organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Anilino-4,6-di­methyl­pyrimidinium chloro­acetate

aSchool of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and bKey Laboratory of Tropical Biological Resources of the Chinese Education Ministry, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: ljcfyh@263.net

(Received 13 November 2007; accepted 29 November 2007; online 21 December 2007)

In the crystal structure of the title compound, C12H14N3+·C2H2ClO2, the chloro­acetate anion is linked to the N-(4,6-dimethyl­pyrimidin-2-yl)aniline cation by N—H⋯O hydrogen bonding. Within the cation, the pyrimidine ring is twisted with respect to the phenyl ring by a dihedral angle of 7.59 (4)°.

Related literature

For general background, see: Xue et al. (2000[Xue, S. J., Wang, T. & Liao, Z. R. (2000). Chin. J. Org. Chem. 20, 731-734.]); Li et al. (1996[Li, B., Lin, B.-D., Liu, C.-L. & Liu, W.-C. (1996). J. Synth. Chem. 4, 176-179.]); Stock et al. (1997[Stock, D., Briggs, G. & Simpson, D. J. (1997). World Patent WO 9 740 682.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N3+·C2H2ClO2

  • Mr = 293.75

  • Tetragonal, P 42 /n

  • a = 19.604 (4) Å

  • c = 7.542 (3) Å

  • V = 2898.6 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.68 × 0.35 × 0.33 mm

Data collection
  • Bruker APEX area-dectector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.917

  • 9030 measured reflections

  • 2541 independent reflections

  • 1991 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.141

  • S = 1.03

  • 2541 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.98 2.833 (3) 173
N2—H2A⋯O2i 0.98 (4) 1.61 (4) 2.572 (2) 166 (4)
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 2-anilino-4,6-dimethylpyrimidine has a good and wide fungicidal activity (Xue et al., 2000; Li et al., 1996). The pyriminethanil could be combined with certain acids to form pyrimethanil salts that have a reduced vapor pressure that increased the persistence of the compounds on the crop to be protected from fungal attack, and increased activity (Stock et al., 1997).

The crystal of the title compound consists of 2-phenylamino-4,6-dimethylpyrimidinium cations and chloroacetate anions (Fig. 1). All bond lengths and angles are normal. The atoms of the pyrimidine ring are coplanar, the largest deviation from the mean plane being 0.005 (2)Å (N3). The dihedral angle between the pyrimidine and phenyl rings is 7.59 (4)°. The cation links with the anion via N—H···O hydrogen bonding (Table 1, Fig. 2).

Related literature top

For general background, see: Xue et al. (2000); Li et al. (1996); Stock et al. (1997).

Experimental top

The title compound was prepared by the reaction of N-(4,6-dimethylpyrimidin-2-yl)aniline (0.01 mol) and chloroacetic acid (0.01 mol) in anhydrous alcohol at room temperature for 1 h. Single crystals of suitable for X-ray measurements were obtained by by slow evaporation of anhydrous alcohol at room temperature.

Refinement top

The H atoms attached to N2 was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, N—H = 0.86 Å, and included in final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H atoms.

Structure description top

The 2-anilino-4,6-dimethylpyrimidine has a good and wide fungicidal activity (Xue et al., 2000; Li et al., 1996). The pyriminethanil could be combined with certain acids to form pyrimethanil salts that have a reduced vapor pressure that increased the persistence of the compounds on the crop to be protected from fungal attack, and increased activity (Stock et al., 1997).

The crystal of the title compound consists of 2-phenylamino-4,6-dimethylpyrimidinium cations and chloroacetate anions (Fig. 1). All bond lengths and angles are normal. The atoms of the pyrimidine ring are coplanar, the largest deviation from the mean plane being 0.005 (2)Å (N3). The dihedral angle between the pyrimidine and phenyl rings is 7.59 (4)°. The cation links with the anion via N—H···O hydrogen bonding (Table 1, Fig. 2).

For general background, see: Xue et al. (2000); Li et al. (1996); Stock et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-II (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 35% probability ellipsoid.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the c axis with 35% probability ellipsoid. Hydrogen bonds are shown as dashed lines.
2-Anilino-4,6-dimethylpyrimidinium chloroacetate top
Crystal data top
C12H14N3+·C2H2ClO2Dx = 1.346 Mg m3
Mr = 293.75Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2794 reflections
Hall symbol: -P 4bcθ = 2.6–24.3°
a = 19.604 (4) ŵ = 0.27 mm1
c = 7.542 (3) ÅT = 293 K
V = 2898.6 (13) Å3Block, colorless
Z = 80.68 × 0.35 × 0.33 mm
F(000) = 1232
Data collection top
Bruker APEX area-dectector
diffractometer
2541 independent reflections
Radiation source: fine-focus sealed tube1991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω–scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 237
Tmin = 0.839, Tmax = 0.917k = 2121
9030 measured reflectionsl = 88
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0747P)2 + 1.1159P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max = 0.003
wR(F2) = 0.141Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.37 e Å3
2541 reflectionsExtinction correction: SHELXL
188 parametersExtinction coefficient: 0.025 (2)
0 restraints
Crystal data top
C12H14N3+·C2H2ClO2Z = 8
Mr = 293.75Mo Kα radiation
Tetragonal, P42/nµ = 0.27 mm1
a = 19.604 (4) ÅT = 293 K
c = 7.542 (3) Å0.68 × 0.35 × 0.33 mm
V = 2898.6 (13) Å3
Data collection top
Bruker APEX area-dectector
diffractometer
2541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1991 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.917Rint = 0.030
9030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
2541 reflectionsΔρmin = 0.37 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87158 (3)0.61011 (4)0.05379 (12)0.0780 (3)
N20.56643 (10)0.61105 (9)0.9030 (2)0.0464 (5)
N30.49318 (9)0.52683 (9)0.7827 (2)0.0478 (5)
O10.73448 (9)0.56305 (9)0.0534 (3)0.0768 (6)
C70.55484 (10)0.54846 (11)0.8321 (3)0.0426 (5)
C100.44090 (11)0.57048 (12)0.8040 (3)0.0483 (6)
O20.68383 (9)0.66274 (9)0.0258 (3)0.0831 (7)
C10.61714 (11)0.44082 (11)0.7549 (3)0.0442 (5)
N10.61051 (9)0.50841 (9)0.8161 (3)0.0490 (5)
H1A0.64810.52720.84860.059*
C130.73486 (12)0.62373 (12)0.0210 (3)0.0541 (6)
C80.51423 (12)0.65435 (11)0.9262 (3)0.0484 (6)
C60.68113 (12)0.41108 (12)0.7776 (3)0.0543 (6)
H60.71620.43600.82960.065*
C20.56552 (12)0.40296 (12)0.6751 (3)0.0528 (6)
H20.52270.42220.65750.063*
C30.57816 (14)0.33658 (12)0.6220 (3)0.0607 (7)
H30.54340.31130.56980.073*
C90.44996 (11)0.63484 (12)0.8768 (3)0.0525 (6)
H90.41310.66410.89180.063*
C140.79893 (13)0.66082 (13)0.0334 (5)0.0778 (9)
H14A0.79060.68310.14620.093*
H14B0.80810.69620.05320.093*
C50.69275 (14)0.34523 (13)0.7238 (4)0.0681 (8)
H50.73560.32580.74010.082*
C40.64120 (14)0.30741 (13)0.6452 (4)0.0680 (8)
H40.64920.26280.60870.082*
C120.37230 (12)0.54599 (14)0.7465 (4)0.0608 (7)
H12A0.37050.54440.61940.091*
H12B0.33790.57660.78960.091*
H12C0.36430.50120.79360.091*
C110.53038 (14)0.72231 (12)1.0070 (4)0.0633 (7)
H11A0.55050.71571.12170.095*
H11B0.48920.74841.01900.095*
H11C0.56180.74640.93210.095*
H2A0.614 (2)0.6267 (18)0.915 (5)0.118 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0474 (4)0.0703 (5)0.1163 (7)0.0027 (3)0.0106 (4)0.0018 (4)
N20.0411 (10)0.0406 (10)0.0575 (12)0.0030 (8)0.0024 (8)0.0031 (8)
N30.0413 (10)0.0492 (11)0.0528 (11)0.0028 (8)0.0031 (8)0.0022 (8)
O10.0539 (11)0.0468 (10)0.1298 (18)0.0024 (8)0.0187 (10)0.0190 (10)
C70.0395 (11)0.0417 (12)0.0467 (12)0.0033 (9)0.0014 (9)0.0022 (9)
C100.0415 (12)0.0543 (14)0.0490 (13)0.0009 (10)0.0019 (10)0.0032 (10)
O20.0454 (10)0.0489 (10)0.155 (2)0.0019 (8)0.0176 (11)0.0166 (11)
C10.0457 (12)0.0406 (12)0.0463 (12)0.0048 (9)0.0017 (9)0.0004 (9)
N10.0375 (10)0.0430 (10)0.0665 (13)0.0031 (8)0.0052 (8)0.0055 (9)
C130.0460 (13)0.0427 (14)0.0734 (16)0.0030 (10)0.0047 (11)0.0029 (11)
C80.0491 (13)0.0442 (12)0.0520 (14)0.0003 (10)0.0002 (10)0.0010 (10)
C60.0452 (13)0.0476 (13)0.0701 (16)0.0016 (10)0.0045 (11)0.0058 (11)
C20.0447 (13)0.0535 (14)0.0603 (15)0.0049 (10)0.0022 (11)0.0064 (11)
C30.0593 (15)0.0519 (14)0.0707 (17)0.0116 (12)0.0018 (13)0.0128 (12)
C90.0427 (13)0.0512 (13)0.0635 (15)0.0040 (10)0.0017 (11)0.0016 (11)
C140.0483 (15)0.0464 (14)0.139 (3)0.0015 (11)0.0165 (16)0.0052 (16)
C50.0552 (15)0.0543 (15)0.095 (2)0.0090 (12)0.0048 (14)0.0090 (14)
C40.0685 (17)0.0450 (14)0.091 (2)0.0015 (12)0.0033 (15)0.0144 (13)
C120.0430 (13)0.0668 (16)0.0727 (17)0.0024 (11)0.0064 (12)0.0068 (13)
C110.0610 (15)0.0468 (14)0.0821 (18)0.0018 (11)0.0048 (14)0.0108 (12)
Geometric parameters (Å, º) top
Cl1—C141.744 (3)C6—C51.372 (3)
N2—C81.341 (3)C6—H60.9300
N2—C71.358 (3)C2—C31.384 (3)
N2—H2A0.98 (4)C2—H20.9300
N3—C71.334 (3)C3—C41.373 (4)
N3—C101.345 (3)C3—H30.9300
O1—C131.214 (3)C9—H90.9300
C7—N11.350 (3)C14—H14A0.9700
C10—C91.387 (3)C14—H14B0.9700
C10—C121.492 (3)C5—C41.386 (4)
O2—C131.260 (3)C5—H50.9300
C1—C21.392 (3)C4—H40.9300
C1—C61.394 (3)C12—H12A0.9600
C1—N11.409 (3)C12—H12B0.9600
N1—H1A0.8600C12—H12C0.9600
C13—C141.508 (3)C11—H11A0.9600
C8—C91.368 (3)C11—H11B0.9600
C8—C111.499 (3)C11—H11C0.9600
C8—N2—C7119.73 (19)C4—C3—H3119.5
C8—N2—H2A121 (2)C2—C3—H3119.5
C7—N2—H2A118 (2)C8—C9—C10118.7 (2)
C7—N3—C10117.06 (19)C8—C9—H9120.7
N3—C7—N1121.52 (19)C10—C9—H9120.7
N3—C7—N2123.28 (19)C13—C14—Cl1115.43 (18)
N1—C7—N2115.19 (18)C13—C14—H14A108.4
N3—C10—C9121.9 (2)Cl1—C14—H14A108.4
N3—C10—C12116.6 (2)C13—C14—H14B108.4
C9—C10—C12121.5 (2)Cl1—C14—H14B108.4
C2—C1—C6119.0 (2)H14A—C14—H14B107.5
C2—C1—N1125.2 (2)C6—C5—C4120.6 (2)
C6—C1—N1115.86 (19)C6—C5—H5119.7
C7—N1—C1130.60 (18)C4—C5—H5119.7
C7—N1—H1A114.7C3—C4—C5119.2 (2)
C1—N1—H1A114.7C3—C4—H4120.4
O1—C13—O2125.7 (2)C5—C4—H4120.4
O1—C13—C14122.1 (2)C10—C12—H12A109.5
O2—C13—C14112.1 (2)C10—C12—H12B109.5
N2—C8—C9119.4 (2)H12A—C12—H12B109.5
N2—C8—C11117.0 (2)C10—C12—H12C109.5
C9—C8—C11123.6 (2)H12A—C12—H12C109.5
C5—C6—C1120.4 (2)H12B—C12—H12C109.5
C5—C6—H6119.8C8—C11—H11A109.5
C1—C6—H6119.8C8—C11—H11B109.5
C3—C2—C1119.8 (2)H11A—C11—H11B109.5
C3—C2—H2120.1C8—C11—H11C109.5
C1—C2—H2120.1H11A—C11—H11C109.5
C4—C3—C2121.1 (2)H11B—C11—H11C109.5
C10—N3—C7—N1179.9 (2)N1—C1—C6—C5179.5 (2)
C10—N3—C7—N20.7 (3)C6—C1—C2—C30.8 (4)
C8—N2—C7—N30.1 (3)N1—C1—C2—C3179.4 (2)
C8—N2—C7—N1179.2 (2)C1—C2—C3—C40.6 (4)
C7—N3—C10—C91.1 (3)N2—C8—C9—C100.1 (3)
C7—N3—C10—C12179.4 (2)C11—C8—C9—C10179.7 (2)
N3—C7—N1—C11.7 (4)N3—C10—C9—C80.7 (4)
N2—C7—N1—C1177.6 (2)C12—C10—C9—C8179.7 (2)
C2—C1—N1—C78.5 (4)O1—C13—C14—Cl12.1 (4)
C6—C1—N1—C7171.7 (2)O2—C13—C14—Cl1177.1 (2)
C7—N2—C8—C90.4 (3)C1—C6—C5—C40.3 (4)
C7—N2—C8—C11179.3 (2)C2—C3—C4—C50.2 (4)
C2—C1—C6—C50.7 (4)C6—C5—C4—C30.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.982.833 (3)173
N2—H2A···O2i0.98 (4)1.61 (4)2.572 (2)166 (4)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N3+·C2H2ClO2
Mr293.75
Crystal system, space groupTetragonal, P42/n
Temperature (K)293
a, c (Å)19.604 (4), 7.542 (3)
V3)2898.6 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.68 × 0.35 × 0.33
Data collection
DiffractometerBruker APEX area-dectector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.839, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
9030, 2541, 1991
Rint0.030
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.03
No. of reflections2541
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.37

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-II (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.982.833 (3)173.3
N2—H2A···O2i0.98 (4)1.61 (4)2.572 (2)166 (4)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The wark was supported financially by the Natural Science Foundation of Hainan Province, China (Nos. 20303, 80405). The authors also thank Miss N. Jia for the data collection.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, B., Lin, B.-D., Liu, C.-L. & Liu, W.-C. (1996). J. Synth. Chem. 4, 176–179.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationStock, D., Briggs, G. & Simpson, D. J. (1997). World Patent WO 9 740 682.  Google Scholar
First citationXue, S. J., Wang, T. & Liao, Z. R. (2000). Chin. J. Org. Chem. 20, 731–734.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds