metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,3-bis­­(di­phenyl­phosphinoylimino)isoindolinato-κ3O,N,O′]calcium(II)

aDepartment of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, People's Republic of China, and bThe Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: guojp@sxu.edu.cn

(Received 26 October 2007; accepted 4 December 2007; online 12 December 2007)

In the title compound, [Ca(C32H24N3O2P2)2], the 1,3-bis­(diphenyl­phosphinoylimino)isoindoline ligand adopts a tridentate coordination mode. The compound exhibits a distorted octa­hedral geometry. The Ca atom lies on a twofold rotation axis.

Related literature

For a related compound with similar octa­hedral geometry, see: Cole et al. (2006[Cole, M. L., Deacon, G. B., Forsyth, C. M., Konstas, K. & Junk, P. C. (2006). Dalton Trans. pp. 3360-3367.]). For related literature, see: Shang (2007[Shang, D.-L. (2007). MSc thesis, Shanxi University, People's Republic of China.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C32H24N3O2P2)2]

  • Mr = 1129.04

  • Monoclinic, C 2/c

  • a = 26.351 (2) Å

  • b = 12.4790 (11) Å

  • c = 21.1997 (19) Å

  • β = 126.1720 (10)°

  • V = 5627.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.837, Tmax = 0.973

  • 11452 measured reflections

  • 4959 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.04

  • 4959 reflections

  • 357 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ca1—O1 2.2581 (18)
Ca1—O2 2.2646 (18)
Ca1—N2 2.5513 (18)
O1—Ca1—O1i 81.34 (11)
O1—Ca1—O2 93.49 (8)
O1—Ca1—O2i 157.41 (7)
O2—Ca1—O2i 99.09 (11)
O1—Ca1—N2i 110.51 (6)
O2—Ca1—N2i 80.48 (6)
O1—Ca1—N2 80.81 (6)
O2—Ca1—N2 90.12 (6)
N2i—Ca1—N2 165.55 (9)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The bis(N-diphenylphosphinato)-isoindoline-1,3-diimine ligand is a new type of tridentate ligand (Shang, 2007). There are six atoms coordinated to calcium ion, the four oxygen atoms are approximately in an equatorial plane with calcium(II), the mean deviation from the plane is 0.3218Å and the two nitrogen atoms are in axial positions [N2—Ca—N2i 165.55 (9)° (symmetry code i: -x, y, 1/2 - z)]. Because the calcium ion is coordinated via two oxygen of the tridentate ligand, two six-membered rings of O1—P1—N1—C13—N2—Ca1 and O2i—P2i—N3i—C20—N2—Ca1 are formed. The dihedral angles between the two six-membered rings and the isoindoline ring are 12.5° and 14.0° respectively. The Ca—O and Ca—N bond lengths of the compound are 2.2581 (18) [Ca1—O1], 2.2646 (18) [Ca1—O2] and 2.5513 (18) [Ca1—N2] Å, respectively. The values are comparable to the octahedral compound [Ca(o-TolForm)2(thf)2], which can provide four nitrogen and two oxygen atoms to coordinate calcium(II), the average bond length of Ca—O is 2.368 (2) and Ca—N is 2.43 (2)Å (Cole et al., 2006).

Related literature top

For a related compound with similar octahedral geometry, see: Cole et al. (2006). For related literature, see: Shang (2007).

Experimental top

The red crystal of bis(N-diphenylphosphinato)-isoindoline-1,3-diimine (Shang, 2007) (0.287 g, 0.53 mmol) was dissolved in absolute ethanol (20 ml), the calcium chloride (0.060 g, 0.53 mmol) was added to the solution in room temperature and the mixture was reacted for 24 h before getting the clear yellow solution, the solvent was evaporated slowly to give pink crystals of title compund. Yield: 0.14 g, 47%. Spectroscopic analysis, 1H NMR (300 MHz, CDCl3, δ): 7.73–7.88(m, 16H, phenyl; 4H, isoindoline); 7.51–7.54 (t, 4H, J=8.1, isoindoline); 7.10–7.27 (m, 24H, phenyl). 31P-{1H} NMR (300 MHz, CDCl3, δ): 20.2(s).

Refinement top

H atoms were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.93 Å, and with Uiso(H) = 1.2Ueq (parent atom).

Structure description top

The bis(N-diphenylphosphinato)-isoindoline-1,3-diimine ligand is a new type of tridentate ligand (Shang, 2007). There are six atoms coordinated to calcium ion, the four oxygen atoms are approximately in an equatorial plane with calcium(II), the mean deviation from the plane is 0.3218Å and the two nitrogen atoms are in axial positions [N2—Ca—N2i 165.55 (9)° (symmetry code i: -x, y, 1/2 - z)]. Because the calcium ion is coordinated via two oxygen of the tridentate ligand, two six-membered rings of O1—P1—N1—C13—N2—Ca1 and O2i—P2i—N3i—C20—N2—Ca1 are formed. The dihedral angles between the two six-membered rings and the isoindoline ring are 12.5° and 14.0° respectively. The Ca—O and Ca—N bond lengths of the compound are 2.2581 (18) [Ca1—O1], 2.2646 (18) [Ca1—O2] and 2.5513 (18) [Ca1—N2] Å, respectively. The values are comparable to the octahedral compound [Ca(o-TolForm)2(thf)2], which can provide four nitrogen and two oxygen atoms to coordinate calcium(II), the average bond length of Ca—O is 2.368 (2) and Ca—N is 2.43 (2)Å (Cole et al., 2006).

For a related compound with similar octahedral geometry, see: Cole et al. (2006). For related literature, see: Shang (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC(Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of I, showing the atom-labeling scheme and 20% probability displacement ellipsoids. Symmetry codes: (i) -x, y, -z + 1/2.
Bis[1,3-bis(diphenylphosphinoylimino)isoindolinato-κ3O,N,O']calcium(II) top
Crystal data top
[Ca(C32H24N3O2P2)2]F(000) = 2344
Mr = 1129.04Dx = 1.333 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4426 reflections
a = 26.351 (2) Åθ = 2.4–25.9°
b = 12.4790 (11) ŵ = 0.28 mm1
c = 21.1997 (19) ÅT = 293 K
β = 126.172 (1)°Block, pink
V = 5627.4 (9) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3117
Tmin = 0.837, Tmax = 0.973k = 1414
11452 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.075P)2 + 4.1489P]
where P = (Fo2 + 2Fc2)/3
4959 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ca(C32H24N3O2P2)2]V = 5627.4 (9) Å3
Mr = 1129.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.351 (2) ŵ = 0.28 mm1
b = 12.4790 (11) ÅT = 293 K
c = 21.1997 (19) Å0.20 × 0.15 × 0.10 mm
β = 126.172 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4959 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4175 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.973Rint = 0.019
11452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
4959 reflectionsΔρmin = 0.25 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.39576 (5)0.25000.03918 (18)
P10.12637 (3)0.56655 (5)0.33048 (4)0.04665 (19)
P20.02345 (3)0.23193 (6)0.13903 (4)0.0498 (2)
O10.06204 (8)0.53300 (15)0.26479 (10)0.0621 (5)
O20.04545 (8)0.27801 (16)0.21607 (10)0.0620 (5)
N10.16798 (9)0.49240 (15)0.40938 (11)0.0447 (5)
N20.09048 (8)0.37004 (14)0.39391 (10)0.0401 (4)
N30.05179 (10)0.22572 (18)0.06938 (12)0.0553 (6)
C10.17484 (14)0.57710 (19)0.29706 (17)0.0566 (7)
C20.23898 (16)0.5685 (3)0.3464 (2)0.0778 (9)
H2B0.25920.55830.39960.093*
C30.2736 (2)0.5750 (4)0.3164 (4)0.1129 (15)
H3B0.31710.56840.35020.135*
C40.2464 (4)0.5902 (4)0.2414 (5)0.137 (2)
H4A0.27070.59470.22280.164*
C50.1831 (4)0.5992 (4)0.1915 (3)0.1284 (19)
H5A0.16410.61050.13860.154*
C60.1460 (2)0.5919 (3)0.2183 (2)0.0868 (10)
H6A0.10250.59700.18360.104*
C70.12490 (12)0.6964 (2)0.36669 (15)0.0547 (6)
C80.07017 (16)0.7308 (3)0.3552 (2)0.0752 (9)
H8A0.03400.68910.32690.090*
C90.0699 (2)0.8278 (4)0.3864 (3)0.1074 (14)
H9A0.03300.85130.37840.129*
C100.1221 (2)0.8895 (3)0.4283 (3)0.1118 (15)
H10A0.12110.95390.44960.134*
C110.1762 (2)0.8569 (3)0.4391 (2)0.0951 (12)
H11A0.21200.89960.46720.114*
C120.17765 (14)0.7608 (2)0.40839 (18)0.0681 (8)
H12A0.21460.73900.41580.082*
C130.14975 (10)0.41314 (16)0.43053 (13)0.0380 (5)
C140.19536 (10)0.35340 (17)0.50380 (12)0.0391 (5)
C150.25946 (11)0.36174 (19)0.55869 (14)0.0460 (5)
H15A0.28230.41530.55530.055*
C160.28879 (12)0.2881 (2)0.61895 (14)0.0513 (6)
H16A0.33210.29190.65660.062*
C170.25463 (13)0.2089 (2)0.62393 (14)0.0547 (6)
H17A0.27520.16030.66510.066*
C180.19053 (12)0.2007 (2)0.56887 (14)0.0508 (6)
H18A0.16750.14730.57210.061*
C190.16168 (11)0.27412 (18)0.50904 (13)0.0415 (5)
C200.09548 (11)0.28795 (18)0.44013 (13)0.0426 (5)
C210.05040 (12)0.0949 (2)0.15292 (17)0.0561 (7)
C220.05167 (16)0.0416 (2)0.0977 (2)0.0803 (9)
H22A0.03690.07560.05080.096*
C230.0743 (2)0.0612 (3)0.1100 (3)0.1070 (15)
H23A0.07390.09610.07100.128*
C240.0965 (2)0.1109 (4)0.1762 (4)0.136 (2)
H24A0.11240.18000.18420.163*
C250.0960 (2)0.0614 (4)0.2325 (3)0.127 (2)
H25A0.11120.09700.27900.152*
C260.07300 (17)0.0426 (3)0.2215 (2)0.0937 (12)
H26A0.07300.07640.26060.112*
C270.05800 (14)0.2982 (2)0.09748 (17)0.0580 (7)
C280.12267 (17)0.2995 (3)0.1398 (2)0.0836 (10)
H28A0.14720.26870.18930.100*
C290.1514 (2)0.3465 (4)0.1089 (3)0.1113 (14)
H29A0.19490.34600.13740.134*
C300.1164 (3)0.3927 (4)0.0380 (3)0.1186 (17)
H30A0.13580.42420.01750.142*
C310.0531 (3)0.3935 (4)0.0037 (3)0.1218 (16)
H31A0.02920.42660.05230.146*
C320.0238 (2)0.3460 (3)0.0250 (2)0.0955 (11)
H32A0.01990.34590.00500.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0386 (4)0.0401 (3)0.0360 (3)0.0000.0204 (3)0.000
P10.0463 (4)0.0371 (3)0.0518 (4)0.0034 (3)0.0263 (3)0.0065 (3)
P20.0419 (4)0.0577 (4)0.0489 (4)0.0108 (3)0.0264 (3)0.0027 (3)
O10.0561 (11)0.0557 (11)0.0553 (10)0.0095 (9)0.0223 (9)0.0121 (8)
O20.0436 (10)0.0838 (13)0.0508 (10)0.0106 (9)0.0235 (8)0.0090 (9)
N10.0411 (10)0.0383 (10)0.0520 (11)0.0033 (8)0.0259 (9)0.0042 (8)
N20.0379 (10)0.0403 (10)0.0422 (10)0.0024 (8)0.0236 (9)0.0005 (8)
N30.0466 (12)0.0641 (13)0.0494 (12)0.0124 (10)0.0252 (10)0.0099 (10)
C10.0760 (19)0.0373 (12)0.0700 (17)0.0044 (12)0.0506 (15)0.0060 (12)
C20.078 (2)0.073 (2)0.107 (3)0.0026 (16)0.068 (2)0.0189 (18)
C30.115 (3)0.099 (3)0.179 (5)0.010 (2)0.117 (4)0.033 (3)
C40.209 (6)0.100 (3)0.214 (7)0.000 (4)0.188 (6)0.021 (4)
C50.230 (7)0.102 (3)0.125 (4)0.022 (4)0.145 (5)0.002 (3)
C60.123 (3)0.073 (2)0.079 (2)0.011 (2)0.068 (2)0.0041 (17)
C70.0567 (15)0.0437 (13)0.0543 (14)0.0071 (12)0.0276 (13)0.0102 (11)
C80.0617 (19)0.074 (2)0.083 (2)0.0110 (15)0.0385 (17)0.0006 (17)
C90.092 (3)0.108 (3)0.121 (3)0.033 (3)0.062 (3)0.007 (3)
C100.123 (4)0.075 (2)0.100 (3)0.025 (3)0.045 (3)0.020 (2)
C110.097 (3)0.0507 (18)0.093 (2)0.0058 (18)0.032 (2)0.0062 (17)
C120.0599 (17)0.0423 (14)0.0785 (19)0.0003 (12)0.0277 (15)0.0001 (13)
C130.0405 (12)0.0342 (11)0.0434 (12)0.0013 (9)0.0271 (10)0.0025 (9)
C140.0411 (12)0.0358 (11)0.0413 (12)0.0008 (9)0.0247 (10)0.0031 (9)
C150.0409 (13)0.0422 (12)0.0499 (13)0.0036 (10)0.0240 (11)0.0022 (10)
C160.0417 (13)0.0513 (14)0.0450 (13)0.0003 (11)0.0168 (11)0.0042 (11)
C170.0599 (16)0.0496 (14)0.0438 (13)0.0060 (12)0.0246 (13)0.0061 (11)
C180.0520 (15)0.0495 (13)0.0479 (13)0.0043 (11)0.0277 (12)0.0077 (11)
C190.0439 (13)0.0428 (12)0.0404 (11)0.0031 (10)0.0262 (10)0.0004 (10)
C200.0435 (13)0.0458 (12)0.0399 (12)0.0051 (10)0.0254 (10)0.0002 (10)
C210.0401 (14)0.0548 (15)0.0686 (17)0.0039 (11)0.0294 (13)0.0092 (13)
C220.094 (2)0.0589 (18)0.116 (3)0.0194 (17)0.078 (2)0.0013 (18)
C230.097 (3)0.062 (2)0.186 (5)0.015 (2)0.097 (3)0.006 (3)
C240.082 (3)0.058 (2)0.201 (6)0.013 (2)0.046 (4)0.018 (3)
C250.122 (4)0.066 (3)0.110 (3)0.002 (2)0.023 (3)0.035 (2)
C260.093 (3)0.075 (2)0.077 (2)0.0154 (19)0.030 (2)0.0097 (18)
C270.0699 (18)0.0457 (14)0.0656 (16)0.0075 (12)0.0440 (15)0.0001 (12)
C280.075 (2)0.091 (2)0.089 (2)0.0115 (18)0.0504 (19)0.0041 (19)
C290.111 (3)0.110 (3)0.145 (4)0.030 (3)0.093 (3)0.004 (3)
C300.185 (5)0.087 (3)0.144 (4)0.023 (3)0.130 (4)0.002 (3)
C310.161 (5)0.121 (4)0.110 (3)0.015 (3)0.095 (4)0.040 (3)
C320.103 (3)0.103 (3)0.083 (2)0.023 (2)0.056 (2)0.029 (2)
Geometric parameters (Å, º) top
Ca1—O12.2581 (18)C10—H10A0.9300
Ca1—O1i2.2581 (18)C11—C121.376 (4)
Ca1—O22.2646 (18)C11—H11A0.9300
Ca1—O2i2.2646 (18)C12—H12A0.9300
Ca1—N2i2.5513 (18)C13—C141.486 (3)
Ca1—N22.5513 (18)C14—C191.377 (3)
Ca1—P23.4369 (8)C14—C151.377 (3)
Ca1—P2i3.4369 (8)C15—C161.381 (3)
Ca1—P13.4403 (7)C15—H15A0.9300
Ca1—P1i3.4403 (7)C16—C171.382 (4)
P1—O11.4837 (18)C16—H16A0.9300
P1—N11.6406 (19)C17—C181.378 (4)
P1—C11.794 (3)C17—H17A0.9300
P1—C71.803 (3)C18—C191.374 (3)
P2—O21.4888 (19)C18—H18A0.9300
P2—N31.631 (2)C19—C201.483 (3)
P2—C271.799 (3)C20—N3i1.302 (3)
P2—C211.808 (3)C21—C221.363 (4)
N1—C131.290 (3)C21—C261.367 (4)
N2—C201.369 (3)C22—C231.373 (5)
N2—C131.378 (3)C22—H22A0.9300
N3—C20i1.302 (3)C23—C241.313 (7)
C1—C21.369 (4)C23—H23A0.9300
C1—C61.379 (4)C24—C251.351 (8)
C2—C31.388 (5)C24—H24A0.9300
C2—H2B0.9300C25—C261.393 (6)
C3—C41.316 (8)C25—H25A0.9300
C3—H3B0.9300C26—H26A0.9300
C4—C51.354 (7)C27—C321.377 (4)
C4—H4A0.9300C27—C281.380 (4)
C5—C61.393 (6)C28—C291.390 (5)
C5—H5A0.9300C28—H28A0.9300
C6—H6A0.9300C29—C301.344 (7)
C7—C81.382 (4)C29—H29A0.9300
C7—C121.382 (4)C30—C311.350 (7)
C8—C91.381 (5)C30—H30A0.9300
C8—H8A0.9300C31—C321.366 (6)
C9—C101.353 (6)C31—H31A0.9300
C9—H9A0.9300C32—H32A0.9300
C10—C111.365 (6)
O1—Ca1—O1i81.34 (11)C4—C5—H5A119.5
O1—Ca1—O293.49 (8)C6—C5—H5A119.5
O1i—Ca1—O2157.41 (7)C1—C6—C5119.0 (4)
O1—Ca1—O2i157.41 (7)C1—C6—H6A120.5
O1i—Ca1—O2i93.49 (8)C5—C6—H6A120.5
O2—Ca1—O2i99.09 (11)C8—C7—C12118.9 (3)
O1—Ca1—N2i110.51 (6)C8—C7—P1119.1 (2)
O1i—Ca1—N2i80.81 (6)C12—C7—P1121.9 (2)
O2—Ca1—N2i80.48 (6)C9—C8—C7119.2 (3)
O2i—Ca1—N2i90.12 (6)C9—C8—H8A120.4
O1—Ca1—N280.81 (6)C7—C8—H8A120.4
O1i—Ca1—N2110.51 (6)C10—C9—C8121.5 (4)
O2—Ca1—N290.12 (6)C10—C9—H9A119.2
O2i—Ca1—N280.48 (6)C8—C9—H9A119.2
N2i—Ca1—N2165.55 (9)C9—C10—C11119.8 (4)
O1—Ca1—P297.95 (6)C9—C10—H10A120.1
O1i—Ca1—P2139.82 (5)C11—C10—H10A120.1
O2—Ca1—P218.93 (4)C10—C11—C12119.9 (4)
O2i—Ca1—P2100.02 (6)C10—C11—H11A120.0
N2i—Ca1—P261.66 (4)C12—C11—H11A120.0
N2—Ca1—P2108.97 (4)C11—C12—C7120.7 (3)
O1—Ca1—P2i139.82 (5)C11—C12—H12A119.6
O1i—Ca1—P2i97.95 (6)C7—C12—H12A119.6
O2—Ca1—P2i100.02 (6)N1—C13—N2129.4 (2)
O2i—Ca1—P2i18.93 (4)N1—C13—C14120.7 (2)
N2i—Ca1—P2i108.97 (5)N2—C13—C14109.96 (18)
N2—Ca1—P2i61.66 (4)C19—C14—C15120.9 (2)
P2—Ca1—P2i107.00 (3)C19—C14—C13106.42 (19)
O1—Ca1—P118.51 (4)C15—C14—C13132.6 (2)
O1i—Ca1—P190.49 (5)C14—C15—C16118.0 (2)
O2—Ca1—P191.20 (5)C14—C15—H15A121.0
O2i—Ca1—P1141.54 (5)C16—C15—H15A121.0
N2i—Ca1—P1128.23 (4)C15—C16—C17120.8 (2)
N2—Ca1—P162.42 (4)C15—C16—H16A119.6
P2—Ca1—P1101.274 (17)C17—C16—H16A119.6
P2i—Ca1—P1122.787 (15)C18—C17—C16121.1 (2)
O1—Ca1—P1i90.49 (5)C18—C17—H17A119.5
O1i—Ca1—P1i18.51 (4)C16—C17—H17A119.5
O2—Ca1—P1i141.54 (5)C19—C18—C17117.8 (2)
O2i—Ca1—P1i91.20 (5)C19—C18—H18A121.1
N2i—Ca1—P1i62.42 (4)C17—C18—H18A121.1
N2—Ca1—P1i128.23 (4)C18—C19—C14121.4 (2)
P2—Ca1—P1i122.787 (15)C18—C19—C20132.5 (2)
P2i—Ca1—P1i101.274 (17)C14—C19—C20106.04 (19)
P1—Ca1—P1i103.44 (3)N3i—C20—N2129.2 (2)
O1—P1—N1120.24 (10)N3i—C20—C19120.1 (2)
O1—P1—C1109.60 (13)N2—C20—C19110.65 (18)
N1—P1—C1103.94 (12)C22—C21—C26117.6 (3)
O1—P1—C7110.69 (12)C22—C21—P2121.9 (2)
N1—P1—C7104.01 (11)C26—C21—P2120.4 (3)
C1—P1—C7107.54 (12)C21—C22—C23121.3 (4)
N1—P1—Ca191.43 (7)C21—C22—H22A119.3
C1—P1—Ca1123.78 (9)C23—C22—H22A119.3
C7—P1—Ca1120.67 (9)C24—C23—C22120.9 (5)
O2—P2—N3119.32 (10)C24—C23—H23A119.5
O2—P2—C27112.18 (13)C22—C23—H23A119.5
N3—P2—C27105.94 (13)C23—C24—C25119.8 (4)
O2—P2—C21108.99 (13)C23—C24—H24A120.1
N3—P2—C21104.66 (12)C25—C24—H24A120.1
C27—P2—C21104.56 (12)C24—C25—C26120.5 (4)
N3—P2—Ca191.97 (7)C24—C25—H25A119.7
C27—P2—Ca1114.13 (9)C26—C25—H25A119.7
C21—P2—Ca1131.54 (10)C21—C26—C25119.7 (4)
P1—O1—Ca1132.60 (10)C21—C26—H26A120.1
P2—O2—Ca1131.50 (10)C25—C26—H26A120.1
C13—N1—P1128.67 (17)C32—C27—C28117.7 (3)
C20—N2—C13106.88 (18)C32—C27—P2124.0 (3)
C20—N2—Ca1125.26 (14)C28—C27—P2118.3 (2)
C13—N2—Ca1124.95 (14)C27—C28—C29120.3 (4)
C20i—N3—P2127.09 (18)C27—C28—H28A119.9
C2—C1—C6119.0 (3)C29—C28—H28A119.9
C2—C1—P1122.6 (2)C30—C29—C28120.3 (4)
C6—C1—P1118.4 (3)C30—C29—H29A119.9
C1—C2—C3119.6 (4)C28—C29—H29A119.9
C1—C2—H2B120.2C29—C30—C31120.1 (4)
C3—C2—H2B120.2C29—C30—H30A120.0
C4—C3—C2121.7 (5)C31—C30—H30A120.0
C4—C3—H3B119.1C30—C31—C32120.7 (4)
C2—C3—H3B119.1C30—C31—H31A119.7
C3—C4—C5119.8 (4)C32—C31—H31A119.7
C3—C4—H4A120.1C31—C32—C27121.0 (4)
C5—C4—H4A120.1C31—C32—H32A119.5
C4—C5—C6120.9 (5)C27—C32—H32A119.5
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ca(C32H24N3O2P2)2]
Mr1129.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.351 (2), 12.4790 (11), 21.1997 (19)
β (°) 126.172 (1)
V3)5627.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.837, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
11452, 4959, 4175
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.04
No. of reflections4959
No. of parameters357
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC(Sheldrick, 1999).

Selected geometric parameters (Å, º) top
Ca1—O12.2581 (18)P1—O11.4837 (18)
Ca1—O22.2646 (18)P2—O21.4888 (19)
Ca1—N22.5513 (18)
O1—Ca1—O1i81.34 (11)O2—Ca1—N2i80.48 (6)
O1—Ca1—O293.49 (8)O1—Ca1—N280.81 (6)
O1—Ca1—O2i157.41 (7)O2—Ca1—N290.12 (6)
O2—Ca1—O2i99.09 (11)N2i—Ca1—N2165.55 (9)
O1—Ca1—N2i110.51 (6)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

This work was carried out under the sponsorship of the Overseas Foundation of Shanxi Province, People's Republic of China.

References

First citationBruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, M. L., Deacon, G. B., Forsyth, C. M., Konstas, K. & Junk, P. C. (2006). Dalton Trans. pp. 3360–3367.  Web of Science CSD CrossRef Google Scholar
First citationShang, D.-L. (2007). MSc thesis, Shanxi University, People's Republic of China.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds