metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetyl­acetonato)oxido(tri­phenyl­phosphine oxide)vanadium(IV)

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ccn@fjirsm.ac.cn

(Received 6 November 2007; accepted 4 December 2007; online 12 December 2007)

In the structure of the title compound, [V(C5H7O2)2O(C18H15OP)], the V atom adopts a slightly distorted octa­hedral geometry with its coordination completed by four O atoms of two acetyl­acetonate (acac) ligands, one oxo group and one O atom of the triphenyl­phosphine oxide (OPPh3) ligand.

Related literature

For related literature, see: Hoshino et al. (2005[Hoshino, M., Sekine, A., Uekusa, H. & Ohashi, Y. (2005). Chem. Lett. 34, 1228-1229.]); Mévellec et al. (2001[Mévellec, F., Roucoux, A., Noiret, N. & Patin, H. (2001). J. Chem. Soc. Dalton Trans. pp. 3603-3610.]); Rübenstahl et al. (1993[Rübenstahl, T., Dehnicke, K. & Krautscheid, H. (1993). Z. Anorg. Allg. Chem. 619, 1023-1026.]); Shuter et al. (1995[Shuter, E., Rettig, S. J. & Orvig, C. (1995). Acta Cryst. C51, 12-14.]); Zhu et al. (1996[Zhu, Z., Al-Ajlouni, A. M. & Espenson, J. H. (1996). Inorg. Chem. 35, 1408-1409.]); Caira & Gellatly (1980[Caira, M. & Gellatly, B. J. (1980). Acta Cryst. B36, 1198-1201.]); Scott et al. (1992[Scott, S. L., Bakac, A. & Espenson, J. H. (1992). J. Am. Chem. Soc. 114, 4205-4213.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C5H7O2)2O(C18H15OP)]

  • Mr = 543.42

  • Triclinic, [P \overline 1]

  • a = 10.153 (3) Å

  • b = 10.353 (3) Å

  • c = 13.407 (4) Å

  • α = 101.677 (2)°

  • β = 90.693 (5)°

  • γ = 106.688 (4)°

  • V = 1318.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 294 (2) K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn70 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.860, Tmax = 0.920

  • 10251 measured reflections

  • 5899 independent reflections

  • 4756 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.121

  • S = 1.13

  • 5899 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal consists of monomeric units of VO(acac)2(OPPh3) packed together without contact significantly shorter than the sum of the van der Waals radii. Each V center is six-coordinated by four O atoms of two acac ligands, one oxo group and one O atom of OPPh3 ligand to furnish a slightly distorted octahedral geometry. The four acac O atoms define the equatorial plane. The oxo group and the O atom from OPPh3 ligand occupy the axial sites in a trans configuration. The V—O(acac) bond distances [1.9974 (13) Å-2.0085 (14) Å] are a little longer than those observed in [VO(acac)2] [1.966 (6) Å-1.986 (6) Å, Shuter et al., 1995; Hoshino et al., 2005] and the bond length of V—O(OPPh3) is 2.2586 (13) Å, significantly longer than those found in [VOCl2(OPPh3)2] [1.986 (5) Å and 2.002 (5) Å, Caira & Gellatly, 1980] and [VCl3(NPPh3)(OPPh3)](1.928 (6) Å, Rübenstahl et al., 1993).

The presence of OPPh3 ligand in the compound was unexpected since the original reactant was PPh3. It has been shown in earlier studies that some metal oxo-complexes might react with PPh3 to give rise to OPPh3 due to their catalytic and redox properties (Scott et al., 1992; Zhu et al., 1996; Mévellec et al., 2001). Thus, it was speculated that PPh3 was oxidized to OPPh3 by oxovanadium complex in this experiment.

Related literature top

For related literature, see: Hoshino et al. (2005); Mévellec et al. (2001); Rübenstahl et al. (1993); Shuter et al. (1995); Zhu et al. (1996).

For related literature, see: Caira & Gellatly (1980); Rigaku/MSC (2004); Scott et al. (1992).

Experimental top

The title compound was obtained unintentionally when we attempted to synthesize vanadium coordination complexes containing 3,5-pyrazoledicarboxylato ligand (H3pdc). To the mixture of H3pdc (0.5 mmol), NaOH (1 mmol) and VO(acac)2 (0.5 mmol) in 10 ml H2O was added a CHCl3 solution (5 ml) of PPh3 (0.25 mmol). The resulting solution was allowed to stand at room temperature for six weeks to deposit green crystals of X-ray quality.

Refinement top

H atoms bound to C atoms were located by geometry, and their positions and thermal parameters were constrained to ride on their parent atoms during the structure refinement.

Structure description top

The crystal consists of monomeric units of VO(acac)2(OPPh3) packed together without contact significantly shorter than the sum of the van der Waals radii. Each V center is six-coordinated by four O atoms of two acac ligands, one oxo group and one O atom of OPPh3 ligand to furnish a slightly distorted octahedral geometry. The four acac O atoms define the equatorial plane. The oxo group and the O atom from OPPh3 ligand occupy the axial sites in a trans configuration. The V—O(acac) bond distances [1.9974 (13) Å-2.0085 (14) Å] are a little longer than those observed in [VO(acac)2] [1.966 (6) Å-1.986 (6) Å, Shuter et al., 1995; Hoshino et al., 2005] and the bond length of V—O(OPPh3) is 2.2586 (13) Å, significantly longer than those found in [VOCl2(OPPh3)2] [1.986 (5) Å and 2.002 (5) Å, Caira & Gellatly, 1980] and [VCl3(NPPh3)(OPPh3)](1.928 (6) Å, Rübenstahl et al., 1993).

The presence of OPPh3 ligand in the compound was unexpected since the original reactant was PPh3. It has been shown in earlier studies that some metal oxo-complexes might react with PPh3 to give rise to OPPh3 due to their catalytic and redox properties (Scott et al., 1992; Zhu et al., 1996; Mévellec et al., 2001). Thus, it was speculated that PPh3 was oxidized to OPPh3 by oxovanadium complex in this experiment.

For related literature, see: Hoshino et al. (2005); Mévellec et al. (2001); Rübenstahl et al. (1993); Shuter et al. (1995); Zhu et al. (1996).

For related literature, see: Caira & Gellatly (1980); Rigaku/MSC (2004); Scott et al. (1992).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing atom labels and 20% probability ellipsoids for non-H atoms.
Bis(acetylacetonato)oxido(triphenylphosphine oxide)vanadium(IV) top
Crystal data top
[V(C5H7O2)2O(C18H15OP)]Z = 2
Mr = 543.42F(000) = 566
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.153 (3) ÅCell parameters from 3761 reflections
b = 10.353 (3) Åθ = 2.1–27.5°
c = 13.407 (4) ŵ = 0.48 mm1
α = 101.677 (2)°T = 294 K
β = 90.693 (5)°Prism, green
γ = 106.688 (4)°0.28 × 0.20 × 0.18 mm
V = 1318.2 (7) Å3
Data collection top
Rigaku Saturn70 CCD
diffractometer
5899 independent reflections
Radiation source: fine-focus sealed tube4756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.860, Tmax = 0.920k = 1313
10251 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0785P)2]
where P = (Fo2 + 2Fc2)/3
5899 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[V(C5H7O2)2O(C18H15OP)]γ = 106.688 (4)°
Mr = 543.42V = 1318.2 (7) Å3
Triclinic, P1Z = 2
a = 10.153 (3) ÅMo Kα radiation
b = 10.353 (3) ŵ = 0.48 mm1
c = 13.407 (4) ÅT = 294 K
α = 101.677 (2)°0.28 × 0.20 × 0.18 mm
β = 90.693 (5)°
Data collection top
Rigaku Saturn70 CCD
diffractometer
5899 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4756 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.920Rint = 0.020
10251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.13Δρmax = 0.43 e Å3
5899 reflectionsΔρmin = 0.54 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V11.03517 (3)0.82224 (3)0.22396 (2)0.02967 (11)
P10.67969 (4)0.83817 (4)0.24257 (3)0.02730 (12)
O10.99298 (14)0.67895 (14)0.30948 (10)0.0436 (3)
O20.92589 (13)0.67788 (13)0.10557 (9)0.0400 (3)
O30.82442 (11)0.83840 (13)0.26469 (9)0.0351 (3)
O41.02709 (13)0.96524 (13)0.14587 (9)0.0362 (3)
O51.08719 (12)0.96846 (13)0.35241 (9)0.0361 (3)
O61.18499 (13)0.81385 (16)0.19582 (11)0.0494 (3)
C10.9215 (3)0.4673 (3)0.3614 (2)0.0727 (8)
H1A1.01230.47590.38850.109*
H1B0.87480.37210.33220.109*
H1C0.87050.50100.41530.109*
C20.9323 (2)0.5508 (2)0.27993 (16)0.0455 (5)
C30.8760 (2)0.4847 (2)0.18191 (18)0.0530 (5)
H3A0.83690.38940.16920.064*
C40.87320 (19)0.5503 (2)0.10003 (15)0.0413 (4)
C50.8031 (2)0.4665 (2)0.00156 (18)0.0592 (6)
H5A0.76960.52390.03700.089*
H5B0.72720.39130.00890.089*
H5C0.86780.43070.04140.089*
C61.0415 (2)1.1785 (2)0.10245 (15)0.0472 (5)
H6A1.12701.19860.07050.071*
H6B1.02561.26330.13590.071*
H6C0.96741.12790.05160.071*
C71.04857 (17)1.09364 (18)0.17968 (13)0.0327 (4)
C81.07829 (19)1.15850 (19)0.28267 (13)0.0401 (4)
H8A1.08701.25240.29980.048*
C91.09605 (17)1.09559 (18)0.36203 (13)0.0340 (4)
C101.1309 (2)1.1816 (2)0.46922 (14)0.0505 (5)
H10A1.06371.14280.51320.076*
H10B1.13041.27430.46950.076*
H10C1.22071.18260.49330.076*
C110.55910 (16)0.68625 (17)0.27131 (12)0.0304 (3)
C120.6134 (2)0.60577 (19)0.32063 (14)0.0391 (4)
H12A0.70830.62770.33380.047*
C130.5260 (3)0.4921 (2)0.35045 (18)0.0571 (6)
H13A0.56250.43840.38400.069*
C140.3867 (3)0.4591 (2)0.33060 (19)0.0631 (6)
H14A0.32870.38260.35040.076*
C150.3312 (2)0.5391 (2)0.28087 (18)0.0569 (6)
H15A0.23620.51620.26770.068*
C160.41669 (19)0.6524 (2)0.25089 (15)0.0422 (4)
H16A0.37970.70580.21740.051*
C170.63977 (17)0.8411 (2)0.11197 (13)0.0352 (4)
C180.5849 (2)0.7194 (2)0.04015 (15)0.0501 (5)
H18A0.56020.63550.06060.060*
C190.5666 (3)0.7217 (3)0.06184 (16)0.0685 (7)
H19A0.52920.63960.10950.082*
C200.6035 (3)0.8446 (4)0.09268 (18)0.0713 (8)
H20A0.59090.84570.16130.086*
C210.6593 (3)0.9662 (3)0.02260 (19)0.0661 (7)
H21A0.68551.04950.04390.079*
C220.6762 (2)0.9647 (2)0.07985 (16)0.0500 (5)
H22A0.71241.04740.12730.060*
C230.64143 (17)0.98229 (17)0.32429 (13)0.0312 (3)
C240.5175 (2)1.0118 (2)0.31082 (15)0.0437 (4)
H24A0.45640.96330.25440.052*
C250.4863 (2)1.1131 (2)0.38136 (18)0.0561 (6)
H25A0.40341.13240.37250.067*
C260.5757 (3)1.1861 (2)0.46471 (17)0.0586 (6)
H26A0.55311.25400.51200.070*
C270.6997 (3)1.1587 (2)0.47836 (16)0.0553 (5)
H27A0.76071.20820.53460.066*
C280.7323 (2)1.0569 (2)0.40744 (14)0.0418 (4)
H28A0.81581.03870.41600.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.03094 (17)0.03182 (17)0.02627 (16)0.01119 (12)0.00037 (11)0.00367 (11)
P10.0250 (2)0.0323 (2)0.0259 (2)0.01010 (16)0.00204 (15)0.00692 (16)
O10.0561 (8)0.0432 (8)0.0388 (7)0.0234 (6)0.0012 (6)0.0130 (6)
O20.0475 (7)0.0360 (7)0.0329 (6)0.0116 (5)0.0029 (5)0.0007 (5)
O30.0262 (6)0.0453 (7)0.0358 (6)0.0128 (5)0.0023 (5)0.0099 (5)
O40.0463 (7)0.0355 (7)0.0256 (6)0.0104 (5)0.0017 (5)0.0067 (5)
O50.0389 (7)0.0384 (7)0.0272 (6)0.0084 (5)0.0035 (5)0.0033 (5)
O60.0390 (7)0.0614 (9)0.0501 (8)0.0230 (6)0.0053 (6)0.0055 (7)
C10.109 (2)0.0606 (15)0.0722 (17)0.0456 (15)0.0271 (15)0.0363 (13)
C20.0548 (12)0.0396 (10)0.0547 (12)0.0276 (9)0.0176 (9)0.0182 (9)
C30.0662 (14)0.0304 (10)0.0608 (13)0.0135 (9)0.0143 (10)0.0069 (9)
C40.0365 (9)0.0378 (10)0.0458 (10)0.0131 (8)0.0070 (8)0.0032 (8)
C50.0543 (13)0.0488 (12)0.0575 (13)0.0070 (10)0.0008 (10)0.0149 (10)
C60.0613 (13)0.0421 (11)0.0405 (10)0.0155 (9)0.0030 (9)0.0138 (9)
C70.0303 (8)0.0335 (9)0.0334 (8)0.0064 (7)0.0058 (6)0.0090 (7)
C80.0503 (11)0.0301 (9)0.0354 (9)0.0074 (7)0.0024 (8)0.0036 (7)
C90.0284 (8)0.0369 (9)0.0293 (8)0.0025 (7)0.0028 (6)0.0009 (7)
C100.0628 (13)0.0468 (12)0.0293 (9)0.0048 (10)0.0019 (9)0.0036 (8)
C110.0319 (8)0.0315 (8)0.0255 (7)0.0081 (6)0.0024 (6)0.0028 (6)
C120.0424 (10)0.0367 (9)0.0388 (9)0.0121 (8)0.0007 (7)0.0093 (8)
C130.0698 (15)0.0438 (12)0.0578 (13)0.0088 (10)0.0015 (11)0.0234 (10)
C140.0636 (15)0.0494 (13)0.0627 (14)0.0100 (11)0.0071 (11)0.0199 (11)
C150.0384 (11)0.0588 (14)0.0606 (14)0.0038 (9)0.0048 (9)0.0098 (11)
C160.0348 (9)0.0454 (10)0.0438 (10)0.0079 (8)0.0005 (7)0.0094 (8)
C170.0304 (8)0.0509 (10)0.0290 (8)0.0168 (7)0.0053 (6)0.0124 (7)
C180.0569 (12)0.0578 (13)0.0329 (10)0.0144 (10)0.0025 (8)0.0074 (9)
C190.0749 (17)0.094 (2)0.0305 (11)0.0219 (14)0.0027 (10)0.0045 (12)
C200.0749 (17)0.123 (3)0.0339 (11)0.0500 (17)0.0091 (11)0.0268 (14)
C210.0741 (16)0.0909 (19)0.0579 (15)0.0409 (14)0.0198 (12)0.0467 (15)
C220.0551 (12)0.0578 (13)0.0453 (11)0.0215 (10)0.0105 (9)0.0223 (10)
C230.0318 (8)0.0304 (8)0.0332 (8)0.0102 (6)0.0067 (6)0.0089 (7)
C240.0405 (10)0.0460 (11)0.0486 (11)0.0209 (8)0.0008 (8)0.0070 (9)
C250.0600 (13)0.0589 (14)0.0630 (14)0.0375 (11)0.0162 (11)0.0140 (11)
C260.0888 (17)0.0462 (12)0.0477 (12)0.0324 (12)0.0226 (12)0.0068 (10)
C270.0743 (15)0.0441 (12)0.0398 (11)0.0125 (10)0.0013 (10)0.0009 (9)
C280.0427 (10)0.0404 (10)0.0401 (10)0.0110 (8)0.0003 (8)0.0059 (8)
Geometric parameters (Å, º) top
V1—O61.5937 (13)C10—H10C0.9600
V1—O41.9974 (13)C11—C121.383 (2)
V1—O51.9999 (12)C11—C161.396 (2)
V1—O12.0085 (14)C12—C131.390 (3)
V1—O22.0072 (13)C12—H12A0.9300
V1—O32.2586 (13)C13—C141.365 (4)
P1—O31.4948 (12)C13—H13A0.9300
P1—C171.8006 (18)C14—C151.389 (3)
P1—C231.8052 (17)C14—H14A0.9300
P1—C111.8088 (17)C15—C161.381 (3)
O1—C21.268 (2)C15—H15A0.9300
O2—C41.261 (2)C16—H16A0.9300
O4—C71.268 (2)C17—C181.385 (3)
O5—C91.273 (2)C17—C221.384 (3)
C1—C21.511 (3)C18—C191.384 (3)
C1—H1A0.9600C18—H18A0.9300
C1—H1B0.9600C19—C201.368 (4)
C1—H1C0.9600C19—H19A0.9300
C2—C31.384 (3)C20—C211.374 (4)
C3—C41.407 (3)C20—H20A0.9300
C3—H3A0.9300C21—C221.386 (3)
C4—C51.503 (3)C21—H21A0.9300
C5—H5A0.9600C22—H22A0.9300
C5—H5B0.9600C23—C281.381 (3)
C5—H5C0.9600C23—C241.395 (2)
C6—C71.500 (3)C24—C251.375 (3)
C6—H6A0.9600C24—H24A0.9300
C6—H6B0.9600C25—C261.372 (3)
C6—H6C0.9600C25—H25A0.9300
C7—C81.395 (2)C26—C271.386 (3)
C8—C91.390 (3)C26—H26A0.9300
C8—H8A0.9300C27—C281.388 (3)
C9—C101.507 (2)C27—H27A0.9300
C10—H10A0.9600C28—H28A0.9300
C10—H10B0.9600
O6—V1—O497.10 (7)C8—C9—C10119.21 (17)
O6—V1—O599.20 (6)C9—C10—H10A109.5
O4—V1—O589.73 (6)C9—C10—H10B109.5
O6—V1—O197.80 (7)H10A—C10—H10B109.5
O4—V1—O1165.07 (5)C9—C10—H10C109.5
O5—V1—O188.84 (6)H10A—C10—H10C109.5
O6—V1—O298.11 (7)H10B—C10—H10C109.5
O4—V1—O288.28 (6)C12—C11—C16119.89 (17)
O5—V1—O2162.69 (5)C12—C11—P1116.84 (13)
O1—V1—O288.67 (6)C16—C11—P1123.18 (14)
O6—V1—O3178.95 (7)C11—C12—C13119.93 (19)
O4—V1—O382.22 (5)C11—C12—H12A120.0
O5—V1—O380.01 (5)C13—C12—H12A120.0
O1—V1—O382.89 (5)C14—C13—C12120.2 (2)
O2—V1—O382.68 (5)C14—C13—H13A119.9
O3—P1—C17114.02 (7)C12—C13—H13A119.9
O3—P1—C23111.29 (8)C13—C14—C15120.3 (2)
C17—P1—C23108.27 (8)C13—C14—H14A119.9
O3—P1—C11110.17 (8)C15—C14—H14A119.8
C17—P1—C11107.56 (8)C16—C15—C14120.2 (2)
C23—P1—C11105.08 (8)C16—C15—H15A119.9
C2—O1—V1127.40 (13)C14—C15—H15A119.9
C4—O2—V1128.54 (13)C15—C16—C11119.5 (2)
P1—O3—V1155.14 (8)C15—C16—H16A120.3
C7—O4—V1128.12 (11)C11—C16—H16A120.3
C9—O5—V1126.73 (11)C18—C17—C22118.85 (18)
C2—C1—H1A109.5C18—C17—P1120.72 (15)
C2—C1—H1B109.5C22—C17—P1120.12 (15)
H1A—C1—H1B109.5C17—C18—C19120.4 (2)
C2—C1—H1C109.5C17—C18—H18A119.8
H1A—C1—H1C109.5C19—C18—H18A119.8
H1B—C1—H1C109.5C20—C19—C18120.2 (2)
O1—C2—C3125.62 (19)C20—C19—H19A119.9
O1—C2—C1115.3 (2)C18—C19—H19A119.9
C3—C2—C1119.1 (2)C21—C20—C19120.2 (2)
C2—C3—C4125.09 (19)C21—C20—H20A119.9
C2—C3—H3A117.5C19—C20—H20A119.9
C4—C3—H3A117.5C20—C21—C22119.9 (2)
O2—C4—C3124.22 (18)C20—C21—H21A120.0
O2—C4—C5116.27 (19)C22—C21—H21A120.0
C3—C4—C5119.5 (2)C17—C22—C21120.4 (2)
C4—C5—H5A109.5C17—C22—H22A119.8
C4—C5—H5B109.5C21—C22—H22A119.8
H5A—C5—H5B109.5C28—C23—C24119.53 (16)
C4—C5—H5C109.5C28—C23—P1118.53 (13)
H5A—C5—H5C109.5C24—C23—P1121.68 (14)
H5B—C5—H5C109.5C25—C24—C23119.65 (19)
C7—C6—H6A109.5C25—C24—H24A120.2
C7—C6—H6B109.5C23—C24—H24A120.2
H6A—C6—H6B109.5C26—C25—C24120.9 (2)
C7—C6—H6C109.5C26—C25—H25A119.6
H6A—C6—H6C109.5C24—C25—H25A119.6
H6B—C6—H6C109.5C25—C26—C27120.00 (19)
O4—C7—C8123.98 (16)C25—C26—H26A120.0
O4—C7—C6116.74 (15)C27—C26—H26A120.0
C8—C7—C6119.28 (16)C28—C27—C26119.5 (2)
C7—C8—C9125.95 (17)C28—C27—H27A120.2
C7—C8—H8A117.0C26—C27—H27A120.2
C9—C8—H8A117.0C23—C28—C27120.39 (19)
O5—C9—C8125.33 (16)C23—C28—H28A119.8
O5—C9—C10115.46 (17)C27—C28—H28A119.8

Experimental details

Crystal data
Chemical formula[V(C5H7O2)2O(C18H15OP)]
Mr543.42
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.153 (3), 10.353 (3), 13.407 (4)
α, β, γ (°)101.677 (2), 90.693 (5), 106.688 (4)
V3)1318.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn70 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.860, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
10251, 5899, 4756
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.121, 1.13
No. of reflections5899
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

 

Acknowledgements

We are grateful to the National Nature Science Foundation of China (No. 20471061) for financial support of this work.

References

First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. & Gellatly, B. J. (1980). Acta Cryst. B36, 1198–1201.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHoshino, M., Sekine, A., Uekusa, H. & Ohashi, Y. (2005). Chem. Lett. 34, 1228–1229.  Web of Science CSD CrossRef CAS Google Scholar
First citationMévellec, F., Roucoux, A., Noiret, N. & Patin, H. (2001). J. Chem. Soc. Dalton Trans. pp. 3603–3610.  Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRübenstahl, T., Dehnicke, K. & Krautscheid, H. (1993). Z. Anorg. Allg. Chem. 619, 1023–1026.  Google Scholar
First citationScott, S. L., Bakac, A. & Espenson, J. H. (1992). J. Am. Chem. Soc. 114, 4205–4213.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShuter, E., Rettig, S. J. & Orvig, C. (1995). Acta Cryst. C51, 12–14.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhu, Z., Al-Ajlouni, A. M. & Espenson, J. H. (1996). Inorg. Chem. 35, 1408–1409.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds