organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Chloro­phen­yl)(di­phenyl­phosphor­yl)methanol

aDepartment of Chemistry and Bioengineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: liuwanyun2006@tom.com

(Received 18 October 2007; accepted 10 November 2007; online 12 December 2007)

The title compound, C19H16ClO2P, was obtained by the reaction of diphenyl­phosphine oxide with 2-chloro­benzaldehyde. The mol­ecule has a tetra­hedral structure at the P atom. The dihedral angle between the phenyl rings attached to the P atom is 80.4 (1)°. The mol­ecules are linked together by inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding inter­actrions. The crystal studied was an inversion twin.

Related literature

For general background, see: Clark et al. (2002[Clark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224-6225.]). For related structures, see: Dankowski et al. (1979[Dankowski, M., Praefske, K., Nyburg, S. C. & Wong-ng, W. (1979). Phosphorus Sulfur, 7, 275-279.]); Liu et al. (2007[Liu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008-o1009.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16ClO2P

  • Mr = 342.74

  • Orthorhombic, P 21 21 21

  • a = 9.0943 (4) Å

  • b = 10.9172 (6) Å

  • c = 18.0657 (12) Å

  • V = 1793.64 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 (2) K

  • 0.57 × 0.20 × 0.10 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; (Bruker, 2001[Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.970

  • 8361 measured reflections

  • 3466 independent reflections

  • 2494 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 0.91

  • 3466 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1437 Friedel pairs

  • Flack parameter: 0.55 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.82 2.602 (2) 158
C1—H3A⋯O1i 0.98 2.56 3.059 (2) 111
C16—H33A⋯O2ii 0.93 2.56 3.318 (3) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodiumcatalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure is shown in Fig. 1. Bond lengths and angles are in agreement with those reported for similar compounds (Dankowski et al., 1979; Liu et al., 2007). The dihedral angle between the C8-phenyl and C14-phenyl planes is 80.4 (1)°. The O—H···O and C—H···O hydrogen bonds (Table 1) involving the hydroxyl group link the molecules into a supra-molecular structure.

Related literature top

For general background, see: Clark et al. (2002). For related structures, see: Dankowski et al. (1979); Liu et al. (2007).

Experimental top

To a solution of 2-chlorobenzaldehyde (0.28 g, 2.0 mmol) and diphenylphosphine oxide (0.41 g, 2.0 mmol) in tetrahydrofuran (10 ml) at 273 K was added dropwise triethylamine (0.30 ml, 2.0 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was concentrated under vacuum and the crude product was purified by column chromatography (petroleum ether-ethyl acetate, 1:1) to give the title compound as a white solid in 85% yield. Single crystals were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.98 Å (methine), O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The absolute structure was not determined.

Structure description top

The title compound is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodiumcatalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure is shown in Fig. 1. Bond lengths and angles are in agreement with those reported for similar compounds (Dankowski et al., 1979; Liu et al., 2007). The dihedral angle between the C8-phenyl and C14-phenyl planes is 80.4 (1)°. The O—H···O and C—H···O hydrogen bonds (Table 1) involving the hydroxyl group link the molecules into a supra-molecular structure.

For general background, see: Clark et al. (2002). For related structures, see: Dankowski et al. (1979); Liu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
'(2-Chlorophenyl)(diphenylphosphoryl)methanol' top
Crystal data top
C19H16ClO2PF(000) = 712
Mr = 342.74Dx = 1.269 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3220 reflections
a = 9.0943 (4) Åθ = 2.5–32.6°
b = 10.9172 (6) ŵ = 0.31 mm1
c = 18.0657 (12) ÅT = 293 K
V = 1793.64 (17) Å3Plate, colorless
Z = 40.57 × 0.20 × 0.10 mm
Data collection top
Bruker APEX area-detector
diffractometer
3466 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; (Bruker, 2001)
h = 1110
Tmin = 0.844, Tmax = 0.970k = 1313
8361 measured reflectionsl = 2219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3466 reflectionsΔρmax = 0.20 e Å3
208 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1437 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.55 (8)
Crystal data top
C19H16ClO2PV = 1793.64 (17) Å3
Mr = 342.74Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0943 (4) ŵ = 0.31 mm1
b = 10.9172 (6) ÅT = 293 K
c = 18.0657 (12) Å0.57 × 0.20 × 0.10 mm
Data collection top
Bruker APEX area-detector
diffractometer
3466 independent reflections
Absorption correction: multi-scan
(SADABS; (Bruker, 2001)
2494 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.970Rint = 0.035
8361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.20 e Å3
S = 0.91Δρmin = 0.26 e Å3
3466 reflectionsAbsolute structure: Flack (1983), 1437 Friedel pairs
208 parametersAbsolute structure parameter: 0.55 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.39075 (6)0.07346 (5)0.22300 (3)0.03563 (15)
Cl10.68961 (8)0.08726 (10)0.36635 (5)0.0874 (3)
C10.4310 (2)0.20391 (18)0.28358 (14)0.0371 (5)
H3A0.53400.22760.27640.045*
C20.4092 (3)0.1697 (2)0.36374 (14)0.0425 (6)
C30.5177 (3)0.1153 (3)0.40525 (16)0.0574 (7)
C40.4977 (4)0.0838 (3)0.47859 (18)0.0795 (9)
H26A0.57290.04680.50540.095*
C50.3652 (5)0.1080 (3)0.5109 (2)0.0929 (12)
H12A0.35010.08760.56030.112*
C60.2538 (4)0.1621 (3)0.4712 (2)0.0850 (11)
H27A0.16370.17750.49370.102*
C70.2752 (3)0.1935 (2)0.39825 (17)0.0616 (8)
H10A0.19980.23080.37180.074*
C80.4778 (2)0.1058 (2)0.13569 (14)0.0405 (6)
C90.5076 (3)0.0066 (3)0.09105 (16)0.0575 (7)
H8A0.47650.07110.10530.069*
C100.5824 (4)0.0211 (3)0.02620 (17)0.0771 (10)
H19A0.60240.04670.00330.093*
C110.6281 (4)0.1348 (3)0.00437 (18)0.0807 (10)
H21A0.67810.14420.04020.097*
C120.6006 (4)0.2345 (3)0.04770 (18)0.0818 (10)
H20A0.63250.31170.03310.098*
C130.5251 (3)0.2202 (3)0.11336 (17)0.0641 (8)
H11A0.50580.28810.14280.077*
C140.1961 (2)0.0688 (2)0.20812 (13)0.0421 (5)
C150.1179 (3)0.0269 (3)0.23868 (18)0.0702 (8)
H13A0.16590.08520.26740.084*
C160.0321 (4)0.0361 (4)0.2266 (3)0.0999 (12)
H33A0.08450.10090.24710.120*
C170.1028 (4)0.0485 (4)0.1851 (2)0.0939 (11)
H22A0.20380.04210.17800.113*
C180.0284 (3)0.1419 (3)0.1541 (2)0.0795 (10)
H17A0.07800.19920.12530.095*
C190.1227 (3)0.1530 (2)0.16514 (16)0.0590 (7)
H14A0.17400.21730.14340.071*
O10.44309 (17)0.04402 (12)0.25449 (9)0.0471 (4)
O20.34008 (16)0.30243 (12)0.26047 (10)0.0491 (5)
H2A0.39100.36300.25250.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0332 (3)0.0318 (3)0.0419 (3)0.0014 (3)0.0010 (3)0.0005 (3)
Cl10.0540 (4)0.1355 (7)0.0726 (5)0.0196 (5)0.0150 (4)0.0185 (6)
C10.0298 (11)0.0323 (11)0.0493 (14)0.0003 (9)0.0007 (11)0.0017 (11)
C20.0517 (14)0.0346 (12)0.0413 (14)0.0059 (11)0.0048 (14)0.0053 (11)
C30.0652 (17)0.0603 (18)0.0467 (16)0.0005 (14)0.0054 (15)0.0049 (14)
C40.099 (2)0.089 (2)0.0506 (19)0.005 (2)0.0087 (18)0.0145 (18)
C50.140 (4)0.091 (3)0.0477 (18)0.015 (3)0.024 (2)0.0091 (18)
C60.103 (3)0.078 (2)0.074 (2)0.005 (2)0.041 (2)0.0077 (19)
C70.0624 (17)0.0542 (16)0.068 (2)0.0005 (14)0.0213 (16)0.0022 (15)
C80.0352 (11)0.0436 (14)0.0427 (14)0.0033 (10)0.0008 (11)0.0010 (12)
C90.0623 (18)0.0587 (17)0.0515 (17)0.0010 (14)0.0121 (15)0.0047 (14)
C100.092 (3)0.081 (2)0.059 (2)0.0148 (19)0.0227 (19)0.0111 (17)
C110.095 (2)0.091 (3)0.056 (2)0.014 (2)0.032 (2)0.0139 (18)
C120.106 (3)0.0631 (19)0.076 (2)0.003 (2)0.032 (2)0.0198 (17)
C130.080 (2)0.0497 (17)0.062 (2)0.0061 (15)0.0202 (17)0.0086 (14)
C140.0349 (11)0.0469 (12)0.0446 (14)0.0067 (12)0.0003 (10)0.0040 (13)
C150.0531 (16)0.0746 (17)0.083 (2)0.0208 (15)0.0027 (17)0.0197 (16)
C160.060 (2)0.122 (3)0.117 (3)0.044 (2)0.001 (2)0.021 (3)
C170.0360 (14)0.143 (3)0.103 (3)0.021 (2)0.0043 (19)0.006 (3)
C180.0530 (18)0.099 (2)0.086 (3)0.0122 (18)0.0214 (18)0.001 (2)
C190.0388 (14)0.0696 (17)0.069 (2)0.0036 (14)0.0068 (14)0.0108 (14)
O10.0562 (10)0.0317 (8)0.0535 (10)0.0105 (7)0.0034 (9)0.0033 (7)
O20.0413 (8)0.0317 (8)0.0743 (13)0.0030 (6)0.0005 (9)0.0047 (8)
Geometric parameters (Å, º) top
P1—O11.4816 (15)C9—H8A0.9300
P1—C141.792 (2)C10—C111.367 (4)
P1—C81.800 (3)C10—H19A0.9300
P1—C11.833 (2)C11—C121.364 (4)
Cl1—C31.741 (3)C11—H21A0.9300
C1—O21.420 (2)C12—C131.380 (4)
C1—C21.509 (3)C12—H20A0.9300
C1—H3A0.9800C13—H11A0.9300
C2—C31.374 (4)C14—C191.375 (3)
C2—C71.393 (3)C14—C151.379 (3)
C3—C41.381 (4)C15—C161.385 (4)
C4—C51.364 (5)C15—H13A0.9300
C4—H26A0.9300C16—C171.351 (5)
C5—C61.374 (5)C16—H33A0.9300
C5—H12A0.9300C17—C181.346 (5)
C6—C71.375 (4)C17—H22A0.9300
C6—H27A0.9300C18—C191.394 (4)
C7—H10A0.9300C18—H17A0.9300
C8—C91.378 (3)C19—H14A0.9300
C8—C131.380 (3)O2—H2A0.8200
C9—C101.364 (4)
O1—P1—C14110.54 (11)C10—C9—H8A119.7
O1—P1—C8111.42 (10)C8—C9—H8A119.7
C14—P1—C8107.99 (11)C9—C10—C11120.3 (3)
O1—P1—C1112.28 (10)C9—C10—H19A119.8
C14—P1—C1107.99 (10)C11—C10—H19A119.8
C8—P1—C1106.42 (11)C12—C11—C10120.2 (3)
O2—C1—C2113.15 (18)C12—C11—H21A119.9
O2—C1—P1107.26 (15)C10—C11—H21A119.9
C2—C1—P1110.76 (15)C11—C12—C13119.6 (3)
O2—C1—H3A108.5C11—C12—H20A120.2
C2—C1—H3A108.5C13—C12—H20A120.2
P1—C1—H3A108.5C12—C13—C8120.6 (3)
C3—C2—C7117.7 (2)C12—C13—H11A119.7
C3—C2—C1122.4 (2)C8—C13—H11A119.7
C7—C2—C1119.9 (2)C19—C14—C15118.8 (2)
C2—C3—C4122.4 (3)C19—C14—P1123.04 (18)
C2—C3—Cl1120.0 (2)C15—C14—P1118.1 (2)
C4—C3—Cl1117.5 (3)C14—C15—C16120.0 (3)
C5—C4—C3118.6 (3)C14—C15—H13A120.0
C5—C4—H26A120.7C16—C15—H13A120.0
C3—C4—H26A120.7C17—C16—C15120.4 (3)
C4—C5—C6120.7 (3)C17—C16—H33A119.8
C4—C5—H12A119.6C15—C16—H33A119.8
C6—C5—H12A119.6C18—C17—C16120.6 (3)
C5—C6—C7120.2 (3)C18—C17—H22A119.7
C5—C6—H27A119.9C16—C17—H22A119.7
C7—C6—H27A119.9C17—C18—C19120.1 (3)
C6—C7—C2120.4 (3)C17—C18—H17A120.0
C6—C7—H10A119.8C19—C18—H17A120.0
C2—C7—H10A119.8C14—C19—C18120.1 (3)
C9—C8—C13118.6 (3)C14—C19—H14A120.0
C9—C8—P1116.43 (19)C18—C19—H14A120.0
C13—C8—P1124.8 (2)C1—O2—H2A109.5
C10—C9—C8120.6 (3)
O1—P1—C1—O2162.66 (13)C14—P1—C8—C1398.3 (2)
C14—P1—C1—O240.54 (17)C1—P1—C8—C1317.4 (3)
C8—P1—C1—O275.19 (16)C13—C8—C9—C100.1 (4)
O1—P1—C1—C238.74 (18)P1—C8—C9—C10175.5 (3)
C14—P1—C1—C283.38 (18)C8—C9—C10—C110.4 (5)
C8—P1—C1—C2160.89 (15)C9—C10—C11—C120.7 (6)
O2—C1—C2—C3153.6 (2)C10—C11—C12—C130.6 (6)
P1—C1—C2—C385.9 (2)C11—C12—C13—C80.3 (5)
O2—C1—C2—C726.2 (3)C9—C8—C13—C120.0 (4)
P1—C1—C2—C794.3 (2)P1—C8—C13—C12175.1 (3)
C7—C2—C3—C40.3 (4)O1—P1—C14—C19165.4 (2)
C1—C2—C3—C4179.9 (3)C8—P1—C14—C1943.2 (2)
C7—C2—C3—Cl1178.04 (19)C1—P1—C14—C1971.5 (2)
C1—C2—C3—Cl11.8 (3)O1—P1—C14—C1511.7 (2)
C2—C3—C4—C50.2 (5)C8—P1—C14—C15133.8 (2)
Cl1—C3—C4—C5178.2 (3)C1—P1—C14—C15111.5 (2)
C3—C4—C5—C60.3 (5)C19—C14—C15—C160.8 (5)
C4—C5—C6—C70.5 (5)P1—C14—C15—C16178.0 (3)
C5—C6—C7—C20.7 (5)C14—C15—C16—C170.2 (6)
C3—C2—C7—C60.6 (4)C15—C16—C17—C181.0 (6)
C1—C2—C7—C6179.6 (3)C16—C17—C18—C190.7 (6)
O1—P1—C8—C935.1 (2)C15—C14—C19—C181.1 (4)
C14—P1—C8—C986.4 (2)P1—C14—C19—C18178.1 (2)
C1—P1—C8—C9157.82 (19)C17—C18—C19—C140.4 (5)
O1—P1—C8—C13140.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.822.602 (2)158
C1—H3A···O1i0.982.563.059 (2)111
C16—H33A···O2ii0.932.563.318 (3)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H16ClO2P
Mr342.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.0943 (4), 10.9172 (6), 18.0657 (12)
V3)1793.64 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.57 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; (Bruker, 2001)
Tmin, Tmax0.844, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8361, 3466, 2494
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 0.91
No. of reflections3466
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26
Absolute structureFlack (1983), 1437 Friedel pairs
Absolute structure parameter0.55 (8)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.822.602 (2)158.3
C1—H3A···O1i0.982.563.059 (2)111.3
C16—H33A···O2ii0.932.563.318 (3)139.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Technical Project of the Department of Education of Jiangxi Province, China, and the Key Technical Project of Yichun Municipality, China, for supporting this work.

References

First citationBruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem. 67, 6224–6225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDankowski, M., Praefske, K., Nyburg, S. C. & Wong-ng, W. (1979). Phosphorus Sulfur, 7, 275–279.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds