organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl­pyridine semicarbazone

aInstituto de Física de São Carlos-USP, Cx Postal 369, 13560-970 São Carlos, SP, Brazil, and bDepartamento de Química (ICEX), Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
*Correspondence e-mail: danielfl@sc.usp.br

(Received 23 November 2007; accepted 30 November 2007; online 6 December 2007)

The title compound, C13H12N4O, crystallizes with two independent mol­ecules in the asymmetric unit. The compound crystallizes as the ZE isomer, where Z and E refer to the configuration around the C=N and N—C bonds, respectively, with an N—H⋯Npy (py is pyridine) intra­molecular hydrogen bond. The dihedral angles between the least-squares planes through the semicarbazone group and the pyridyl ring are 22.70 (9) and 27.26 (9)° for the two mol­ecules. There are intermolecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Beraldo et al. (2002[Beraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241-246.]); Teixeira et al. (2003[Teixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Inclus. Phenom. Macro. Chem. 47, 77-82.]); Farrell (2002[Farrell, N. (2002). Coord. Chem. Rev. 232, 1-4.]); Pérez-Rebolledo et al. (2006[Pérez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18-23.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O

  • Mr = 240.27

  • Monoclinic, C 2/c

  • a = 22.9281 (7) Å

  • b = 9.1868 (2) Å

  • c = 23.1869 (7) Å

  • β = 93.049 (1)°

  • V = 4877.1 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.18 × 0.14 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 16551 measured reflections

  • 4588 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.150

  • S = 1.07

  • 4588 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O1i 0.86 2.17 3.029 (2) 178
N11—H11B⋯O2ii 0.86 2.33 2.917 (2) 126
N21—H21B⋯O1ii 0.86 2.27 2.883 (2) 128
N21—H21A⋯O2iii 0.86 2.15 3.005 (2) 173
N12—H12⋯N14 0.86 2.06 2.683 (2) 129
N22—H22⋯N24 0.86 2.10 2.712 (2) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Semicarbazones present a wide range of biological applications as antitumoral, anticonvulsant, anti-trypanosomal, herbicidal and biocidal agents (Beraldo & Gambino, 2004; Beraldo et al., 2002; Teixeira et al., 2003). In some cases complexation to metal ions can improve properties of these ligands, such as lipophilicity and pharmacological activity. Moreover, mechanisms of action of bioactive compounds can involve coordination to metal-containing enzymes (Farrell, 2002). As part of our research aiming to understand the molecular and biological properties of semicarbazones we previously prepared 2-Benzoylpyridine semicarbazone (H2Bz4PS) and its Cu(II) and Zn(II) complexes (Pérez-Rebolledo et al., 2006). Here we describe the synthesis and crystal structure of H2Bz4PS (Fig. 1).

The molecular conformation can be described using three planar groups, the phenyl ring, the pyridyl ring and the semicarbazone group. The dihedral angles between the least-square planes through the semicarbazone group and the pyridyl ring are 22.70° and 27.26°, for molecule I and II respectively. The angle between the least-square planes through the semicarbazone group and phenyl ring are almost the same, 32.96° and 32.49°, for molecule I and II respectively. The dihedral angles between the phenyl and the pyridyl rings are 53.12° and 53.99° for molecule I and II respectively. The molecular conformation is fixed by an intramolecular interactions of the N—H···N type, N12—H12···N14 for molecule I and N22—H22···N24 for molecule II. The crystal packing is stabilized by N—H···O intermolecular interactions that form centrosymmetric dimers (Fig. 2). Another N—H···O hydrogen bond gives rise to the formation of infinite chains along the b axis.

Related literature top

For related literature, see: Beraldo & Gambino (2004); Beraldo et al. (2002); Teixeira et al. (2003); Farrell (2002); Pérez-Rebolledo et al. (2006).

Experimental top

2-Benzoylpyridine semicarbazone (H2Bz4PS) was prepared by adding portion-wise an aqueous solution containing equimolar amounts (2 mmol) of semicarbazide hydrochloride and sodium acetate to 2-Benzoylpyridine (2 mmol) in ethanol at room temperature. The reaction mixture was kept under stirring for 20 h. The resulting solid was filtered off and washed with distilled water and ether and then dried. H2Bz4PS: Yield: 69.4%. Melting point: 181.5–182.7 °C. Anal. Calc: C, 64.99; H, 5.03; N, 23.32%. Found: C, 64.02; H, 4.95; N, 23.05%.

Refinement top

The model was refined by full-matrix least squares on F2 with SHELXL97 (Sheldrick, 1997). All the hydrogen atoms were stereochemically positioned and refined with the riding model. Hydrogen atoms of the CH, NH and NH2 groups were set isotropic with a thermal parameter 20% greater than the equivalent isotropic displacement parameter of the atom to which each one was bonded.

Structure description top

Semicarbazones present a wide range of biological applications as antitumoral, anticonvulsant, anti-trypanosomal, herbicidal and biocidal agents (Beraldo & Gambino, 2004; Beraldo et al., 2002; Teixeira et al., 2003). In some cases complexation to metal ions can improve properties of these ligands, such as lipophilicity and pharmacological activity. Moreover, mechanisms of action of bioactive compounds can involve coordination to metal-containing enzymes (Farrell, 2002). As part of our research aiming to understand the molecular and biological properties of semicarbazones we previously prepared 2-Benzoylpyridine semicarbazone (H2Bz4PS) and its Cu(II) and Zn(II) complexes (Pérez-Rebolledo et al., 2006). Here we describe the synthesis and crystal structure of H2Bz4PS (Fig. 1).

The molecular conformation can be described using three planar groups, the phenyl ring, the pyridyl ring and the semicarbazone group. The dihedral angles between the least-square planes through the semicarbazone group and the pyridyl ring are 22.70° and 27.26°, for molecule I and II respectively. The angle between the least-square planes through the semicarbazone group and phenyl ring are almost the same, 32.96° and 32.49°, for molecule I and II respectively. The dihedral angles between the phenyl and the pyridyl rings are 53.12° and 53.99° for molecule I and II respectively. The molecular conformation is fixed by an intramolecular interactions of the N—H···N type, N12—H12···N14 for molecule I and N22—H22···N24 for molecule II. The crystal packing is stabilized by N—H···O intermolecular interactions that form centrosymmetric dimers (Fig. 2). Another N—H···O hydrogen bond gives rise to the formation of infinite chains along the b axis.

For related literature, see: Beraldo & Gambino (2004); Beraldo et al. (2002); Teixeira et al. (2003); Farrell (2002); Pérez-Rebolledo et al. (2006).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Centrosymmetric dimers linking two molecules of H2Bz4PS in the crystal packing. The dotted lines represent the hydrogen bonds of the type N—H··· O.
2-Benzoylpyridine semicarbazone top
Crystal data top
C13H12N4OF(000) = 2016
Mr = 240.27Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 23344 reflections
a = 22.9281 (7) Åθ = 2.9–25.7°
b = 9.1868 (2) ŵ = 0.09 mm1
c = 23.1869 (7) ÅT = 294 K
β = 93.049 (1)°Prism, colourless
V = 4877.1 (2) Å30.18 × 0.14 × 0.04 mm
Z = 16
Data collection top
KappaCCD
diffractometer
Rint = 0.066
φ scans and ω scans with κ offsetsθmax = 25.7°, θmin = 3.5°
16551 measured reflectionsh = 2727
4588 independent reflectionsk = 1011
3011 reflections with I > 2σ(I)l = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.27 e Å3
4588 reflectionsΔρmin = 0.22 e Å3
325 parameters
Crystal data top
C13H12N4OV = 4877.1 (2) Å3
Mr = 240.27Z = 16
Monoclinic, C2/cMo Kα radiation
a = 22.9281 (7) ŵ = 0.09 mm1
b = 9.1868 (2) ÅT = 294 K
c = 23.1869 (7) Å0.18 × 0.14 × 0.04 mm
β = 93.049 (1)°
Data collection top
KappaCCD
diffractometer
3011 reflections with I > 2σ(I)
16551 measured reflectionsRint = 0.066
4588 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
4588 reflectionsΔρmin = 0.22 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32552 (5)0.15282 (12)0.00628 (6)0.0579 (4)
N110.30310 (7)0.38523 (15)0.02708 (7)0.0638 (5)
H11A0.26680.37350.01680.077*
H11B0.31540.46850.03960.077*
N120.39721 (7)0.30226 (14)0.03898 (7)0.0560 (4)
H120.42340.23730.03380.067*
N130.41230 (6)0.43452 (15)0.06270 (6)0.0518 (4)
N140.50663 (7)0.22107 (17)0.07080 (8)0.0646 (5)
C110.33995 (8)0.27542 (18)0.02374 (8)0.0472 (4)
C120.46602 (8)0.46234 (18)0.07889 (7)0.0503 (4)
C130.47417 (8)0.60980 (18)0.10515 (8)0.0507 (5)
C140.43912 (9)0.7256 (2)0.08574 (9)0.0615 (5)
H140.41200.71170.05500.074*
C150.44422 (10)0.8602 (2)0.11153 (11)0.0717 (6)
H150.42100.93690.09770.086*
C160.48359 (10)0.8818 (2)0.15773 (11)0.0752 (6)
H160.48640.97230.17560.090*
C170.51862 (10)0.7691 (2)0.17715 (10)0.0728 (6)
H170.54580.78400.20780.087*
C180.51390 (9)0.6347 (2)0.15160 (9)0.0612 (5)
H180.53760.55900.16550.073*
C190.51699 (8)0.36475 (18)0.07344 (8)0.0526 (5)
C1100.57304 (9)0.4197 (2)0.07022 (8)0.0625 (5)
H1100.57950.51960.07090.075*
C1110.61896 (9)0.3247 (3)0.06597 (10)0.0745 (6)
H1110.65680.36010.06420.089*
C1120.60892 (10)0.1782 (3)0.06428 (10)0.0746 (6)
H1120.63950.11240.06200.090*
C1130.55268 (10)0.1312 (2)0.06610 (10)0.0732 (6)
H1130.54560.03160.06400.088*
O20.24288 (6)0.15322 (12)0.42544 (5)0.0583 (4)
N210.21621 (7)0.38036 (15)0.44999 (7)0.0600 (4)
H21A0.22520.36600.48600.072*
H21B0.20250.46320.43860.072*
N220.20957 (7)0.30602 (15)0.35554 (6)0.0568 (4)
H220.21610.24350.32910.068*
N230.18510 (7)0.43784 (15)0.34154 (6)0.0529 (4)
N240.17683 (8)0.22916 (17)0.24561 (7)0.0621 (4)
C210.22340 (8)0.27519 (17)0.41217 (7)0.0468 (4)
C220.17017 (8)0.46887 (18)0.28832 (7)0.0507 (4)
C230.14314 (8)0.61504 (18)0.28004 (8)0.0517 (5)
C240.16044 (9)0.7306 (2)0.31577 (9)0.0618 (5)
H240.19010.71730.34420.074*
C250.13392 (11)0.8647 (2)0.30944 (9)0.0726 (6)
H250.14580.94120.33360.087*
C260.09007 (11)0.8860 (2)0.26773 (10)0.0758 (7)
H260.07220.97650.26370.091*
C270.07268 (10)0.7732 (2)0.23192 (10)0.0720 (6)
H270.04300.78760.20350.086*
C280.09885 (9)0.6396 (2)0.23788 (9)0.0620 (5)
H280.08680.56410.21330.074*
C290.17786 (8)0.37337 (19)0.23733 (8)0.0532 (5)
C2100.18628 (9)0.4333 (2)0.18346 (8)0.0666 (6)
H2100.18900.53360.17900.080*
C2110.19057 (11)0.3423 (3)0.13692 (10)0.0781 (6)
H2110.19530.38080.10040.094*
C2120.18792 (10)0.1954 (3)0.14452 (10)0.0742 (6)
H2120.19010.13240.11330.089*
C2130.18198 (10)0.1423 (2)0.19957 (10)0.0717 (6)
H2130.18150.04200.20500.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0576 (8)0.0475 (7)0.0680 (9)0.0063 (6)0.0032 (6)0.0060 (6)
N110.0486 (10)0.0495 (9)0.0915 (13)0.0005 (7)0.0132 (9)0.0110 (8)
N120.0465 (10)0.0483 (9)0.0721 (11)0.0010 (6)0.0058 (8)0.0077 (7)
N130.0498 (10)0.0488 (8)0.0559 (10)0.0047 (6)0.0052 (7)0.0005 (6)
N140.0537 (11)0.0583 (10)0.0818 (13)0.0034 (8)0.0039 (9)0.0122 (8)
C110.0461 (11)0.0498 (10)0.0451 (10)0.0030 (8)0.0023 (8)0.0002 (8)
C120.0466 (11)0.0546 (11)0.0489 (11)0.0046 (8)0.0059 (8)0.0086 (8)
C130.0464 (11)0.0526 (10)0.0524 (11)0.0071 (8)0.0034 (8)0.0037 (8)
C140.0532 (12)0.0604 (12)0.0695 (14)0.0044 (9)0.0093 (10)0.0010 (9)
C150.0604 (14)0.0597 (12)0.0945 (18)0.0003 (9)0.0013 (12)0.0048 (11)
C160.0682 (16)0.0723 (14)0.0859 (17)0.0156 (11)0.0104 (12)0.0246 (12)
C170.0649 (15)0.0865 (15)0.0660 (14)0.0142 (12)0.0055 (11)0.0133 (11)
C180.0572 (13)0.0693 (13)0.0558 (12)0.0072 (9)0.0076 (10)0.0003 (9)
C190.0492 (12)0.0595 (11)0.0486 (11)0.0013 (8)0.0026 (8)0.0096 (8)
C1100.0531 (13)0.0725 (12)0.0616 (13)0.0041 (10)0.0008 (9)0.0043 (10)
C1110.0470 (13)0.0974 (17)0.0794 (16)0.0036 (11)0.0073 (11)0.0075 (12)
C1120.0556 (14)0.0909 (17)0.0780 (16)0.0163 (11)0.0093 (11)0.0196 (12)
C1130.0645 (15)0.0662 (13)0.0893 (17)0.0127 (10)0.0092 (12)0.0157 (11)
O20.0712 (10)0.0462 (7)0.0562 (8)0.0068 (6)0.0069 (7)0.0044 (6)
N210.0811 (12)0.0497 (9)0.0476 (9)0.0128 (7)0.0106 (8)0.0001 (7)
N220.0737 (11)0.0499 (9)0.0458 (9)0.0109 (7)0.0049 (8)0.0016 (6)
N230.0589 (10)0.0485 (9)0.0504 (9)0.0032 (7)0.0049 (7)0.0065 (7)
N240.0722 (12)0.0599 (10)0.0539 (10)0.0070 (8)0.0013 (8)0.0043 (7)
C210.0481 (11)0.0459 (10)0.0456 (11)0.0006 (8)0.0034 (8)0.0045 (8)
C220.0531 (11)0.0530 (10)0.0454 (11)0.0011 (8)0.0022 (8)0.0062 (8)
C230.0523 (12)0.0555 (11)0.0469 (11)0.0013 (8)0.0012 (9)0.0085 (8)
C240.0688 (14)0.0627 (12)0.0528 (12)0.0030 (10)0.0063 (10)0.0011 (9)
C250.0964 (18)0.0580 (13)0.0632 (14)0.0093 (11)0.0034 (12)0.0002 (9)
C260.0908 (18)0.0693 (14)0.0678 (15)0.0263 (12)0.0102 (12)0.0162 (11)
C270.0681 (15)0.0846 (15)0.0623 (14)0.0175 (11)0.0046 (11)0.0153 (11)
C280.0623 (13)0.0638 (12)0.0587 (13)0.0021 (9)0.0074 (10)0.0078 (9)
C290.0502 (12)0.0589 (12)0.0500 (11)0.0016 (8)0.0030 (8)0.0028 (8)
C2100.0732 (15)0.0745 (13)0.0524 (13)0.0056 (10)0.0058 (10)0.0077 (10)
C2110.0852 (18)0.0993 (18)0.0504 (13)0.0141 (13)0.0088 (11)0.0019 (11)
C2120.0694 (15)0.0977 (18)0.0557 (14)0.0032 (12)0.0037 (11)0.0171 (11)
C2130.0772 (16)0.0686 (13)0.0690 (15)0.0080 (10)0.0019 (12)0.0112 (11)
Geometric parameters (Å, º) top
O1—C111.2360 (19)O2—C211.2390 (19)
N11—C111.321 (2)N21—C211.321 (2)
N11—H11A0.8600N21—H21A0.8600
N11—H11B0.8600N21—H21B0.8600
N12—C111.364 (2)N22—C211.364 (2)
N12—N131.3705 (19)N22—N231.3665 (18)
N12—H120.8600N22—H220.8600
N13—C121.294 (2)N23—C221.295 (2)
N14—C191.342 (2)N24—C291.339 (2)
N14—C1131.349 (3)N24—C2131.343 (3)
C12—C191.484 (2)C22—C231.487 (2)
C12—C131.493 (2)C22—C291.490 (2)
C13—C181.392 (2)C23—C281.390 (2)
C13—C141.393 (3)C23—C241.392 (3)
C14—C151.376 (3)C24—C251.378 (3)
C14—H140.9300C24—H240.9300
C15—C161.378 (3)C25—C261.371 (3)
C15—H150.9300C25—H250.9300
C16—C171.371 (3)C26—C271.374 (3)
C16—H160.9300C26—H260.9300
C17—C181.371 (3)C27—C281.370 (3)
C17—H170.9300C27—H270.9300
C18—H180.9300C28—H280.9300
C19—C1101.386 (3)C29—C2101.388 (3)
C110—C1111.375 (3)C210—C2111.372 (3)
C110—H1100.9300C210—H2100.9300
C111—C1121.366 (3)C211—C2121.363 (3)
C111—H1110.9300C211—H2110.9300
C112—C1131.362 (3)C212—C2131.380 (3)
C112—H1120.9300C212—H2120.9300
C113—H1130.9300C213—H2130.9300
C11—N11—H11A120.0C21—N21—H21A120.0
C11—N11—H11B120.0C21—N21—H21B120.0
H11A—N11—H11B120.0H21A—N21—H21B120.0
C11—N12—N13118.90 (14)C21—N22—N23118.96 (14)
C11—N12—H12120.6C21—N22—H22120.5
N13—N12—H12120.6N23—N22—H22120.5
C12—N13—N12120.51 (15)C22—N23—N22120.40 (14)
C19—N14—C113117.91 (17)C29—N24—C213118.09 (17)
O1—C11—N11123.66 (17)O2—C21—N21123.56 (16)
O1—C11—N12119.14 (15)O2—C21—N22119.28 (15)
N11—C11—N12117.18 (15)N21—C21—N22117.14 (14)
N13—C12—C19126.72 (16)N23—C22—C23114.15 (15)
N13—C12—C13113.21 (15)N23—C22—C29126.16 (15)
C19—C12—C13120.07 (15)C23—C22—C29119.68 (15)
C18—C13—C14117.82 (16)C28—C23—C24117.99 (16)
C18—C13—C12121.83 (16)C28—C23—C22121.42 (16)
C14—C13—C12120.23 (16)C24—C23—C22120.56 (16)
C15—C14—C13120.76 (19)C25—C24—C23120.56 (19)
C15—C14—H14119.6C25—C24—H24119.7
C13—C14—H14119.6C23—C24—H24119.7
C14—C15—C16120.3 (2)C26—C25—C24120.4 (2)
C14—C15—H15119.8C26—C25—H25119.8
C16—C15—H15119.8C24—C25—H25119.8
C17—C16—C15119.63 (19)C25—C26—C27119.81 (19)
C17—C16—H16120.2C25—C26—H26120.1
C15—C16—H16120.2C27—C26—H26120.1
C16—C17—C18120.4 (2)C28—C27—C26120.2 (2)
C16—C17—H17119.8C28—C27—H27119.9
C18—C17—H17119.8C26—C27—H27119.9
C17—C18—C13121.05 (19)C27—C28—C23121.07 (19)
C17—C18—H18119.5C27—C28—H28119.5
C13—C18—H18119.5C23—C28—H28119.5
N14—C19—C110121.19 (17)N24—C29—C210121.71 (17)
N14—C19—C12117.39 (16)N24—C29—C22117.71 (16)
C110—C19—C12121.42 (16)C210—C29—C22120.57 (17)
C111—C110—C19119.2 (2)C211—C210—C29119.1 (2)
C111—C110—H110120.4C211—C210—H210120.5
C19—C110—H110120.4C29—C210—H210120.5
C112—C111—C110119.9 (2)C212—C211—C210119.7 (2)
C112—C111—H111120.0C212—C211—H211120.1
C110—C111—H111120.0C210—C211—H211120.1
C113—C112—C111118.0 (2)C211—C212—C213118.48 (19)
C113—C112—H112121.0C211—C212—H212120.8
C111—C112—H112121.0C213—C212—H212120.8
N14—C113—C112123.7 (2)N24—C213—C212122.8 (2)
N14—C113—H113118.1N24—C213—H213118.6
C112—C113—H113118.1C212—C213—H213118.6
C11—N12—N13—C12178.38 (16)C21—N22—N23—C22178.29 (16)
N13—N12—C11—O1174.77 (15)N23—N22—C21—O2176.43 (15)
N13—N12—C11—N117.2 (2)N23—N22—C21—N215.0 (2)
N12—N13—C12—C191.8 (3)N22—N23—C22—C23178.90 (15)
N12—N13—C12—C13178.45 (15)N22—N23—C22—C291.2 (3)
N13—C12—C13—C18142.89 (18)N23—C22—C23—C28145.14 (19)
C19—C12—C13—C1837.3 (3)C29—C22—C23—C2834.9 (3)
N13—C12—C13—C1433.1 (2)N23—C22—C23—C2432.8 (3)
C19—C12—C13—C14146.70 (18)C29—C22—C23—C24147.07 (18)
C18—C13—C14—C150.6 (3)C28—C23—C24—C250.4 (3)
C12—C13—C14—C15176.71 (19)C22—C23—C24—C25177.65 (18)
C13—C14—C15—C161.1 (3)C23—C24—C25—C260.0 (3)
C14—C15—C16—C171.4 (3)C24—C25—C26—C270.3 (3)
C15—C16—C17—C181.2 (3)C25—C26—C27—C280.2 (3)
C16—C17—C18—C130.8 (3)C26—C27—C28—C230.2 (3)
C14—C13—C18—C170.4 (3)C24—C23—C28—C270.5 (3)
C12—C13—C18—C17176.51 (18)C22—C23—C28—C27177.56 (19)
C113—N14—C19—C1101.3 (3)C213—N24—C29—C2102.5 (3)
C113—N14—C19—C12179.70 (17)C213—N24—C29—C22178.06 (18)
N13—C12—C19—N1424.8 (3)N23—C22—C29—N2429.3 (3)
C13—C12—C19—N14155.40 (16)C23—C22—C29—N24150.77 (17)
N13—C12—C19—C110154.13 (19)N23—C22—C29—C210150.11 (19)
C13—C12—C19—C11025.6 (3)C23—C22—C29—C21029.8 (3)
N14—C19—C110—C1111.9 (3)N24—C29—C210—C2113.5 (3)
C12—C19—C110—C111179.14 (18)C22—C29—C210—C211177.08 (19)
C19—C110—C111—C1120.8 (3)C29—C210—C211—C2121.6 (3)
C110—C111—C112—C1130.9 (3)C210—C211—C212—C2131.2 (3)
C19—N14—C113—C1120.4 (3)C29—N24—C213—C2120.4 (3)
C111—C112—C113—N141.6 (3)C211—C212—C213—N242.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1i0.862.173.029 (2)178
N11—H11B···O2ii0.862.332.917 (2)126
N21—H21B···O1ii0.862.272.883 (2)128
N21—H21A···O2iii0.862.153.005 (2)173
N12—H12···N140.862.062.683 (2)129
N22—H22···N240.862.102.712 (2)128
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H12N4O
Mr240.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)22.9281 (7), 9.1868 (2), 23.1869 (7)
β (°) 93.049 (1)
V3)4877.1 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.14 × 0.04
Data collection
DiffractometerKappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16551, 4588, 3011
Rint0.066
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.150, 1.07
No. of reflections4588
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C111.2360 (19)O2—C211.2390 (19)
N11—C111.321 (2)N21—C211.321 (2)
N12—C111.364 (2)N22—C211.364 (2)
N12—N131.3705 (19)N22—N231.3665 (18)
N13—C121.294 (2)N23—C221.295 (2)
C12—C191.484 (2)C22—C231.487 (2)
C12—C131.493 (2)C22—C291.490 (2)
C11—N12—N13118.90 (14)C21—N22—N23118.96 (14)
C12—N13—N12120.51 (15)C22—N23—N22120.40 (14)
O1—C11—N11123.66 (17)O2—C21—N21123.56 (16)
O1—C11—N12119.14 (15)O2—C21—N22119.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O1i0.8602.1693.029 (2)178.0
N11—H11B···O2ii0.8602.3322.917 (2)125.5
N21—H21B···O1ii0.8602.2732.883 (2)128.0
N21—H21A···O2iii0.8602.1503.005 (2)172.9
N12—H12···N140.8602.0552.683 (2)129.2
N22—H22···N240.8602.0952.712 (2)128.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Brazilian agency CNPq.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeraldo, H., Sinisterra, R. D., Teixeira, L. R., Vieira, R. P. & Doretto, M. C. (2002). Biochem. Biophys. Res. Commun. 296, 241–246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrell, N. (2002). Coord. Chem. Rev. 232, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18–23.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTeixeira, L. R., Sinisterra, R. D., Vieira, R. P., Doretto, M. C. & Beraldo, H. (2003). J. Inclus. Phenom. Macro. Chem. 47, 77–82.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds