metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di­carb­oxy­benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)cadmium(II)

aInstitute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: qinc703@nenu.edu.cn

(Received 21 October 2007; accepted 27 October 2007; online 6 December 2007)

The mol­ecule of the title compound, [Cd(C9H5O6)2(C12H8N2)], has crystallographic twofold rotation symmetry. The CdII atom, located on the twofold axis, assumes a CdO4N2 distorted octa­hedral coordination geometry. In the crystal structure, the mol­ecules link to each other by O—H⋯O and C—H⋯O hydrogen bonding to form a three-dimensional supra­molecular network.

Related literature

For general background, see: Shi et al. (2004[Shi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. & Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185-191.]); Han et al. (2005[Han, J.-Y., Wei, W.-Y., Dou, X. & Chang, H.-Y. (2005). Acta Cryst. E61, m2281-m2282.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H5O6)2(C12H8N2)]

  • Mr = 710.86

  • Monoclinic, C 2/c

  • a = 9.838 (2) Å

  • b = 16.541 (3) Å

  • c = 16.681 (3) Å

  • β = 96.32 (3)°

  • V = 2698.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.816

  • 5790 measured reflections

  • 3095 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.05

  • 3095 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.2671 (16)
Cd1—O1 2.3079 (14)
Cd1—O2 2.3883 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 1.89 2.656 (2) 155
O5—H5A⋯O6ii 0.82 1.81 2.623 (2) 170
C2—H2⋯O3i 0.93 2.36 3.262 (3) 164
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of an ongoing investigation of metal complexes with the benzene-1,3,5-tricarboxylate ligand (Shi et al., 2004; Han et al., 2005), the structure of the title CdII complex is reported here. The asymmetric unit contains a half of CdII complex, with the CdII atom residing on a crystallographic twofold axis. The CdII ion has a distorted octahedral coordination geometry formed by four O atoms and two N atoms (Table 1). This arrangement appears to be the effect of the small bite angles produced by the chelating ligands. In the crystal the molecules are connected with O—H···O and C—H···O hydrogen bonding (Table 2), forming a three-dimensional supramolecular network.

Related literature top

For general background, see: Shi et al. (2004); Han et al. (2005).

Experimental top

The compound was prepared by a hydrothermal method. A mixture of Cd(NO3)2.4H2O (0.5 mmol), benzene-1,3,5-tricarboxylic acid (0.6 mmol), 1,10-phenanthroline (0.6 mmol) and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals were obtained after cooling to room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

As part of an ongoing investigation of metal complexes with the benzene-1,3,5-tricarboxylate ligand (Shi et al., 2004; Han et al., 2005), the structure of the title CdII complex is reported here. The asymmetric unit contains a half of CdII complex, with the CdII atom residing on a crystallographic twofold axis. The CdII ion has a distorted octahedral coordination geometry formed by four O atoms and two N atoms (Table 1). This arrangement appears to be the effect of the small bite angles produced by the chelating ligands. In the crystal the molecules are connected with O—H···O and C—H···O hydrogen bonding (Table 2), forming a three-dimensional supramolecular network.

For general background, see: Shi et al. (2004); Han et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
Bis(3,5-dicarboxybenzoato-κ2O,O')(1,10-phenanthroline-κ2N,N')cadmium(II) top
Crystal data top
[Cd(C9H5O6)2(C12H8N2)]F(000) = 1424
Mr = 710.86Dx = 1.750 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5790 reflections
a = 9.838 (2) Åθ = 2.4–27.5°
b = 16.541 (3) ŵ = 0.88 mm1
c = 16.681 (3) ÅT = 298 K
β = 96.32 (3)°Block, colourless
V = 2698.1 (9) Å30.32 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3095 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.765, Tmax = 0.816k = 2121
5790 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.679P]
where P = (Fo2 + 2Fc2)/3
3095 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cd(C9H5O6)2(C12H8N2)]V = 2698.1 (9) Å3
Mr = 710.86Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.838 (2) ŵ = 0.88 mm1
b = 16.541 (3) ÅT = 298 K
c = 16.681 (3) Å0.32 × 0.26 × 0.24 mm
β = 96.32 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2834 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.816Rint = 0.033
5790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
3095 reflectionsΔρmin = 0.56 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.095232 (10)0.25000.03259 (8)
O10.04641 (13)0.16023 (9)0.36635 (9)0.0375 (3)
O20.15070 (14)0.18897 (9)0.32348 (10)0.0413 (3)
O30.22565 (16)0.33500 (11)0.56195 (12)0.0573 (5)
H3A0.28370.34820.59110.086*
O40.10746 (19)0.43487 (13)0.62596 (12)0.0609 (5)
O50.42788 (16)0.41835 (12)0.44051 (11)0.0528 (5)
H5A0.49280.44960.44800.079*
O60.34627 (16)0.49693 (11)0.53307 (11)0.0512 (4)
N10.13969 (15)0.01388 (10)0.26674 (9)0.0307 (3)
C10.07969 (18)0.27267 (11)0.42660 (11)0.0292 (3)
C20.02139 (18)0.29186 (12)0.47520 (12)0.0327 (4)
H20.09850.25930.47450.039*
C40.00817 (18)0.35978 (12)0.52518 (12)0.0328 (4)
C50.1072 (2)0.40796 (12)0.52686 (13)0.0340 (4)
H50.11620.45340.55990.041*
C60.20969 (19)0.38836 (12)0.47902 (12)0.0319 (4)
C70.19579 (18)0.32127 (12)0.42853 (12)0.0312 (4)
H70.26390.30880.39610.037*
C80.06177 (17)0.20275 (11)0.36910 (11)0.0296 (3)
C90.1171 (2)0.38168 (14)0.57696 (14)0.0395 (4)
C100.2741 (2)0.01298 (14)0.28658 (13)0.0409 (4)
H100.31930.03650.29070.049*
C110.3497 (2)0.08376 (17)0.30141 (16)0.0496 (6)
H110.44340.08120.31690.060*
C120.2851 (2)0.15675 (15)0.29300 (15)0.0496 (6)
H120.33480.20430.30200.060*
C130.1425 (2)0.15987 (12)0.27059 (13)0.0383 (4)
C140.07359 (18)0.08582 (10)0.25986 (11)0.0278 (3)
C150.0681 (3)0.23439 (13)0.26011 (16)0.0517 (6)
H150.11460.28330.26740.062*
C170.33550 (19)0.43895 (13)0.48512 (12)0.0346 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04347 (13)0.02012 (10)0.03363 (12)0.0000.00178 (8)0.000
O10.0322 (7)0.0345 (7)0.0470 (8)0.0104 (5)0.0101 (6)0.0124 (6)
O20.0349 (7)0.0409 (8)0.0502 (9)0.0100 (6)0.0148 (6)0.0157 (7)
O30.0398 (8)0.0598 (10)0.0774 (12)0.0229 (8)0.0290 (8)0.0310 (9)
O40.0555 (10)0.0641 (12)0.0674 (12)0.0212 (9)0.0270 (9)0.0347 (10)
O50.0361 (8)0.0668 (11)0.0580 (11)0.0252 (7)0.0176 (7)0.0225 (8)
O60.0420 (8)0.0523 (10)0.0612 (10)0.0246 (7)0.0142 (7)0.0223 (8)
N10.0301 (7)0.0288 (7)0.0329 (8)0.0011 (6)0.0025 (6)0.0002 (6)
C10.0274 (8)0.0265 (8)0.0333 (9)0.0045 (6)0.0011 (6)0.0018 (7)
C20.0291 (8)0.0313 (9)0.0378 (10)0.0098 (7)0.0045 (7)0.0042 (7)
C40.0301 (8)0.0329 (9)0.0360 (10)0.0082 (7)0.0067 (7)0.0053 (7)
C50.0325 (9)0.0334 (10)0.0364 (10)0.0110 (7)0.0047 (7)0.0082 (7)
C60.0282 (9)0.0334 (9)0.0339 (9)0.0100 (7)0.0024 (7)0.0021 (7)
C70.0261 (8)0.0328 (9)0.0345 (9)0.0053 (7)0.0030 (6)0.0018 (7)
C80.0281 (8)0.0261 (8)0.0342 (9)0.0020 (6)0.0016 (6)0.0006 (7)
C90.0368 (10)0.0383 (10)0.0455 (12)0.0117 (8)0.0133 (8)0.0105 (9)
C100.0348 (10)0.0482 (12)0.0392 (11)0.0078 (8)0.0025 (8)0.0022 (9)
C110.0318 (10)0.0682 (16)0.0482 (13)0.0088 (10)0.0018 (9)0.0036 (11)
C120.0462 (12)0.0504 (14)0.0509 (13)0.0225 (10)0.0002 (9)0.0056 (10)
C130.0440 (11)0.0317 (10)0.0390 (11)0.0110 (8)0.0037 (8)0.0008 (8)
C140.0315 (9)0.0260 (9)0.0261 (9)0.0015 (6)0.0043 (6)0.0003 (6)
C150.0697 (15)0.0252 (10)0.0590 (15)0.0095 (9)0.0020 (11)0.0005 (9)
C170.0313 (9)0.0375 (10)0.0354 (10)0.0127 (8)0.0055 (7)0.0045 (8)
Geometric parameters (Å, º) top
Cd1—N1i2.2671 (16)C2—C41.397 (3)
Cd1—N12.2671 (16)C2—H20.9300
Cd1—O12.3079 (14)C4—C51.385 (2)
Cd1—O1i2.3079 (14)C4—C91.493 (3)
Cd1—O22.3883 (15)C5—C61.391 (3)
Cd1—O2i2.3883 (15)C5—H50.9300
Cd1—C82.6858 (19)C6—C71.391 (3)
Cd1—C8i2.6858 (19)C6—C171.488 (2)
O1—C81.272 (2)C7—H70.9300
O2—C81.242 (2)C10—C111.395 (3)
O3—C91.319 (2)C10—H100.9300
O3—H3A0.8200C11—C121.364 (4)
O4—C91.198 (3)C11—H110.9300
O5—C171.283 (3)C12—C131.412 (3)
O5—H5A0.8200C12—H120.9300
O6—C171.246 (3)C13—C141.402 (3)
N1—C101.327 (2)C13—C151.434 (3)
N1—C141.355 (2)C14—C14i1.449 (4)
C1—C21.387 (3)C15—C15i1.345 (5)
C1—C71.394 (2)C15—H150.9300
C1—C81.500 (2)
N1i—Cd1—N174.48 (8)C5—C4—C9119.20 (18)
N1i—Cd1—O1107.52 (5)C2—C4—C9120.98 (16)
N1—Cd1—O1116.15 (6)C4—C5—C6119.90 (18)
N1i—Cd1—O1i116.15 (6)C4—C5—H5120.0
N1—Cd1—O1i107.52 (5)C6—C5—H5120.0
O1—Cd1—O1i124.47 (8)C7—C6—C5120.28 (16)
N1i—Cd1—O2156.02 (6)C7—C6—C17121.04 (18)
N1—Cd1—O296.89 (6)C5—C6—C17118.65 (17)
O1—Cd1—O255.61 (5)C6—C7—C1119.98 (17)
O1i—Cd1—O287.71 (6)C6—C7—H7120.0
N1i—Cd1—O2i96.89 (6)C1—C7—H7120.0
N1—Cd1—O2i156.02 (6)O2—C8—O1121.27 (17)
O1—Cd1—O2i87.71 (6)O2—C8—C1119.47 (16)
O1i—Cd1—O2i55.61 (5)O1—C8—C1119.22 (16)
O2—Cd1—O2i99.04 (8)O2—C8—Cd162.77 (10)
N1i—Cd1—C8134.67 (6)O1—C8—Cd159.14 (10)
N1—Cd1—C8110.57 (6)C1—C8—Cd1169.85 (13)
O1—Cd1—C828.25 (5)O4—C9—O3124.2 (2)
O1i—Cd1—C8105.31 (6)O4—C9—C4124.38 (18)
O2—Cd1—C827.55 (5)O3—C9—C4111.46 (18)
O2i—Cd1—C891.54 (6)N1—C10—C11122.1 (2)
N1i—Cd1—C8i110.57 (6)N1—C10—H10118.9
N1—Cd1—C8i134.67 (6)C11—C10—H10118.9
O1—Cd1—C8i105.31 (6)C12—C11—C10119.4 (2)
O1i—Cd1—C8i28.25 (5)C12—C11—H11120.3
O2—Cd1—C8i91.54 (6)C10—C11—H11120.3
O2i—Cd1—C8i27.55 (5)C11—C12—C13119.8 (2)
C8—Cd1—C8i97.07 (8)C11—C12—H12120.1
C8—O1—Cd192.62 (11)C13—C12—H12120.1
C8—O2—Cd189.68 (11)C14—C13—C12117.01 (19)
C9—O3—H3A109.5C14—C13—C15120.15 (19)
C17—O5—H5A109.5C12—C13—C15122.83 (19)
C10—N1—C14119.13 (17)N1—C14—C13122.39 (17)
C10—N1—Cd1126.54 (14)N1—C14—C14i118.52 (10)
C14—N1—Cd1114.20 (11)C13—C14—C14i119.08 (12)
C2—C1—C7119.52 (17)C15i—C15—C13120.75 (12)
C2—C1—C8120.57 (16)C15i—C15—H15119.6
C7—C1—C8119.83 (17)C13—C15—H15119.6
C1—C2—C4120.49 (16)O6—C17—O5124.15 (17)
C1—C2—H2119.8O6—C17—C6119.21 (18)
C4—C2—H2119.8O5—C17—C6116.62 (18)
C5—C4—C2119.82 (17)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.821.892.656 (2)155
O5—H5A···O6iii0.821.812.623 (2)170
C2—H2···O3ii0.932.363.262 (3)164
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C9H5O6)2(C12H8N2)]
Mr710.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)9.838 (2), 16.541 (3), 16.681 (3)
β (°) 96.32 (3)
V3)2698.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
5790, 3095, 2834
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.05
No. of reflections3095
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected bond lengths (Å) top
Cd1—N12.2671 (16)Cd1—O22.3883 (15)
Cd1—O12.3079 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.892.656 (2)155
O5—H5A···O6ii0.821.812.623 (2)170
C2—H2···O3i0.932.363.262 (3)164
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant No. 20701006), the Foundation for Excellent Youth of Jilin, China (grant No. 20070103) and the Science Foundation for Young Teachers of Northeast Normal University, China (grant No. 20070303).

References

First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J.-Y., Wei, W.-Y., Dou, X. & Chang, H.-Y. (2005). Acta Cryst. E61, m2281–m2282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. & Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185–191.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds