organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

20-O-β-D-Xylo­pyranos­yl(1→6)-β-D-gluco­pyranosyl-20(S)-protopanaxadiol methanol solvate

aDepartment of Biosynthetic Drugs, School of Pharmacy, Fudan University, 138 YiXueYuan Road, Shanghai 200032, People's Republic of China
*Correspondence e-mail: pz19444@yahoo.com.cn

(Received 25 October 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C41H70O12·CH4O, was prepared by microbial transformation. Within the steroid skeleton of the mol­ecule, three six-membered rings exhibit a chair conformation, while the five -membered ring adopts an envelope conformation. The two pyranosyl rings also adopt chair conformations. The mol­ecules are held together by an extensive O—H⋯O hydrogen-bonding network.

Related literature

For general background, see: He et al. (2005[He, K. J., Liu, Y., Yang, Y., Li, P. & Yang, L. (2005). Chem. Pharm. Bull. 53, 177-179.]); Hu et al. (2007[Hu, Y., Luan, H. W., Hao, D. C., Xiao, H. B., Yang, S. L. & Yang, L. (2007). Enzym. Microb. Technol. 40, 1358-1366.]). For related literature, see: Li et al. (2006[Li, H. Z., Zhang, Y. J. & Yang, C. R. (2006). Tianran Chanwu Yanjiu Yu Kaifa, 18, 549-554.]).

[Scheme 1]

Experimental

Crystal data
  • C41H70O12·CH4O

  • Mr = 787.01

  • Orthorhombic, P 21 21 21

  • a = 8.3044 (7) Å

  • b = 13.2927 (11) Å

  • c = 38.964 (3) Å

  • V = 4301.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.43 × 0.31 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 25549 measured reflections

  • 5269 independent reflections

  • 3467 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.099

  • S = 0.89

  • 5269 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O11i 0.82 2.38 2.996 (3) 133
O2—H2⋯O3 0.83 1.96 2.752 (3) 160
O5—H5A⋯O1i 0.84 2.14 2.839 (3) 140
O6—H6⋯O12ii 0.83 2.04 2.781 (3) 147
O7—H7⋯O8iii 0.83 2.31 3.009 (3) 142
O10—H10⋯O13iv 0.82 2.05 2.824 (4) 156
O11—H11⋯O5v 0.81 1.92 2.703 (3) 162
O12—H12A⋯O11vi 0.84 2.02 2.827 (3) 162
O13—H13A⋯O2vii 0.85 1.98 2.823 (3) 173
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) x-1, y, z; (v) x, y+1, z; (vi) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (vii) x+1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

20-O-β-D-xylopyranosyl(16)-β-D-glucopyranosyl-20(S)- protopanaxadiol is a kind of rare gensenoside, found existing in notoginseng. In recent studies, the compound has been related to an anticancer agent. It is believed to have activities including: cytotoxicity to and partial reversal of multidrug resistance of human tumor cells (He et al., 2005). Besides that, the compound may be an important precurosor metabolite of Compound K, which is also a potential anticancer agent, during the process of microbial transformation of gisenoside Rb3 (Hu et al., 2007). In this article, the crystal structure is reported.

The structure mainly consists of a protopanaxadiol moiety with a disaccharide group. The bond distances and angels are normal. The C24?C25 of 1.313 (5) Å shows a typical double bound. Within the steroid skeleton of the molecule, three six membered rings all display the chair conformation, while a five membered ring displays an envelope conformation. Two pyranosyl rings are also exist in chair conformation. Extensive O—H···O hydrogen bonding occurs in the crystal structure (Table 1), which helps to stabilize the crystal structure.

Related literature top

For general background, see: He et al. (2005); Hu et al. (2007). For related literature, see: Li et al. (2006).

Experimental top

The Fermentation broth of ginsenoside Rb3 (300 mg) was centrifuged and the precipitation was extracted with EtOH for 24 h. Removal of the EtOH from the extract under reduced pressure gave crude extract. And the extract was subjected to silica gel column chromatography, eluting with HCCl3:CH3OH (10:17:35:1) to afford 12 fractions. Recrystallizing of fractions 8~10 yielded ginsenoside Rb3 100 mg. Solvent loss technique was then employed for the growth of crystals at room temperature, using methanol as the solvent.

Refinement top

Hydroxyl H atoms were located in a Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in geometrically calculated positions with C—H = 0.93–0.98 Å and constrained to ride on their parental atoms with Uiso(H) = 1.2Ueq(C). Torsonal angles for methyl groups were refined to fit the electron density. In absence of significant anomalous scattering, Friedel pairs were meged.

Structure description top

20-O-β-D-xylopyranosyl(16)-β-D-glucopyranosyl-20(S)- protopanaxadiol is a kind of rare gensenoside, found existing in notoginseng. In recent studies, the compound has been related to an anticancer agent. It is believed to have activities including: cytotoxicity to and partial reversal of multidrug resistance of human tumor cells (He et al., 2005). Besides that, the compound may be an important precurosor metabolite of Compound K, which is also a potential anticancer agent, during the process of microbial transformation of gisenoside Rb3 (Hu et al., 2007). In this article, the crystal structure is reported.

The structure mainly consists of a protopanaxadiol moiety with a disaccharide group. The bond distances and angels are normal. The C24?C25 of 1.313 (5) Å shows a typical double bound. Within the steroid skeleton of the molecule, three six membered rings all display the chair conformation, while a five membered ring displays an envelope conformation. Two pyranosyl rings are also exist in chair conformation. Extensive O—H···O hydrogen bonding occurs in the crystal structure (Table 1), which helps to stabilize the crystal structure.

For general background, see: He et al. (2005); Hu et al. (2007). For related literature, see: Li et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis. H atoms not involved in hydrogen bonding have been omitted.
20-O-β-D-xylopyranosyl(1 6)-β-D-glucopyranosyl-20(S)-\ protopanaxadiol methanol solvate top
Crystal data top
C41H70O12·CH4OF(000) = 1720
Mr = 787.01Dx = 1.215 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3975 reflections
a = 8.3044 (7) Åθ = 2.2–20.3°
b = 13.2927 (11) ŵ = 0.09 mm1
c = 38.964 (3) ÅT = 293 K
V = 4301.1 (6) Å3Prismatic, colorless
Z = 40.43 × 0.31 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3467 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 27.0°, θmin = 1.6°
φ and ω scansh = 810
25549 measured reflectionsk = 1616
5269 independent reflectionsl = 4936
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C41H70O12·CH4OV = 4301.1 (6) Å3
Mr = 787.01Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3044 (7) ŵ = 0.09 mm1
b = 13.2927 (11) ÅT = 293 K
c = 38.964 (3) Å0.43 × 0.31 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3467 reflections with I > 2σ(I)
25549 measured reflectionsRint = 0.084
5269 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.89Δρmax = 0.21 e Å3
5269 reflectionsΔρmin = 0.16 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1448 (3)0.78606 (18)0.37658 (5)0.0555 (6)
H10.15130.73950.39030.067*
O20.0242 (2)0.70266 (16)0.15197 (5)0.0478 (6)
H20.05850.67140.13510.057*
O30.2082 (2)0.59757 (13)0.10544 (5)0.0332 (5)
O40.0549 (2)0.69683 (12)0.07077 (5)0.0355 (5)
O50.1065 (3)0.42488 (12)0.06866 (5)0.0410 (5)
H5A0.13280.41170.08910.049*
O60.1631 (3)0.45653 (15)0.02402 (6)0.0564 (7)
H60.10480.40600.02170.068*
O70.1595 (3)0.65240 (15)0.00867 (6)0.0554 (6)
H70.24450.62000.01010.066*
O80.0245 (2)0.89395 (12)0.04299 (5)0.0383 (5)
O90.0675 (3)0.99980 (13)0.00267 (5)0.0494 (6)
O100.0865 (3)1.06672 (15)0.08776 (5)0.0536 (6)
H100.07491.01050.09630.064*
O110.1701 (2)1.23411 (14)0.04880 (5)0.0436 (5)
H110.13461.29050.05170.052*
O120.0620 (3)1.27492 (13)0.00414 (6)0.0588 (7)
H12A0.12581.27200.02080.071*
O131.0284 (5)0.9088 (2)0.13462 (9)0.1152 (12)
H13A1.03340.84640.13870.138*
C10.0982 (4)0.7430 (3)0.28168 (8)0.0577 (10)
H1A0.17080.76100.26320.069*
H1B0.08660.67040.28160.069*
C20.1738 (4)0.7753 (3)0.31584 (8)0.0598 (10)
H2A0.19780.84670.31500.072*
H2B0.27440.73950.31910.072*
C30.0647 (4)0.7546 (2)0.34554 (8)0.0437 (8)
H30.04900.68160.34690.052*
C40.1004 (4)0.8032 (2)0.34246 (7)0.0388 (7)
C50.1721 (3)0.7717 (2)0.30679 (7)0.0353 (7)
H50.17910.69820.30810.042*
C60.3460 (4)0.8051 (3)0.30089 (8)0.0550 (9)
H6A0.34820.87640.29560.066*
H6B0.40800.79450.32170.066*
C70.4216 (4)0.7463 (3)0.27159 (8)0.0556 (10)
H7A0.42760.67600.27810.067*
H7B0.53090.77020.26820.067*
C80.3295 (3)0.7549 (2)0.23745 (7)0.0361 (7)
C90.1476 (3)0.7339 (2)0.24388 (7)0.0326 (7)
H90.14290.66270.25030.039*
C100.0674 (4)0.7909 (2)0.27473 (7)0.0368 (7)
C110.0535 (4)0.7403 (2)0.21037 (7)0.0433 (8)
H11A0.05750.72220.21500.052*
H11B0.05420.80980.20270.052*
C120.1155 (3)0.6744 (2)0.18123 (7)0.0343 (7)
H120.09240.60390.18670.041*
C130.2970 (3)0.6870 (2)0.17658 (7)0.0299 (6)
H130.31480.75650.16910.036*
C140.3875 (3)0.6743 (2)0.21106 (7)0.0348 (7)
C150.5622 (4)0.6825 (3)0.19860 (8)0.0508 (9)
H15A0.63530.65250.21510.061*
H15B0.59210.75230.19520.061*
C160.5670 (4)0.6248 (3)0.16445 (8)0.0510 (9)
H16A0.61020.55770.16790.061*
H16B0.63440.65980.14800.061*
C170.3895 (3)0.6188 (2)0.15113 (7)0.0349 (7)
H170.35290.54990.15550.042*
C180.3600 (5)0.8615 (2)0.22343 (9)0.0596 (10)
H18A0.28320.87620.20570.089*
H18B0.46690.86520.21410.089*
H18C0.34900.90950.24170.089*
C190.0399 (5)0.9034 (2)0.26662 (9)0.0659 (11)
H19A0.00070.91030.24360.099*
H19B0.13970.93920.26890.099*
H19C0.03780.93060.28230.099*
C200.3724 (3)0.6361 (2)0.11227 (7)0.0355 (7)
C210.4888 (4)0.5676 (2)0.09287 (8)0.0553 (9)
H21A0.47760.49980.10110.083*
H21B0.59730.59010.09660.083*
H21C0.46470.56980.06880.083*
C220.3795 (4)0.7460 (2)0.10016 (8)0.0459 (8)
H22A0.36570.74600.07540.055*
H22B0.28710.78050.10980.055*
C230.5271 (5)0.8082 (3)0.10821 (10)0.0629 (10)
H23A0.53200.82080.13270.075*
H23B0.62290.77110.10170.075*
C240.5236 (4)0.9067 (3)0.08935 (10)0.0587 (10)
H240.54100.90300.06580.070*
C250.4993 (4)0.9973 (3)0.10175 (9)0.0549 (9)
C260.4625 (6)1.0201 (3)0.13858 (11)0.0854 (13)
H26A0.35431.04500.14050.128*
H26B0.53621.07020.14690.128*
H26C0.47340.96000.15200.128*
C270.5084 (5)1.0876 (3)0.07860 (10)0.0718 (12)
H27A0.60621.12380.08310.108*
H27B0.41781.13070.08280.108*
H27C0.50711.06600.05510.108*
C280.2058 (4)0.7593 (3)0.37114 (8)0.0678 (11)
H28A0.30920.79160.37090.102*
H28B0.21940.68840.36750.102*
H28C0.15490.77050.39290.102*
C290.0899 (5)0.9178 (2)0.34767 (9)0.0641 (11)
H29A0.01380.94130.34030.096*
H29B0.17250.95020.33440.096*
H29C0.10450.93330.37150.096*
C300.3678 (4)0.5653 (2)0.22474 (8)0.0505 (9)
H30A0.39150.51840.20670.076*
H30B0.25910.55550.23240.076*
H30C0.44060.55470.24350.076*
C420.8920 (6)0.9444 (3)0.15107 (13)0.1016 (17)
H42A0.84030.89010.16300.152*
H42B0.81920.97210.13440.152*
H42C0.92200.99570.16720.152*
C1A0.1450 (3)0.60535 (18)0.07231 (7)0.0301 (7)
H1A10.23110.60510.05510.036*
C2A0.0281 (4)0.52007 (18)0.06611 (7)0.0316 (7)
H2A10.05850.52350.08320.038*
C3A0.0432 (4)0.53004 (18)0.03063 (7)0.0331 (7)
H3A0.04300.52290.01360.040*
C4A0.1214 (4)0.6325 (2)0.02629 (7)0.0366 (7)
H4A0.21990.63550.04010.044*
C5A0.0067 (3)0.71584 (18)0.03752 (7)0.0317 (7)
H5A10.08300.71980.02120.038*
C6A0.0913 (4)0.8157 (2)0.03872 (9)0.0416 (8)
H6A10.15080.82620.01760.050*
H6A20.16700.81670.05770.050*
C1B0.0405 (4)0.98966 (18)0.03842 (8)0.0361 (7)
H1B10.14220.99590.05100.043*
C2B0.0804 (4)1.06560 (19)0.05159 (7)0.0337 (7)
H2B10.18731.04870.04260.040*
C3B0.0367 (4)1.17108 (18)0.04037 (7)0.0347 (7)
H3B0.05721.19340.05360.042*
C4B0.0042 (4)1.17607 (19)0.00276 (8)0.0400 (8)
H4B0.09351.16400.01070.048*
C5B0.1275 (5)1.0974 (2)0.00591 (9)0.0551 (10)
H5B10.22591.11040.00670.066*
H5B20.15211.10020.03020.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0617 (15)0.0692 (16)0.0356 (13)0.0109 (13)0.0146 (11)0.0030 (11)
O20.0348 (12)0.0773 (15)0.0312 (11)0.0163 (11)0.0092 (10)0.0133 (11)
O30.0385 (11)0.0318 (10)0.0293 (11)0.0001 (9)0.0021 (9)0.0018 (9)
O40.0495 (12)0.0212 (9)0.0356 (11)0.0047 (9)0.0054 (10)0.0023 (9)
O50.0643 (15)0.0236 (10)0.0350 (11)0.0072 (10)0.0016 (11)0.0019 (9)
O60.0563 (15)0.0287 (11)0.0840 (18)0.0062 (11)0.0208 (14)0.0112 (12)
O70.0634 (16)0.0416 (12)0.0613 (16)0.0077 (12)0.0271 (13)0.0009 (11)
O80.0368 (11)0.0198 (9)0.0585 (14)0.0011 (9)0.0072 (10)0.0026 (9)
O90.0730 (16)0.0220 (10)0.0533 (14)0.0001 (11)0.0240 (13)0.0018 (10)
O100.0816 (17)0.0382 (12)0.0410 (13)0.0050 (12)0.0082 (13)0.0031 (10)
O110.0510 (13)0.0217 (10)0.0580 (14)0.0023 (10)0.0099 (11)0.0066 (10)
O120.0804 (17)0.0240 (11)0.0721 (16)0.0042 (11)0.0285 (14)0.0032 (11)
O130.132 (3)0.078 (2)0.136 (3)0.024 (2)0.057 (2)0.036 (2)
C10.0291 (17)0.105 (3)0.0393 (19)0.0002 (19)0.0025 (16)0.012 (2)
C20.0330 (18)0.106 (3)0.041 (2)0.003 (2)0.0072 (16)0.007 (2)
C30.0475 (19)0.0480 (18)0.0355 (18)0.0041 (16)0.0082 (16)0.0025 (15)
C40.0415 (18)0.0449 (18)0.0299 (16)0.0049 (15)0.0018 (14)0.0048 (14)
C50.0366 (17)0.0378 (16)0.0315 (16)0.0015 (14)0.0014 (13)0.0074 (14)
C60.041 (2)0.087 (3)0.0374 (19)0.0151 (19)0.0019 (16)0.0193 (19)
C70.0280 (17)0.099 (3)0.0398 (19)0.0020 (19)0.0025 (15)0.019 (2)
C80.0297 (16)0.0453 (18)0.0332 (16)0.0040 (14)0.0014 (13)0.0067 (14)
C90.0279 (15)0.0382 (16)0.0316 (16)0.0010 (13)0.0045 (13)0.0024 (13)
C100.0335 (17)0.0454 (18)0.0315 (16)0.0072 (14)0.0002 (13)0.0004 (14)
C110.0276 (16)0.066 (2)0.0360 (18)0.0071 (16)0.0014 (14)0.0041 (16)
C120.0250 (15)0.0467 (18)0.0311 (16)0.0025 (13)0.0038 (13)0.0037 (14)
C130.0284 (15)0.0306 (15)0.0306 (16)0.0018 (13)0.0016 (13)0.0036 (13)
C140.0273 (16)0.0434 (17)0.0339 (17)0.0031 (14)0.0044 (13)0.0042 (14)
C150.0286 (18)0.080 (2)0.043 (2)0.0047 (18)0.0049 (15)0.0126 (19)
C160.0325 (18)0.070 (2)0.051 (2)0.0158 (18)0.0010 (16)0.0043 (18)
C170.0328 (16)0.0348 (16)0.0372 (17)0.0065 (13)0.0019 (14)0.0043 (14)
C180.075 (3)0.049 (2)0.054 (2)0.023 (2)0.022 (2)0.0168 (18)
C190.101 (3)0.055 (2)0.041 (2)0.033 (2)0.015 (2)0.0047 (17)
C200.0318 (16)0.0403 (16)0.0345 (17)0.0049 (14)0.0002 (14)0.0065 (14)
C210.054 (2)0.071 (2)0.042 (2)0.0104 (19)0.0031 (18)0.0154 (18)
C220.048 (2)0.054 (2)0.0360 (18)0.0120 (17)0.0008 (15)0.0009 (16)
C230.060 (2)0.066 (2)0.063 (2)0.015 (2)0.001 (2)0.002 (2)
C240.064 (2)0.056 (2)0.056 (2)0.018 (2)0.001 (2)0.0047 (19)
C250.048 (2)0.061 (2)0.056 (2)0.0144 (18)0.0009 (18)0.001 (2)
C260.091 (3)0.078 (3)0.087 (3)0.011 (3)0.004 (3)0.005 (3)
C270.066 (3)0.061 (2)0.089 (3)0.011 (2)0.016 (2)0.012 (2)
C280.055 (2)0.114 (3)0.0339 (19)0.005 (2)0.0049 (17)0.003 (2)
C290.089 (3)0.054 (2)0.049 (2)0.020 (2)0.025 (2)0.0180 (18)
C300.058 (2)0.053 (2)0.0408 (19)0.0216 (18)0.0010 (17)0.0010 (16)
C420.098 (4)0.079 (3)0.128 (4)0.024 (3)0.011 (4)0.027 (3)
C1A0.0401 (17)0.0214 (14)0.0289 (16)0.0023 (13)0.0021 (14)0.0015 (12)
C2A0.0420 (17)0.0181 (13)0.0348 (16)0.0017 (13)0.0071 (14)0.0037 (12)
C3A0.0397 (17)0.0236 (14)0.0359 (17)0.0028 (13)0.0034 (14)0.0079 (13)
C4A0.0425 (18)0.0263 (14)0.0410 (18)0.0012 (14)0.0051 (15)0.0031 (13)
C5A0.0357 (16)0.0266 (14)0.0329 (16)0.0017 (13)0.0021 (13)0.0001 (12)
C6A0.0417 (18)0.0252 (15)0.058 (2)0.0049 (14)0.0047 (16)0.0017 (15)
C1B0.0426 (18)0.0196 (14)0.0460 (19)0.0010 (13)0.0028 (15)0.0020 (13)
C2B0.0388 (17)0.0283 (15)0.0340 (17)0.0006 (13)0.0004 (14)0.0013 (13)
C3B0.0406 (18)0.0214 (14)0.0420 (18)0.0009 (13)0.0003 (15)0.0062 (13)
C4B0.055 (2)0.0183 (14)0.0469 (19)0.0024 (14)0.0043 (16)0.0011 (13)
C5B0.079 (3)0.0264 (16)0.059 (2)0.0001 (17)0.028 (2)0.0042 (16)
Geometric parameters (Å, º) top
O1—C31.442 (3)C16—C171.565 (4)
O1—H10.8206C16—H16A0.9700
O2—C121.419 (3)C16—H16B0.9700
O2—H20.8267C17—C201.538 (4)
O3—C1A1.398 (3)C17—H170.9800
O3—C201.481 (3)C18—H18A0.9600
O4—C5A1.416 (3)C18—H18B0.9600
O4—C1A1.429 (3)C18—H18C0.9600
O5—C2A1.426 (3)C19—H19A0.9600
O5—H5A0.8444C19—H19B0.9600
O6—C3A1.418 (3)C19—H19C0.9600
O6—H60.8326C20—C211.528 (4)
O7—C4A1.423 (3)C20—C221.536 (4)
O7—H70.8293C21—H21A0.9600
O8—C1B1.393 (3)C21—H21B0.9600
O8—C6A1.426 (3)C21—H21C0.9600
O9—C1B1.418 (3)C22—C231.512 (4)
O9—C5B1.429 (3)C22—H22A0.9700
O10—C2B1.410 (3)C22—H22B0.9700
O10—H100.8225C23—C241.501 (5)
O11—C3B1.427 (3)C23—H23A0.9700
O11—H110.8128C23—H23B0.9700
O12—C4B1.424 (3)C24—C251.313 (5)
O12—H12A0.8392C24—H240.9300
O13—C421.385 (5)C25—C261.498 (5)
O13—H13A0.8463C25—C271.503 (5)
C1—C21.533 (4)C26—H26A0.9600
C1—C101.539 (4)C26—H26B0.9600
C1—H1A0.9700C26—H26C0.9600
C1—H1B0.9700C27—H27A0.9600
C2—C31.495 (4)C27—H27B0.9600
C2—H2A0.9700C27—H27C0.9600
C2—H2B0.9700C28—H28A0.9600
C3—C41.520 (4)C28—H28B0.9600
C3—H30.9800C28—H28C0.9600
C4—C281.535 (4)C29—H29A0.9600
C4—C291.539 (4)C29—H29B0.9600
C4—C51.569 (4)C29—H29C0.9600
C5—C61.529 (4)C30—H30A0.9600
C5—C101.543 (4)C30—H30B0.9600
C5—H50.9800C30—H30C0.9600
C6—C71.519 (4)C42—H42A0.9600
C6—H6A0.9700C42—H42B0.9600
C6—H6B0.9700C42—H42C0.9600
C7—C81.539 (4)C1A—C2A1.511 (4)
C7—H7A0.9700C1A—H1A10.9800
C7—H7B0.9700C2A—C3A1.510 (4)
C8—C181.539 (4)C2A—H2A10.9800
C8—C91.557 (4)C3A—C4A1.518 (4)
C8—C141.562 (4)C3A—H3A0.9800
C9—C111.524 (4)C4A—C5A1.526 (4)
C9—C101.569 (4)C4A—H4A0.9800
C9—H90.9800C5A—C6A1.503 (4)
C10—C191.545 (4)C5A—H5A10.9800
C11—C121.524 (4)C6A—H6A10.9700
C11—H11A0.9700C6A—H6A20.9700
C11—H11B0.9700C1B—C2B1.513 (4)
C12—C131.528 (4)C1B—H1B10.9800
C12—H120.9800C2B—C3B1.513 (4)
C13—C171.547 (4)C2B—H2B10.9800
C13—C141.549 (4)C3B—C4B1.506 (4)
C13—H130.9800C3B—H3B0.9800
C14—C151.534 (4)C4B—C5B1.502 (4)
C14—C301.552 (4)C4B—H4B0.9800
C15—C161.536 (4)C5B—H5B10.9700
C15—H15A0.9700C5B—H5B20.9700
C15—H15B0.9700
C3—O1—H1111.1O3—C20—C17102.1 (2)
C12—O2—H2108.6C21—C20—C17109.8 (2)
C1A—O3—C20119.1 (2)C22—C20—C17116.2 (2)
C5A—O4—C1A112.29 (19)C20—C21—H21A109.5
C2A—O5—H5A111.6C20—C21—H21B109.5
C3A—O6—H699.6H21A—C21—H21B109.5
C4A—O7—H799.1C20—C21—H21C109.5
C1B—O8—C6A113.0 (2)H21A—C21—H21C109.5
C1B—O9—C5B111.8 (2)H21B—C21—H21C109.5
C2B—O10—H10112.8C23—C22—C20119.2 (3)
C3B—O11—H11106.9C23—C22—H22A107.5
C4B—O12—H12A108.5C20—C22—H22A107.5
C42—O13—H13A106.7C23—C22—H22B107.5
C2—C1—C10113.8 (3)C20—C22—H22B107.5
C2—C1—H1A108.8H22A—C22—H22B107.0
C10—C1—H1A108.8C24—C23—C22111.1 (3)
C2—C1—H1B108.8C24—C23—H23A109.4
C10—C1—H1B108.8C22—C23—H23A109.4
H1A—C1—H1B107.7C24—C23—H23B109.4
C3—C2—C1111.8 (3)C22—C23—H23B109.4
C3—C2—H2A109.2H23A—C23—H23B108.0
C1—C2—H2A109.2C25—C24—C23128.5 (4)
C3—C2—H2B109.2C25—C24—H24115.7
C1—C2—H2B109.2C23—C24—H24115.7
H2A—C2—H2B107.9C24—C25—C26124.7 (4)
O1—C3—C2108.4 (3)C24—C25—C27120.3 (3)
O1—C3—C4111.0 (2)C26—C25—C27115.0 (3)
C2—C3—C4114.0 (3)C25—C26—H26A109.5
O1—C3—H3107.7C25—C26—H26B109.5
C2—C3—H3107.7H26A—C26—H26B109.5
C4—C3—H3107.7C25—C26—H26C109.5
C3—C4—C28107.2 (3)H26A—C26—H26C109.5
C3—C4—C29111.0 (3)H26B—C26—H26C109.5
C28—C4—C29108.2 (3)C25—C27—H27A109.5
C3—C4—C5107.4 (2)C25—C27—H27B109.5
C28—C4—C5109.1 (2)H27A—C27—H27B109.5
C29—C4—C5113.7 (3)C25—C27—H27C109.5
C6—C5—C10111.3 (3)H27A—C27—H27C109.5
C6—C5—C4114.5 (2)H27B—C27—H27C109.5
C10—C5—C4117.3 (2)C4—C28—H28A109.5
C6—C5—H5104.0C4—C28—H28B109.5
C10—C5—H5104.0H28A—C28—H28B109.5
C4—C5—H5104.0C4—C28—H28C109.5
C7—C6—C5110.7 (3)H28A—C28—H28C109.5
C7—C6—H6A109.5H28B—C28—H28C109.5
C5—C6—H6A109.5C4—C29—H29A109.5
C7—C6—H6B109.5C4—C29—H29B109.5
C5—C6—H6B109.5H29A—C29—H29B109.5
H6A—C6—H6B108.1C4—C29—H29C109.5
C6—C7—C8114.0 (3)H29A—C29—H29C109.5
C6—C7—H7A108.8H29B—C29—H29C109.5
C8—C7—H7A108.8C14—C30—H30A109.5
C6—C7—H7B108.8C14—C30—H30B109.5
C8—C7—H7B108.8H30A—C30—H30B109.5
H7A—C7—H7B107.7C14—C30—H30C109.5
C7—C8—C18107.1 (3)H30A—C30—H30C109.5
C7—C8—C9109.3 (2)H30B—C30—H30C109.5
C18—C8—C9112.5 (3)O13—C42—H42A109.5
C7—C8—C14111.4 (3)O13—C42—H42B109.5
C18—C8—C14110.3 (2)H42A—C42—H42B109.5
C9—C8—C14106.4 (2)O13—C42—H42C109.5
C11—C9—C8110.4 (2)H42A—C42—H42C109.5
C11—C9—C10114.3 (2)H42B—C42—H42C109.5
C8—C9—C10116.6 (2)O3—C1A—O4107.4 (2)
C11—C9—H9104.7O3—C1A—C2A109.5 (2)
C8—C9—H9104.7O4—C1A—C2A107.2 (2)
C10—C9—H9104.7O3—C1A—H1A1110.9
C1—C10—C5107.0 (2)O4—C1A—H1A1110.9
C1—C10—C19107.7 (3)C2A—C1A—H1A1110.9
C5—C10—C19114.1 (3)O5—C2A—C3A108.7 (2)
C1—C10—C9108.3 (2)O5—C2A—C1A111.2 (2)
C5—C10—C9107.5 (2)C3A—C2A—C1A109.4 (2)
C19—C10—C9111.9 (2)O5—C2A—H2A1109.2
C12—C11—C9115.7 (2)C3A—C2A—H2A1109.2
C12—C11—H11A108.4C1A—C2A—H2A1109.2
C9—C11—H11A108.4O6—C3A—C2A112.4 (2)
C12—C11—H11B108.4O6—C3A—C4A107.3 (2)
C9—C11—H11B108.4C2A—C3A—C4A110.4 (2)
H11A—C11—H11B107.4O6—C3A—H3A108.9
O2—C12—C11105.4 (2)C2A—C3A—H3A108.9
O2—C12—C13113.7 (2)C4A—C3A—H3A108.9
C11—C12—C13111.0 (2)O7—C4A—C3A111.6 (2)
O2—C12—H12108.8O7—C4A—C5A106.1 (2)
C11—C12—H12108.8C3A—C4A—C5A110.6 (2)
C13—C12—H12108.8O7—C4A—H4A109.5
C12—C13—C17120.1 (2)C3A—C4A—H4A109.5
C12—C13—C14111.3 (2)C5A—C4A—H4A109.5
C17—C13—C14104.6 (2)O4—C5A—C6A107.4 (2)
C12—C13—H13106.7O4—C5A—C4A111.0 (2)
C17—C13—H13106.7C6A—C5A—C4A111.0 (2)
C14—C13—H13106.7O4—C5A—H5A1109.1
C15—C14—C13100.2 (2)C6A—C5A—H5A1109.1
C15—C14—C30105.9 (3)C4A—C5A—H5A1109.1
C13—C14—C30110.4 (2)O8—C6A—C5A109.5 (2)
C15—C14—C8116.8 (2)O8—C6A—H6A1109.8
C13—C14—C8110.3 (2)C5A—C6A—H6A1109.8
C30—C14—C8112.5 (2)O8—C6A—H6A2109.8
C14—C15—C16105.3 (2)C5A—C6A—H6A2109.8
C14—C15—H15A110.7H6A1—C6A—H6A2108.2
C16—C15—H15A110.7O8—C1B—O9105.9 (2)
C14—C15—H15B110.7O8—C1B—C2B108.0 (2)
C16—C15—H15B110.7O9—C1B—C2B112.0 (2)
H15A—C15—H15B108.8O8—C1B—H1B1110.3
C15—C16—C17106.7 (2)O9—C1B—H1B1110.3
C15—C16—H16A110.4C2B—C1B—H1B1110.3
C17—C16—H16A110.4O10—C2B—C3B106.7 (2)
C15—C16—H16B110.4O10—C2B—C1B111.7 (2)
C17—C16—H16B110.4C3B—C2B—C1B111.2 (2)
H16A—C16—H16B108.6O10—C2B—H2B1109.1
C20—C17—C13119.8 (2)C3B—C2B—H2B1109.1
C20—C17—C16114.0 (2)C1B—C2B—H2B1109.1
C13—C17—C16103.0 (2)O11—C3B—C4B111.9 (2)
C20—C17—H17106.4O11—C3B—C2B106.9 (2)
C13—C17—H17106.4C4B—C3B—C2B112.1 (2)
C16—C17—H17106.4O11—C3B—H3B108.6
C8—C18—H18A109.5C4B—C3B—H3B108.6
C8—C18—H18B109.5C2B—C3B—H3B108.6
H18A—C18—H18B109.5O12—C4B—C5B111.7 (3)
C8—C18—H18C109.5O12—C4B—C3B107.5 (2)
H18A—C18—H18C109.5C5B—C4B—C3B110.0 (3)
H18B—C18—H18C109.5O12—C4B—H4B109.2
C10—C19—H19A109.5C5B—C4B—H4B109.2
C10—C19—H19B109.5C3B—C4B—H4B109.2
H19A—C19—H19B109.5O9—C5B—C4B110.0 (3)
C10—C19—H19C109.5O9—C5B—H5B1109.7
H19A—C19—H19C109.5C4B—C5B—H5B1109.7
H19B—C19—H19C109.5O9—C5B—H5B2109.7
O3—C20—C21106.7 (2)C4B—C5B—H5B2109.7
O3—C20—C22108.0 (2)H5B1—C5B—H5B2108.2
C21—C20—C22113.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11i0.822.382.996 (3)133
O2—H2···O30.831.962.752 (3)160
O5—H5A···O1i0.842.142.839 (3)140
O6—H6···O12ii0.832.042.781 (3)147
O7—H7···O8iii0.832.313.009 (3)142
O10—H10···O13iv0.822.052.824 (4)156
O11—H11···O5v0.811.922.703 (3)162
O12—H12A···O11vi0.842.022.827 (3)162
O13—H13A···O2vii0.851.982.823 (3)173
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x1/2, y+3/2, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x1/2, y+5/2, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC41H70O12·CH4O
Mr787.01
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.3044 (7), 13.2927 (11), 38.964 (3)
V3)4301.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.31 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25549, 5269, 3467
Rint0.084
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 0.89
No. of reflections5269
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11i0.822.382.996 (3)133
O2—H2···O30.831.962.752 (3)160
O5—H5A···O1i0.842.142.839 (3)140
O6—H6···O12ii0.832.042.781 (3)147
O7—H7···O8iii0.832.313.009 (3)142
O10—H10···O13iv0.822.052.824 (4)156
O11—H11···O5v0.811.922.703 (3)162
O12—H12A···O11vi0.842.022.827 (3)162
O13—H13A···O2vii0.851.982.823 (3)173
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x1/2, y+3/2, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x1/2, y+5/2, z; (vii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the SK Shanghai Foundation. We sincerely thank Dr J. Sun of Shanghai Institute of Organic Chemistry for assistance with the data collection.

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, K. J., Liu, Y., Yang, Y., Li, P. & Yang, L. (2005). Chem. Pharm. Bull. 53, 177–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y., Luan, H. W., Hao, D. C., Xiao, H. B., Yang, S. L. & Yang, L. (2007). Enzym. Microb. Technol. 40, 1358–1366.  Web of Science CrossRef CAS Google Scholar
First citationLi, H. Z., Zhang, Y. J. & Yang, C. R. (2006). Tianran Chanwu Yanjiu Yu Kaifa, 18, 549–554.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds