organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-[(S)-4-Benzyl-2-thioxo­thia­zolidin-3-yl]-3-hy­droxy­butan-1-one

aKey Laboratory of Synthesis and Application of Organic Functional Molecules of the Education Ministry, Hubei University, Wuhan, Hubei 430062, People's Republic of China
*Correspondence e-mail: yangguichun@hubu.edu.cn

(Received 13 November 2007; accepted 29 November 2007; online 6 December 2007)

The title compound, C14H17NO2S2, was synthesized by asymmetric aldol condensation of N-acyl­thia­zolidinethione with acetaldehyde. In the mol­ecule, the thia­zolidine five-membered ring assumes an envelope conformation. Inter­molecular C—H⋯O and intra­molecular O—H⋯O and C—H⋯S hydrogen bonding helps to stabilize the structure.

Related literature

For related literature, see: Crimmins et al. (2001[Crimmins, M. T., King, B. W., Tabet, E. A. & Chaudhary, K. (2001). J. Org. Chem. 66, 894-902.]); Drück & Littke (1980[Drück, U. & Littke, W. (1980). Acta Cryst. B36, 3002-3007.]); Hodge & Olivo (2004[Hodge, M. B. & Olivo, H. F. (2004). Tetrahedron, 60, 9397-9403.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2S2

  • Mr = 295.41

  • Orthorhombic, P 21 21 21

  • a = 8.0278 (4) Å

  • b = 8.2637 (4) Å

  • c = 22.0158 (10) Å

  • V = 1460.51 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9324 measured reflections

  • 2845 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.10

  • 2845 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1175 Friedel pairs

  • Flack parameter: −0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.16 2.765 (3) 131
C4—H4⋯O2i 0.93 2.45 3.325 (3) 158
C9—H9B⋯O1ii 0.97 2.48 3.261 (3) 137
C12—H12A⋯S2 0.97 2.64 3.131 (2) 112
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2003[Bruker (2003). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The acyl thiazolidinethione enolates mediated aldol reaction is a well accepted and useful method for the preparation of β-hydroxy acids and their derivatives in high enantiomeric purity. As an important chiral intermediates in the synthesis of our target products, the title compound was synthesized and its crystal structure was determined. The configuration of (I) is in accordance with the model for diastereoselective aldol reaction of acylated chiral thiazolidinethiones derived from amino acids (Crimmins et al., 2001; Hodge & Olivo, 2004).

In the molecule the thiazolidine five membered ring assumes an envelope conformation (Fig. 1). The carbonyl group and the thiocarbonyl group adopt a a S-shaped conformation. The crystal packing is stabilized by the C—H···O, O—H···O and C—H···S hydrogen bonds (Table 1).

Related literature top

For related literature, see: Crimmins et al. (2001); Drück & Littke (1980); Hodge & Olivo (2004).

Experimental top

A solution of N-acetyl (4S)-benzylthiazolidinethion (1.25 g, 4.98 mmol) in freshly distilled CH2Cl2 (30 ml) at 273 K, was treated dropwise with a solution of TiCl4 (5.5 ml, 1 M solution in CH2Cl2, 5.48 mmol) under nitrogen atmosphere, and the solution allowed to stir for 20 min. To the yellow slurry or suspension was added diisopropylethylamine (4.98 mmol, 0.83 ml). The dark red titanium enolate stirred for 40 min at 273 K. A solution of acetaldehyde (5.5 ml, 1.36 M in CH2Cl2, 7.47 mmol) was transferred via cannula to the reaction mixture, which was then stirred for 1 h at 273 K. The reaction was quenched with half-saturated ammonium chloride (30 ml), and the layers were separated. The organic layer was dried over sodium sulfate, filtered, and concentrated. Purification of the crude material by column chromatography afforded the major diastereomer (0.78 g, 55.8%).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 (methyl), 0.98 Å (methine) and 0.82 Å (hydroxyl), and refined in riding mode with Uiso(H) = xUeq(C), x = 1.5 for methyl and hydroxyl, x = 1.2 for others.

Structure description top

The acyl thiazolidinethione enolates mediated aldol reaction is a well accepted and useful method for the preparation of β-hydroxy acids and their derivatives in high enantiomeric purity. As an important chiral intermediates in the synthesis of our target products, the title compound was synthesized and its crystal structure was determined. The configuration of (I) is in accordance with the model for diastereoselective aldol reaction of acylated chiral thiazolidinethiones derived from amino acids (Crimmins et al., 2001; Hodge & Olivo, 2004).

In the molecule the thiazolidine five membered ring assumes an envelope conformation (Fig. 1). The carbonyl group and the thiocarbonyl group adopt a a S-shaped conformation. The crystal packing is stabilized by the C—H···O, O—H···O and C—H···S hydrogen bonds (Table 1).

For related literature, see: Crimmins et al. (2001); Drück & Littke (1980); Hodge & Olivo (2004).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with displacement ellipsoids at the 30% probability.
(S)-1-[(S)-4-Benzyl-2-thioxothiazolidin-3-yl]-3-hydroxybutan-1-one top
Crystal data top
C14H17NO2S2F(000) = 624
Mr = 295.41Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4884 reflections
a = 8.0278 (4) Åθ = 2.5–28.0°
b = 8.2637 (4) ŵ = 0.36 mm1
c = 22.0158 (10) ÅT = 294 K
V = 1460.51 (12) Å3Plate, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
φ and ω scansh = 98
9324 measured reflectionsk = 910
2845 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2097P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2845 reflectionsΔρmax = 0.25 e Å3
174 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 1175 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C14H17NO2S2V = 1460.51 (12) Å3
Mr = 295.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0278 (4) ŵ = 0.36 mm1
b = 8.2637 (4) ÅT = 294 K
c = 22.0158 (10) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2648 reflections with I > 2σ(I)
9324 measured reflectionsRint = 0.059
2845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.34 e Å3
2845 reflectionsAbsolute structure: Flack (1983), 1175 Friedel pairs
174 parametersAbsolute structure parameter: 0.03 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8868 (3)0.3026 (3)1.10814 (10)0.0369 (5)
C20.8600 (4)0.1376 (3)1.09897 (12)0.0493 (6)
H20.85390.09651.05970.059*
C30.8424 (4)0.0351 (4)1.14808 (15)0.0638 (8)
H30.82460.07481.14160.077*
C40.8510 (4)0.0937 (4)1.20634 (14)0.0666 (9)
H40.83760.02431.23920.080*
C50.8794 (4)0.2547 (5)1.21564 (11)0.0665 (9)
H50.88680.29431.25510.080*
C60.8972 (3)0.3595 (4)1.16711 (12)0.0498 (6)
H60.91630.46891.17420.060*
C70.9009 (3)0.4147 (3)1.05432 (10)0.0385 (5)
H7A0.98330.37281.02620.046*
H7B0.93770.52041.06790.046*
C80.7330 (3)0.4310 (3)1.02180 (9)0.0347 (5)
H80.68020.32411.02060.042*
C90.6146 (3)0.5474 (3)1.05289 (11)0.0462 (6)
H9A0.63860.55421.09600.055*
H9B0.50000.51301.04760.055*
C100.7229 (3)0.6529 (3)0.94970 (10)0.0331 (5)
C110.8081 (3)0.3718 (3)0.91621 (10)0.0387 (5)
C120.8266 (3)0.4103 (3)0.85002 (10)0.0416 (6)
H12A0.89550.50600.84560.050*
H12B0.71780.43450.83310.050*
C130.9047 (3)0.2712 (3)0.81438 (10)0.0409 (5)
H131.01700.25050.82990.049*
C140.9151 (4)0.3145 (4)0.74761 (13)0.0630 (8)
H14A0.96820.22810.72580.094*
H14B0.97880.41200.74290.094*
H14C0.80490.33080.73180.094*
N10.7527 (2)0.4893 (2)0.95819 (7)0.0320 (4)
O10.8358 (3)0.2380 (2)0.93639 (8)0.0578 (5)
O20.8091 (3)0.1270 (2)0.81833 (9)0.0568 (5)
H2A0.79740.10180.85410.085*
S10.65019 (9)0.74034 (8)1.01625 (3)0.04757 (18)
S20.74822 (9)0.76653 (7)0.88919 (3)0.04718 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (11)0.0443 (13)0.0348 (11)0.0028 (9)0.0001 (9)0.0052 (10)
C20.0572 (15)0.0449 (14)0.0459 (14)0.0026 (13)0.0003 (12)0.0050 (11)
C30.0629 (18)0.0514 (16)0.077 (2)0.0004 (15)0.0006 (16)0.0263 (15)
C40.0532 (16)0.090 (3)0.0562 (18)0.0013 (17)0.0018 (14)0.0398 (17)
C50.0554 (16)0.111 (3)0.0331 (12)0.003 (2)0.0005 (11)0.0098 (16)
C60.0465 (15)0.0622 (17)0.0408 (13)0.0039 (13)0.0024 (11)0.0038 (12)
C70.0402 (12)0.0407 (13)0.0347 (11)0.0045 (11)0.0017 (10)0.0029 (10)
C80.0369 (12)0.0323 (11)0.0349 (11)0.0029 (9)0.0003 (10)0.0053 (9)
C90.0474 (14)0.0459 (14)0.0455 (13)0.0038 (12)0.0112 (11)0.0064 (11)
C100.0335 (11)0.0288 (11)0.0369 (11)0.0006 (9)0.0035 (9)0.0008 (8)
C110.0486 (14)0.0305 (12)0.0370 (11)0.0002 (10)0.0043 (10)0.0009 (9)
C120.0526 (15)0.0340 (12)0.0381 (12)0.0019 (11)0.0000 (11)0.0004 (9)
C130.0426 (12)0.0385 (13)0.0417 (11)0.0012 (11)0.0040 (10)0.0058 (11)
C140.087 (2)0.0565 (17)0.0458 (15)0.0036 (16)0.0170 (16)0.0079 (13)
N10.0394 (10)0.0258 (8)0.0309 (8)0.0002 (8)0.0015 (8)0.0029 (7)
O10.1009 (15)0.0318 (9)0.0407 (8)0.0148 (11)0.0024 (9)0.0020 (8)
O20.0795 (14)0.0428 (10)0.0479 (10)0.0154 (10)0.0071 (10)0.0102 (8)
S10.0624 (4)0.0364 (3)0.0439 (3)0.0114 (3)0.0089 (3)0.0010 (3)
S20.0714 (4)0.0304 (3)0.0397 (3)0.0015 (3)0.0005 (3)0.0067 (2)
Geometric parameters (Å, º) top
C1—C61.383 (3)C9—H9A0.9700
C1—C21.395 (4)C9—H9B0.9700
C1—C71.508 (3)C10—N11.386 (3)
C2—C31.381 (4)C10—S21.643 (2)
C2—H20.9300C10—S11.735 (2)
C3—C41.373 (5)C11—O11.212 (3)
C3—H30.9300C11—N11.412 (3)
C4—C51.365 (5)C11—C121.499 (3)
C4—H40.9300C12—C131.526 (3)
C5—C61.383 (4)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—O21.421 (3)
C7—C81.532 (3)C13—C141.515 (4)
C7—H7A0.9700C13—H130.9800
C7—H7B0.9700C14—H14A0.9600
C8—N11.489 (2)C14—H14B0.9600
C8—C91.515 (3)C14—H14C0.9600
C8—H80.9800O2—H2A0.8200
C9—S11.809 (2)
C6—C1—C2118.5 (2)C8—C9—H9B110.7
C6—C1—C7121.6 (2)S1—C9—H9B110.7
C2—C1—C7119.9 (2)H9A—C9—H9B108.8
C3—C2—C1120.1 (3)N1—C10—S2130.26 (17)
C3—C2—H2119.9N1—C10—S1110.52 (16)
C1—C2—H2119.9S2—C10—S1119.22 (13)
C4—C3—C2120.6 (3)O1—C11—N1116.4 (2)
C4—C3—H3119.7O1—C11—C12122.1 (2)
C2—C3—H3119.7N1—C11—C12121.4 (2)
C5—C4—C3119.5 (3)C11—C12—C13112.4 (2)
C5—C4—H4120.2C11—C12—H12A109.1
C3—C4—H4120.2C13—C12—H12A109.1
C4—C5—C6120.8 (3)C11—C12—H12B109.1
C4—C5—H5119.6C13—C12—H12B109.1
C6—C5—H5119.6H12A—C12—H12B107.9
C5—C6—C1120.4 (3)O2—C13—C14106.7 (2)
C5—C6—H6119.8O2—C13—C12112.25 (19)
C1—C6—H6119.8C14—C13—C12110.1 (2)
C1—C7—C8110.84 (18)O2—C13—H13109.2
C1—C7—H7A109.5C14—C13—H13109.2
C8—C7—H7A109.5C12—C13—H13109.2
C1—C7—H7B109.5C13—C14—H14A109.5
C8—C7—H7B109.5C13—C14—H14B109.5
H7A—C7—H7B108.1H14A—C14—H14B109.5
N1—C8—C9106.63 (17)C13—C14—H14C109.5
N1—C8—C7112.01 (18)H14A—C14—H14C109.5
C9—C8—C7113.4 (2)H14B—C14—H14C109.5
N1—C8—H8108.2C10—N1—C11129.54 (18)
C9—C8—H8108.2C10—N1—C8115.08 (17)
C7—C8—H8108.2C11—N1—C8115.27 (17)
C8—C9—S1105.01 (15)C13—O2—H2A109.5
C8—C9—H9A110.7C10—S1—C993.58 (11)
S1—C9—H9A110.7
C6—C1—C2—C30.7 (4)C11—C12—C13—C14178.1 (2)
C7—C1—C2—C3178.2 (3)S2—C10—N1—C112.5 (4)
C1—C2—C3—C40.0 (5)S1—C10—N1—C11178.28 (19)
C2—C3—C4—C50.9 (5)S2—C10—N1—C8173.37 (18)
C3—C4—C5—C60.9 (5)S1—C10—N1—C85.8 (2)
C4—C5—C6—C10.1 (4)O1—C11—N1—C10174.9 (2)
C2—C1—C6—C50.7 (4)C12—C11—N1—C106.8 (4)
C7—C1—C6—C5178.2 (2)O1—C11—N1—C81.0 (3)
C6—C1—C7—C8110.2 (3)C12—C11—N1—C8177.3 (2)
C2—C1—C7—C868.7 (3)C9—C8—N1—C1024.8 (3)
C1—C7—C8—N1159.54 (18)C7—C8—N1—C1099.7 (2)
C1—C7—C8—C979.7 (2)C9—C8—N1—C11158.7 (2)
N1—C8—C9—S130.8 (2)C7—C8—N1—C1176.8 (2)
C7—C8—C9—S192.89 (19)N1—C10—S1—C911.90 (18)
O1—C11—C12—C137.6 (4)S2—C10—S1—C9168.79 (15)
N1—C11—C12—C13174.2 (2)C8—C9—S1—C1025.09 (19)
C11—C12—C13—O259.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.162.765 (3)131
C4—H4···O2i0.932.453.325 (3)158
C9—H9B···O1ii0.972.483.261 (3)137
C12—H12A···S20.972.643.131 (2)112
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC14H17NO2S2
Mr295.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.0278 (4), 8.2637 (4), 22.0158 (10)
V3)1460.51 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9324, 2845, 2648
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.10
No. of reflections2845
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34
Absolute structureFlack (1983), 1175 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.162.765 (3)131.2
C4—H4···O2i0.932.453.325 (3)157.7
C9—H9B···O1ii0.972.483.261 (3)137.0
C12—H12A···S20.972.643.131 (2)111.9
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported financially by the Science Foundation of China (grant No. 20772026).

References

First citationBruker (2003). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrimmins, M. T., King, B. W., Tabet, E. A. & Chaudhary, K. (2001). J. Org. Chem. 66, 894–902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDrück, U. & Littke, W. (1980). Acta Cryst. B36, 3002–3007.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHodge, M. B. & Olivo, H. F. (2004). Tetrahedron, 60, 9397–9403.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds