0 (3)
O1—C6—C7117.2 (3)N6—C32—C31113.5 (3)
C5—C6—C7119.4 (4)C36—C32—C31123.5 (3)
C8—C7—C6120.9 (4)N6—C33—C34123.3 (3)
C8—C7—H7119.5N6—C33—H33118.4
C6—C7—H7119.5C34—C33—H33118.4
C7—C8—C3120.4 (3)C35—C34—C33119.4 (4)
C7—C8—H8119.8C35—C34—H34120.3
C3—C8—H8119.8C33—C34—H34120.3
C10—C9—C1119.0 (3)C36—C35—C34118.5 (4)
C10—C9—H9120.5C36—C35—H35120.8
C1—C9—H9120.5C34—C35—H35120.8
C9—C10—C11118.6 (4)C35—C36—C32118.9 (4)
C9—C10—H10120.7C35—C36—H36120.6
C11—C10—H10120.7C32—C36—H36120.6
C12—C11—C10118.7 (4)O5—Cl1—O7111.5 (2)
C12—C11—H11120.7O5—Cl1—O6109.5 (2)
C10—C11—H11120.7O7—Cl1—O6107.4 (2)
N1—C12—C11124.1 (4)O5—Cl1—O4110.62 (19)
N1—C12—H12118.0O7—Cl1—O4109.36 (17)
C11—C12—H12118.0O6—Cl1—O4108.3 (2)
C18—C13—C14119.3 (3)O10—Cl2—O11110.2 (2)
C18—C13—N3120.1 (3)O10—Cl2—O8109.2 (2)
C14—C13—N3120.6 (3)O11—Cl2—O8111.05 (18)
C15—C14—C13120.4 (3)O10—Cl2—O9109.0 (2)
C15—C14—H14119.8O11—Cl2—O9109.40 (19)
C13—C14—H14119.8O8—Cl2—O9107.96 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.822.052.815 (4)155
O2—H2···O4ii0.821.922.733 (4)174
O3—H3···O9iii0.821.962.772 (4)172
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C12H10N2O)3](ClO4)2
Mr849.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)16.201 (3), 9.1222 (15), 23.787 (4)
β (°) 91.089 (5)
V3)3514.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.55 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.714, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
20409, 7879, 4431
Rint0.081
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.115, 1.01
No. of reflections7879
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.53

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Fe1—N41.963 (3)Fe1—N31.997 (3)
Fe1—N61.971 (3)Fe1—N22.002 (3)
Fe1—N11.974 (3)Fe1—N52.015 (3)
N4—Fe1—N6173.00 (12)N1—Fe1—N281.04 (12)
N4—Fe1—N189.66 (11)N3—Fe1—N2172.06 (12)
N6—Fe1—N196.85 (12)N4—Fe1—N593.27 (11)
N4—Fe1—N381.32 (12)N6—Fe1—N580.00 (12)
N6—Fe1—N395.72 (11)N1—Fe1—N5173.71 (12)
N1—Fe1—N392.83 (12)N3—Fe1—N582.12 (11)
N4—Fe1—N293.54 (11)N2—Fe1—N5104.31 (12)
N6—Fe1—N290.05 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.822.052.815 (4)155
O2—H2···O4ii0.821.922.733 (4)174
O3—H3···O9iii0.821.962.772 (4)172
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

M-DŞ gratefully acknowledges financial support from OMNIASIG SA Romania.

References

First citationBruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, J. & Mapolie, S. F. (2006). J. Mol. Catal. A, Chem. 243, 221–225.  Google Scholar
First citationDash, A. C., Dash, B., Mahapatra, P. K. & Patra, M. (1983). J. Chem. Soc. Dalton Trans. pp. 1503–1509.  CrossRef Web of Science Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437–2444.  Web of Science CSD CrossRef CAS Google Scholar
First citationGolcu, A., Tumer, M., Demicell, H. & Wheatley, R. C. (2005). Inorg. Chim. Acta, 358, 1785–1797.  Web of Science CrossRef CAS Google Scholar
First citationLacroxin, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.  Google Scholar
First citationOsman, A. H. (2006). Transition Met. Chem., 31, 35–41.  Web of Science CrossRef CAS Google Scholar
First citationShaker, A., M., Awad, A. M. & Nassr, L. A. E. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 103–117.  Web of Science CrossRef CAS Google Scholar
First citationSharma, P. K. & Dubey, S. N. (1994). Indian J. Chem. Sect. A, 33, 1113–1115.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThankarajan, N. & Mohanan, K. J. (1986). J. Ind. Chem. Soc. LXIII, 861–864.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds