organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Bis[4-(benzyl­sulfan­yl)styr­yl]-2-(methyl­sulfan­yl)pyrimidine

aDepartment of Chemistry, Chaohu College, Chaohu 238000, People's Republic of China
*Correspondence e-mail: chlehua@sohu.com

(Received 14 November 2007; accepted 2 December 2007; online 12 December 2007)

The title compound, C35H30N2S3, has been synthesized by a solvent-free reaction. The mol­ecule exhibits an E,E configuration, the benzene rings and pyrimidine rings being located on the opposite sides of the C=C bonds. The centroid–centroid separation of 3.5808 (17) Å indicates the existence of ππ stacking between nearly parallel pyrimidine and benzene rings of adjacent mol­ecules.

Related literature

For details of the applications of conjugated organic mol­ecules, see: Frederiksen et al. (2001[Frederiksen, P. K., Jorgensen, M. & Ogilby, P. R. (2001). J. Am. Chem. Soc. 123, 1215-1216.]); Zhao et al. (1995[Zhao, C. F., He, G. S., Bhawalker, J. D., Park, C. K. & Prasad, P. N. (1995). Chem. Mater. 7, 1979-1983.]). For heterocycle-based two-photon absorbing chromophores exhibiting large TPA cross-sections, see: Huang et al. (2003[Huang, Z. L., Lei, H., Li, N., Qiu, Z. R., Wang, H. Z., Guo, J. D., Luo, Y., Zhong, Z. P., Liu, X. F. & Zhou, Z. H. (2003). J. Mater. Chem. 13, 708-711.]).

[Scheme 1]

Experimental

Crystal data
  • C35H30N2S3

  • Mr = 574.79

  • Triclinic, [P \overline 1]

  • a = 7.199 (1) Å

  • b = 10.1694 (15) Å

  • c = 21.161 (2) Å

  • α = 77.412 (1)°

  • β = 88.425 (3)°

  • γ = 81.129 (2)°

  • V = 1493.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 (2) K

  • 0.50 × 0.38 × 0.31 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.920

  • 7820 measured reflections

  • 5185 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.04

  • 5185 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Two-photon absorption (TPA) processes in conjugated organic molecules have aroused considerable attention due to their potential applications in optical data storage, three-dimension fluorescence imaging, photodynamic therapy, two-photon upconversion lasing and three-dimension lithographic microfabrication (Frederiksen et al., 2001; Zhao et al., 1995). A sustained level of fundamental research over the past ten years has left organic nonlinear optical (NLO) well positioned to make a technological impact in a variety of disciplines. Some studies showed that the heterocycle-based two-photon absorbing chromophores exhibit large TPA cross-sections (Huang et al., 2003). As part of our ongoing investigtion on heterocycle-based two-photon absorbing chromophores, the title compound has been prepared and its crystal structure is presented here.

The molecule structure is shown in Fig. 1. Bond lengths and angles are normal. The C7-containing and C22-containing benzene rings are nearly coplanar with the pyrimidine ring, dihedral angles being 8.59 (2)° and 8.40 (2)°, respectively. In the crystal structure, π-π stacking is observed between nearly parallel pyrimidine and C10i-containing benzene rings as shown in Fig. 2 [symmetry code: (i) 1 + x,y,z]; the dihedral angle and centroid-to-centroid separation being 8.69 (13)° and 3.5808 (17) Å, respectively.

Related literature top

For details of the applications of conjugated organic molecules, see: Frederiksen et al. (2001); Zhao et al. (1995). For heterocycle-based two-photon absorbing chromophores exhibiting large TPA cross-sections, see: Huang et al. (2003).

Experimental top

At room temperature, t-BuOK (5.6 g, 50 mmol) was placed into a dry mortar and milled to very small, then 2-thiomethyl-4,6-dimethylpyrimidine (1.54 g, 10 mmol) and 4-benzylthiobenzalaldehyde (4.56 g, 20 mmol) were added and mixed. The mixture was milled vigorously for about 20 min. The mixture became sticky and then continuously milled for 10 min. After completion of the reaction (monitored by TLC), the mixture was dispersed in 100 ml me thanol. The residual solid was filtered and recrystallized from anhydrous dichloromethane/methanol solution, to give microcrystals (2.87 g, yield 50%). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a dichloromethane/2-propanol (3:1) solution.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Two-photon absorption (TPA) processes in conjugated organic molecules have aroused considerable attention due to their potential applications in optical data storage, three-dimension fluorescence imaging, photodynamic therapy, two-photon upconversion lasing and three-dimension lithographic microfabrication (Frederiksen et al., 2001; Zhao et al., 1995). A sustained level of fundamental research over the past ten years has left organic nonlinear optical (NLO) well positioned to make a technological impact in a variety of disciplines. Some studies showed that the heterocycle-based two-photon absorbing chromophores exhibit large TPA cross-sections (Huang et al., 2003). As part of our ongoing investigtion on heterocycle-based two-photon absorbing chromophores, the title compound has been prepared and its crystal structure is presented here.

The molecule structure is shown in Fig. 1. Bond lengths and angles are normal. The C7-containing and C22-containing benzene rings are nearly coplanar with the pyrimidine ring, dihedral angles being 8.59 (2)° and 8.40 (2)°, respectively. In the crystal structure, π-π stacking is observed between nearly parallel pyrimidine and C10i-containing benzene rings as shown in Fig. 2 [symmetry code: (i) 1 + x,y,z]; the dihedral angle and centroid-to-centroid separation being 8.69 (13)° and 3.5808 (17) Å, respectively.

For details of the applications of conjugated organic molecules, see: Frederiksen et al. (2001); Zhao et al. (1995). For heterocycle-based two-photon absorbing chromophores exhibiting large TPA cross-sections, see: Huang et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A diagram showing π-π stacking [symmetry code: (i) 1 + x,y,z].
4,6-Bis[4-(benzylsulfanyl)styryl]-2-(methylsulfanyl)pyrimidine top
Crystal data top
C35H30N2S3Z = 2
Mr = 574.79F(000) = 604
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.199 (1) ÅCell parameters from 2350 reflections
b = 10.1694 (15) Åθ = 2.5–25.8°
c = 21.161 (2) ŵ = 0.28 mm1
α = 77.412 (1)°T = 298 K
β = 88.425 (3)°Block, red
γ = 81.129 (2)°0.50 × 0.38 × 0.31 mm
V = 1493.8 (3) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
5185 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.875, Tmax = 0.920k = 129
7820 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.0894P]
where P = (Fo2 + 2Fc2)/3
5185 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C35H30N2S3γ = 81.129 (2)°
Mr = 574.79V = 1493.8 (3) Å3
Triclinic, P1Z = 2
a = 7.199 (1) ÅMo Kα radiation
b = 10.1694 (15) ŵ = 0.28 mm1
c = 21.161 (2) ÅT = 298 K
α = 77.412 (1)°0.50 × 0.38 × 0.31 mm
β = 88.425 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3229 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.920Rint = 0.026
7820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
5185 reflectionsΔρmin = 0.21 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57325 (12)0.40771 (8)0.15862 (4)0.0709 (3)
S20.76178 (11)1.09386 (8)0.14193 (4)0.0630 (3)
S31.42863 (10)0.70995 (8)0.54464 (4)0.0593 (2)
N10.6566 (3)0.5069 (2)0.25966 (10)0.0453 (5)
N20.3517 (3)0.5797 (2)0.21019 (10)0.0477 (6)
C10.5236 (4)0.5089 (3)0.21646 (12)0.0461 (7)
C20.3081 (4)0.6646 (3)0.25115 (12)0.0437 (6)
C30.4379 (4)0.6735 (3)0.29656 (12)0.0472 (7)
H30.40850.73350.32410.057*
C40.6107 (4)0.5926 (3)0.30053 (12)0.0435 (6)
C50.1233 (4)0.7484 (3)0.24433 (13)0.0525 (7)
H50.09550.81080.27080.063*
C60.0066 (4)0.7414 (3)0.20317 (13)0.0487 (7)
H60.02390.67590.17850.058*
C70.1931 (4)0.8236 (3)0.19117 (12)0.0449 (7)
C80.2598 (4)0.9304 (3)0.22157 (13)0.0553 (8)
H80.18560.94870.25290.066*
C90.4317 (4)1.0091 (3)0.20649 (13)0.0535 (8)
H90.47121.08040.22720.064*
C100.5476 (4)0.9832 (3)0.16040 (13)0.0468 (7)
C110.4868 (4)0.8747 (3)0.13147 (13)0.0496 (7)
H110.56390.85390.10160.060*
C120.3126 (4)0.7972 (3)0.14656 (12)0.0487 (7)
H120.27400.72520.12630.058*
C130.8416 (4)1.0492 (3)0.06998 (14)0.0627 (9)
H13A0.73931.04480.03930.075*
H13B0.88200.96040.08130.075*
C141.0021 (4)1.1548 (3)0.03979 (13)0.0518 (7)
C151.1850 (4)1.1341 (3)0.05280 (14)0.0610 (8)
H151.20831.05430.08080.073*
C161.3336 (5)1.2288 (4)0.02532 (19)0.0816 (11)
H161.45621.21340.03520.098*
C171.3021 (7)1.3434 (5)0.01566 (19)0.0933 (14)
H171.40331.40610.03510.112*
C181.1220 (8)1.3695 (4)0.02939 (19)0.1124 (15)
H181.10111.44990.05740.135*
C190.9702 (5)1.2737 (4)0.00067 (17)0.0872 (11)
H190.84771.29100.00910.105*
C200.7619 (4)0.5923 (3)0.34563 (12)0.0481 (7)
H200.86960.52920.34460.058*
C210.7625 (4)0.6709 (3)0.38730 (12)0.0486 (7)
H210.65160.72900.39110.058*
C220.9207 (4)0.6763 (3)0.42844 (12)0.0442 (6)
C230.8985 (4)0.7586 (3)0.47332 (13)0.0556 (8)
H230.78070.80770.47790.067*
C241.0456 (4)0.7700 (3)0.51137 (13)0.0553 (8)
H241.02540.82460.54160.066*
C251.2236 (4)0.6999 (3)0.50432 (12)0.0437 (6)
C261.2470 (4)0.6161 (3)0.45996 (12)0.0502 (7)
H261.36480.56730.45490.060*
C271.0977 (4)0.6045 (3)0.42341 (13)0.0505 (7)
H271.11650.54680.39450.061*
C281.3614 (4)0.8283 (3)0.59547 (16)0.0743 (10)
H28A1.29570.91330.57030.089*
H28B1.27860.79140.62950.089*
C291.5394 (4)0.8521 (3)0.62436 (14)0.0545 (8)
C301.6381 (5)0.7501 (4)0.66976 (15)0.0777 (10)
H301.59440.66690.68250.093*
C311.8009 (6)0.7694 (4)0.69664 (17)0.0919 (12)
H311.86600.69990.72780.110*
C321.8670 (5)0.8905 (4)0.67762 (17)0.0742 (10)
H321.97620.90380.69620.089*
C331.7747 (5)0.9907 (3)0.63203 (16)0.0704 (9)
H331.82141.07260.61860.085*
C341.6106 (5)0.9720 (3)0.60510 (15)0.0682 (9)
H341.54771.04170.57350.082*
C350.8140 (5)0.3378 (4)0.17513 (18)0.0965 (13)
H35A0.88790.41040.16980.145*
H35B0.85700.28000.14570.145*
H35C0.82680.28550.21880.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0735 (6)0.0698 (6)0.0726 (6)0.0162 (4)0.0277 (5)0.0374 (4)
S20.0491 (5)0.0758 (6)0.0681 (5)0.0111 (4)0.0168 (4)0.0363 (4)
S30.0447 (4)0.0671 (5)0.0722 (5)0.0031 (4)0.0138 (4)0.0303 (4)
N10.0461 (14)0.0443 (13)0.0459 (13)0.0042 (11)0.0087 (11)0.0113 (10)
N20.0471 (14)0.0467 (13)0.0490 (13)0.0035 (11)0.0109 (11)0.0110 (11)
C10.0542 (18)0.0397 (15)0.0435 (15)0.0052 (13)0.0100 (14)0.0072 (12)
C20.0426 (16)0.0443 (16)0.0426 (15)0.0047 (13)0.0023 (13)0.0070 (13)
C30.0478 (17)0.0544 (17)0.0422 (15)0.0073 (14)0.0027 (13)0.0166 (13)
C40.0466 (17)0.0442 (16)0.0394 (14)0.0096 (13)0.0053 (13)0.0057 (12)
C50.0501 (18)0.0574 (18)0.0514 (17)0.0041 (14)0.0055 (14)0.0166 (14)
C60.0493 (17)0.0429 (16)0.0535 (17)0.0063 (13)0.0037 (14)0.0098 (13)
C70.0419 (16)0.0429 (16)0.0487 (16)0.0062 (13)0.0044 (13)0.0072 (13)
C80.0550 (19)0.0578 (18)0.0567 (18)0.0080 (15)0.0181 (15)0.0182 (15)
C90.0514 (18)0.0501 (17)0.0628 (19)0.0007 (14)0.0109 (15)0.0250 (14)
C100.0417 (16)0.0492 (16)0.0503 (16)0.0036 (13)0.0047 (13)0.0141 (13)
C110.0428 (17)0.0546 (17)0.0551 (17)0.0064 (14)0.0102 (13)0.0189 (14)
C120.0518 (18)0.0462 (16)0.0519 (17)0.0067 (14)0.0030 (14)0.0192 (13)
C130.0527 (19)0.074 (2)0.066 (2)0.0063 (16)0.0156 (15)0.0344 (17)
C140.0540 (19)0.062 (2)0.0413 (16)0.0007 (15)0.0049 (14)0.0207 (15)
C150.054 (2)0.069 (2)0.0616 (19)0.0117 (17)0.0106 (16)0.0160 (16)
C160.056 (2)0.106 (3)0.084 (3)0.006 (2)0.019 (2)0.034 (2)
C170.110 (4)0.091 (3)0.066 (3)0.033 (3)0.032 (3)0.020 (2)
C180.153 (5)0.090 (3)0.074 (3)0.005 (3)0.002 (3)0.015 (2)
C190.083 (3)0.102 (3)0.070 (2)0.015 (2)0.012 (2)0.006 (2)
C200.0444 (17)0.0530 (17)0.0465 (16)0.0057 (13)0.0058 (13)0.0099 (13)
C210.0403 (16)0.0590 (18)0.0472 (16)0.0062 (14)0.0029 (13)0.0138 (14)
C220.0383 (15)0.0511 (16)0.0454 (16)0.0102 (13)0.0017 (12)0.0122 (13)
C230.0405 (17)0.071 (2)0.0616 (18)0.0047 (15)0.0001 (14)0.0299 (16)
C240.0461 (18)0.071 (2)0.0581 (18)0.0081 (15)0.0002 (14)0.0339 (15)
C250.0427 (16)0.0449 (16)0.0439 (15)0.0073 (13)0.0057 (12)0.0094 (13)
C260.0423 (16)0.0544 (17)0.0535 (17)0.0021 (14)0.0070 (13)0.0167 (14)
C270.0536 (18)0.0534 (18)0.0495 (16)0.0038 (14)0.0067 (14)0.0238 (14)
C280.055 (2)0.094 (3)0.088 (2)0.0027 (18)0.0088 (18)0.053 (2)
C290.0501 (18)0.068 (2)0.0533 (18)0.0103 (16)0.0037 (14)0.0294 (16)
C300.100 (3)0.076 (2)0.063 (2)0.042 (2)0.020 (2)0.0031 (18)
C310.110 (3)0.091 (3)0.074 (2)0.029 (3)0.044 (2)0.001 (2)
C320.066 (2)0.094 (3)0.075 (2)0.024 (2)0.0118 (19)0.036 (2)
C330.085 (3)0.065 (2)0.074 (2)0.034 (2)0.005 (2)0.0270 (19)
C340.085 (3)0.0491 (19)0.073 (2)0.0029 (18)0.0146 (19)0.0211 (16)
C350.080 (3)0.110 (3)0.106 (3)0.032 (2)0.030 (2)0.066 (2)
Geometric parameters (Å, º) top
S1—C11.760 (3)C16—H160.9300
S1—C351.782 (3)C17—C181.374 (6)
S2—C101.761 (3)C17—H170.9300
S2—C131.812 (3)C18—C191.401 (5)
S3—C251.753 (3)C18—H180.9300
S3—C281.788 (3)C19—H190.9300
N1—C11.336 (3)C20—C211.314 (3)
N1—C41.357 (3)C20—H200.9300
N2—C11.327 (3)C21—C221.467 (3)
N2—C21.350 (3)C21—H210.9300
C2—C31.385 (3)C22—C271.381 (3)
C2—C51.457 (3)C22—C231.387 (3)
C3—C41.376 (3)C23—C241.381 (3)
C3—H30.9300C23—H230.9300
C4—C201.466 (3)C24—C251.388 (3)
C5—C61.316 (3)C24—H240.9300
C5—H50.9300C25—C261.390 (3)
C6—C71.465 (3)C26—C271.375 (3)
C6—H60.9300C26—H260.9300
C7—C121.389 (3)C27—H270.9300
C7—C81.397 (3)C28—C291.509 (4)
C8—C91.370 (4)C28—H28A0.9700
C8—H80.9300C28—H28B0.9700
C9—C101.394 (3)C29—C301.371 (4)
C9—H90.9300C29—C341.371 (4)
C10—C111.383 (3)C30—C311.376 (4)
C11—C121.380 (3)C30—H300.9300
C11—H110.9300C31—C321.363 (5)
C12—H120.9300C31—H310.9300
C13—C141.502 (4)C32—C331.345 (4)
C13—H13A0.9700C32—H320.9300
C13—H13B0.9700C33—C341.382 (4)
C14—C191.369 (4)C33—H330.9300
C14—C151.376 (4)C34—H340.9300
C15—C161.372 (4)C35—H35A0.9600
C15—H150.9300C35—H35B0.9600
C16—C171.339 (5)C35—H35C0.9600
C1—S1—C35102.24 (14)C17—C18—H18120.3
C10—S2—C13102.92 (12)C19—C18—H18120.3
C25—S3—C28106.17 (13)C14—C19—C18120.0 (4)
C1—N1—C4115.2 (2)C14—C19—H19120.0
C1—N2—C2115.8 (2)C18—C19—H19120.0
N2—C1—N1128.4 (2)C21—C20—C4127.4 (3)
N2—C1—S1112.86 (18)C21—C20—H20116.3
N1—C1—S1118.8 (2)C4—C20—H20116.3
N2—C2—C3120.5 (2)C20—C21—C22126.5 (3)
N2—C2—C5117.6 (2)C20—C21—H21116.7
C3—C2—C5121.8 (2)C22—C21—H21116.7
C4—C3—C2119.3 (2)C27—C22—C23117.0 (2)
C4—C3—H3120.3C27—C22—C21122.5 (2)
C2—C3—H3120.3C23—C22—C21120.5 (2)
N1—C4—C3120.8 (2)C24—C23—C22122.2 (3)
N1—C4—C20114.0 (2)C24—C23—H23118.9
C3—C4—C20125.2 (2)C22—C23—H23118.9
C6—C5—C2124.2 (2)C23—C24—C25119.9 (2)
C6—C5—H5117.9C23—C24—H24120.1
C2—C5—H5117.9C25—C24—H24120.1
C5—C6—C7128.3 (3)C24—C25—C26118.4 (2)
C5—C6—H6115.8C24—C25—S3126.20 (19)
C7—C6—H6115.8C26—C25—S3115.4 (2)
C12—C7—C8116.8 (2)C27—C26—C25120.7 (2)
C12—C7—C6119.4 (2)C27—C26—H26119.7
C8—C7—C6123.9 (2)C25—C26—H26119.7
C9—C8—C7121.9 (2)C26—C27—C22121.8 (2)
C9—C8—H8119.1C26—C27—H27119.1
C7—C8—H8119.1C22—C27—H27119.1
C8—C9—C10120.5 (2)C29—C28—S3107.2 (2)
C8—C9—H9119.8C29—C28—H28A110.3
C10—C9—H9119.8S3—C28—H28A110.3
C11—C10—C9118.5 (2)C29—C28—H28B110.3
C11—C10—S2124.3 (2)S3—C28—H28B110.3
C9—C10—S2117.21 (19)H28A—C28—H28B108.5
C12—C11—C10120.5 (2)C30—C29—C34118.2 (3)
C12—C11—H11119.8C30—C29—C28119.7 (3)
C10—C11—H11119.8C34—C29—C28122.1 (3)
C11—C12—C7121.9 (2)C29—C30—C31120.8 (3)
C11—C12—H12119.0C29—C30—H30119.6
C7—C12—H12119.0C31—C30—H30119.6
C14—C13—S2109.33 (18)C32—C31—C30120.0 (3)
C14—C13—H13A109.8C32—C31—H31120.0
S2—C13—H13A109.8C30—C31—H31120.0
C14—C13—H13B109.8C33—C32—C31120.2 (3)
S2—C13—H13B109.8C33—C32—H32119.9
H13A—C13—H13B108.3C31—C32—H32119.9
C19—C14—C15118.6 (3)C32—C33—C34120.0 (3)
C19—C14—C13120.9 (3)C32—C33—H33120.0
C15—C14—C13120.5 (3)C34—C33—H33120.0
C16—C15—C14121.4 (3)C29—C34—C33120.8 (3)
C16—C15—H15119.3C29—C34—H34119.6
C14—C15—H15119.3C33—C34—H34119.6
C17—C16—C15120.0 (4)S1—C35—H35A109.5
C17—C16—H16120.0S1—C35—H35B109.5
C15—C16—H16120.0H35A—C35—H35B109.5
C16—C17—C18120.8 (4)S1—C35—H35C109.5
C16—C17—H17119.6H35A—C35—H35C109.5
C18—C17—H17119.6H35B—C35—H35C109.5
C17—C18—C19119.3 (4)
C2—N2—C1—N12.8 (4)C13—C14—C15—C16179.5 (2)
C2—N2—C1—S1176.85 (19)C14—C15—C16—C170.8 (5)
C4—N1—C1—N22.8 (4)C15—C16—C17—C181.8 (6)
C4—N1—C1—S1176.89 (19)C16—C17—C18—C190.9 (6)
C35—S1—C1—N2175.6 (2)C15—C14—C19—C181.9 (5)
C35—S1—C1—N14.1 (3)C13—C14—C19—C18178.6 (3)
C1—N2—C2—C30.5 (4)C17—C18—C19—C141.0 (6)
C1—N2—C2—C5177.7 (2)N1—C4—C20—C21175.0 (3)
N2—C2—C3—C41.4 (4)C3—C4—C20—C213.0 (5)
C5—C2—C3—C4179.5 (2)C4—C20—C21—C22174.9 (2)
C1—N1—C4—C30.4 (4)C20—C21—C22—C275.9 (5)
C1—N1—C4—C20177.7 (2)C20—C21—C22—C23176.1 (3)
C2—C3—C4—N11.4 (4)C27—C22—C23—C240.4 (4)
C2—C3—C4—C20179.3 (2)C21—C22—C23—C24177.7 (3)
N2—C2—C5—C63.6 (4)C22—C23—C24—C251.4 (5)
C3—C2—C5—C6178.2 (3)C23—C24—C25—C261.9 (4)
C2—C5—C6—C7177.8 (3)C23—C24—C25—S3175.9 (2)
C5—C6—C7—C12178.0 (3)C28—S3—C25—C240.3 (3)
C5—C6—C7—C82.8 (5)C28—S3—C25—C26177.6 (2)
C12—C7—C8—C92.5 (4)C24—C25—C26—C270.8 (4)
C6—C7—C8—C9176.7 (3)S3—C25—C26—C27177.3 (2)
C7—C8—C9—C101.0 (5)C25—C26—C27—C220.9 (4)
C8—C9—C10—C111.3 (4)C23—C22—C27—C261.5 (4)
C8—C9—C10—S2177.6 (2)C21—C22—C27—C26176.6 (3)
C13—S2—C10—C1110.8 (3)C25—S3—C28—C29173.1 (2)
C13—S2—C10—C9168.1 (2)S3—C28—C29—C3070.1 (3)
C9—C10—C11—C122.1 (4)S3—C28—C29—C34107.6 (3)
S2—C10—C11—C12176.7 (2)C34—C29—C30—C312.0 (5)
C10—C11—C12—C70.5 (4)C28—C29—C30—C31179.8 (3)
C8—C7—C12—C111.7 (4)C29—C30—C31—C320.8 (6)
C6—C7—C12—C11177.5 (2)C30—C31—C32—C330.8 (6)
C10—S2—C13—C14168.0 (2)C31—C32—C33—C341.1 (5)
S2—C13—C14—C1983.3 (3)C30—C29—C34—C331.7 (5)
S2—C13—C14—C1596.2 (3)C28—C29—C34—C33179.5 (3)
C19—C14—C15—C161.1 (4)C32—C33—C34—C290.2 (5)

Experimental details

Crystal data
Chemical formulaC35H30N2S3
Mr574.79
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.199 (1), 10.1694 (15), 21.161 (2)
α, β, γ (°)77.412 (1), 88.425 (3), 81.129 (2)
V3)1493.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.50 × 0.38 × 0.31
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
7820, 5185, 3229
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.04
No. of reflections5185
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

This work was supported by the Education Committee of Anhui Province, China (KJ2007B089). We thank Professor D.-Q. Wang of Liao Cheng University for assistance with the crystal structure determination.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrederiksen, P. K., Jorgensen, M. & Ogilby, P. R. (2001). J. Am. Chem. Soc. 123, 1215–1216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, Z. L., Lei, H., Li, N., Qiu, Z. R., Wang, H. Z., Guo, J. D., Luo, Y., Zhong, Z. P., Liu, X. F. & Zhou, Z. H. (2003). J. Mater. Chem. 13, 708–711.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhao, C. F., He, G. S., Bhawalker, J. D., Park, C. K. & Prasad, P. N. (1995). Chem. Mater. 7, 1979–1983.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds