metal-organic compounds
A one-dimensional ladder-like coordination polymer: poly[[hexaaquabis(μ-5-nitrobenzene-1,3-dicarboxylato-κ3O,O′,O′′)(μ-oxalato-κ4O,O′:O′′,O′′′)diyttrium(III)] trihydrate]
aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: zht2006@mail.ahnu.edu.cn
In the 2(C8H3NO6)2(C2O4)(H2O)6]·3H2O, each YIII ion is bridged to its neighbours by two 5-nitrobenzene-1,3-dicarboxylate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water molecules coordinate to the YIII ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π–π stacking [centrio–centriod distance = 3.819 (9) Å] in the crystal structure.
of the title one-dimensional coordination polymer, [YRelated literature
For general background, see: Biradha (2003); Braga et al. (2005); Burrows et al. (2003); Kongshaug & Fjellvag (2006); Moulton & Zaworotko (2001); Ohmori et al. (2004); Tang et al. (2006); Janiak (2003). For related structures, see: Thomas et al. (2002); Nordell et al. (2003); Janiak (2000). For related literature, see: Ren et al. (2006); Si et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807064306/xu2377sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064306/xu2377Isup2.hkl
Y2O3 (22.5 mg, 0.10 mmol), 5-nitro-isophthalic acid (42.2 mg, 0.20 mmol) and Na2C2O4 (26.8 mg, 0.20 mmol) were dissolved in 13 ml water. The mixture was placed in a Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 443 K for 1 week, then cooled to room temperature. Colorless block crystals were collected by filtration, followed by washing with water and ethanol in 45% yield (38.5 mg). The crystals becam opaque when exposed for a long time in air.
The lattice O13 water molecule was refined with a fixed site occupancy factor of 0.50. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H = 0.93 Å. All water H atoms were located in difference maps at an intermediate stage of the
and were then treated as riding, with O—H = 0.85 Å. Uiso(H) = 1.2Uiso(C,O).There is an intense research interest for the crystal engineering of coordination polymers owing to their intriguing molecular topologies, such as molecular grids, ladders, rings, diamondoids and honeycombs, and potential applications as functional materials (Biradha, 2003; Braga et al., 2005; Janiak, 2003; Ohmori et al., 2004). In order to construct the infinite structure, plentiful multidentate organic ligands are used to bridge metal ions (Moulton & Zaworotko, 2001). Among them, V-shape molecules, such as isophthalic acid and 5-amino-isophthalic acid, have received much attention because such a molecular geometry can result in unexpected structure comparing with that constructed by linear ligands (Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006; Si et al., 2004; Ren et al., 2006). Herein, we present a novel ladder-like coordination polymer (I): Y2(C8H3NO6)2(C2O4)(H2O)6.3(H2O), in which metal ions are bridged by a V-shape ligand, 5-nitrobenzene-1,3-dicarboxylate (5-nitroisophthalate, abbreviated as 5-NIP), and oxalate ligands.
As shown in Figure 1, the Y(III) ion adopts an eight-coordinate geometry which may be described as a distorted dodecahedron (Table 1): it is bounded to three water oxygen atoms (O9, O10 and O11) and five carboxylate oxygen atoms, in which O1, O2 and O3iii [symmetry code: (iii) x, y - 1, z] are from two 5-NIP ligands and O7i, O8 [symmetry code: (i) 1 - x, -y, 1 - z] are from one oxalate ligand. The H13A/O13/H13B water molecule has a fractional site occupancy of 0.50. The ligand 5-NIP chelates the Y(III) ion via its O1/C1/O2 carboxylate group, while its another O3/C8/O4 carboxylate group coordinates to a symmetry related Y(III) ion in monodentate fashion via the atom O3. The O5/N1/O6 nitro group is almost coplanar with the phenyl ring (C2/C3/C4/C5/C6/C7). The O1/C1/O2 carboxylate group is slightly twisted from the phenyl ring with the dihedral angel of 10.26 (41)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O1/C1/O2) planes. The O3/C8/O4 carboxylate group is out of the phenyl plane with the dihedral angel of 44.41 (36)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O3/C8/O4) planes. Both two carboxylate groups of the oxalate ligand bridge two symmetry related Y(III) ions in η1:η1:µ2 mode. The oxalate is almost perpendicular to the phenyl plane of 5-NIP with the dihedral angel of 87.42 (26)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the oxalate (O7/C9/O8/C9i/O7i/O8i) [symmetry code: (i) 1 - x, -y, 1 - z] planes. The bond distance of two sp2 C9—C9i [symmetry code: (i) 1 - x, -y, 1 - z] in oxalate is elongated similar with other coordination compounds containing oxalate (Thomas et al., 2002; Nordell et al., 2003). Thus, the ligands 5-NIP link the neighbouring Y(III) ions in the head-to-tail mode to construct an infinite zigzag chain which runs along the b axis direction. Two adjacent zigzag chains are connected via oxalate bridging in the c axis direction to form a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17)Å based on the intra-ladder intervals of Yttrium (III) ions.
(Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006).
All ladders are assembled together through a number of hydrogen bonding (Table 2) between 5-NIP carboxyl O atoms (O1, O2 and O4), nitro O atoms (O5 and O6), oxalate O7 atom and coordination water O atoms (O9, O10 and O11) as well as lattice water molecules (O12 and O13). Among them, H10A and H11B atoms are involved in a three-centered hydrogen bond, respectively. Moreover, the center-center distance between two adjacent phenyl rings of the different ladders is 3.819 (9) Å. It indicates the presence of π-π staking between two adjacent inter-ladder 5-NIP (Janiak et al., 2000). Therefore all ladders are packing via hydrogen bonding and the π-π interactions in the crystal.
For general background, see: Biradha (2003); Braga et al. (2005); Burrows et al. (2003); Kongshaug & Fjellvag (2006); Moulton & Zaworotko (2001); Ohmori et al. (2004); Tang et al. (2006); Janiak (2003). For related structures, see: Thomas et al. (2002); Nordell et al. (2003); Janiak (2000).
For related literature, see: Ren et al. (2006); Si et al. (2004).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.Fig. 1. The molecular structure of (I), a drawing of the asymmetric unit (solid line portion) with displacement ellipsoids at the 30% probability level, H Atoms have been omitted for clarity [symmetry code: (i) 1 - x, -y, 1 - z; (iii) x, y - 1, z]. | |
Fig. 2. Two adjacent zigzag chains connected via oxalate bridging to generate a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17) Å. All hydrogen atoms and the lattice water molecules have been omitted for clarity. | |
Fig. 3. A packing diagram of the title compound viewed down the c axis. All hydrogen atoms have been omitted for clarity. |
[Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O | Z = 1 |
Mr = 846.21 | F(000) = 424 |
Triclinic, P1 | Dx = 1.961 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4270 (15) Å | Cell parameters from 25 reflections |
b = 9.2070 (18) Å | θ = 2.3–15.0° |
c = 11.522 (2) Å | µ = 4.14 mm−1 |
α = 74.16 (3)° | T = 298 K |
β = 71.76 (3)° | Block, colorless |
γ = 80.01 (2)° | 0.20 × 0.15 × 0.12 mm |
V = 716.5 (3) Å3 |
Enraf–Nonius CAD-4 diffractometer | 2260 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.097 |
Graphite monochromator | θmax = 26.0°, θmin = 1.9° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) | k = −11→11 |
Tmin = 0.48, Tmax = 0.60 | l = −13→14 |
3018 measured reflections | 3 standard reflections every 200 reflections |
2785 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0432P)2 + 2.6078P] where P = (Fo2 + 2Fc2)/3 |
2785 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O | γ = 80.01 (2)° |
Mr = 846.21 | V = 716.5 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.4270 (15) Å | Mo Kα radiation |
b = 9.2070 (18) Å | µ = 4.14 mm−1 |
c = 11.522 (2) Å | T = 298 K |
α = 74.16 (3)° | 0.20 × 0.15 × 0.12 mm |
β = 71.76 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2260 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) | Rint = 0.097 |
Tmin = 0.48, Tmax = 0.60 | 3 standard reflections every 200 reflections |
3018 measured reflections | intensity decay: 1.0% |
2785 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.67 e Å−3 |
2785 reflections | Δρmin = −0.64 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.3395 (7) | 0.2400 (6) | 0.1373 (5) | 0.0176 (10) | |
C2 | 0.2913 (7) | 0.3978 (6) | 0.0685 (5) | 0.0182 (10) | |
C3 | 0.2644 (7) | 0.4243 (6) | −0.0506 (5) | 0.0200 (11) | |
H3 | 0.2853 | 0.3461 | −0.0909 | 0.024* | |
C4 | 0.2095 (7) | 0.5698 (6) | −0.1067 (5) | 0.0188 (10) | |
C5 | 0.1769 (7) | 0.6925 (6) | −0.0509 (5) | 0.0187 (10) | |
H5 | 0.1321 | 0.7878 | −0.0904 | 0.022* | |
C6 | 0.2101 (7) | 0.6653 (6) | 0.0648 (5) | 0.0181 (10) | |
C7 | 0.2687 (7) | 0.5187 (6) | 0.1238 (5) | 0.0201 (11) | |
H7 | 0.2862 | 0.4994 | 0.2030 | 0.024* | |
C8 | 0.1873 (7) | 0.7916 (6) | 0.1298 (5) | 0.0187 (10) | |
C9 | 0.6051 (7) | −0.0058 (6) | 0.4632 (5) | 0.0177 (10) | |
N1 | 0.1769 (7) | 0.5962 (5) | −0.2319 (4) | 0.0265 (10) | |
O1 | 0.3821 (6) | 0.2183 (4) | 0.2395 (3) | 0.0261 (9) | |
O2 | 0.3332 (5) | 0.1288 (4) | 0.0962 (3) | 0.0228 (8) | |
O3 | 0.3182 (5) | 0.7902 (4) | 0.1793 (3) | 0.0223 (8) | |
O4 | 0.0460 (5) | 0.8849 (4) | 0.1325 (4) | 0.0251 (8) | |
O5 | 0.1269 (9) | 0.7245 (5) | −0.2819 (5) | 0.0564 (15) | |
O6 | 0.1979 (8) | 0.4894 (5) | −0.2778 (4) | 0.0461 (12) | |
O7 | 0.7221 (5) | 0.0136 (4) | 0.5150 (3) | 0.0214 (8) | |
O8 | 0.6444 (5) | −0.0325 (4) | 0.3571 (3) | 0.0232 (8) | |
O9 | 0.6774 (5) | −0.0796 (4) | 0.1250 (3) | 0.0244 (8) | |
H9A | 0.6641 | −0.0316 | 0.0534 | 0.029* | |
H9B | 0.7642 | −0.0428 | 0.1386 | 0.029* | |
O10 | 0.4350 (6) | −0.3006 (4) | 0.3988 (4) | 0.0326 (10) | |
H10A | 0.5526 | −0.3322 | 0.3807 | 0.039* | |
H10B | 0.3968 | −0.3009 | 0.4765 | 0.039* | |
O11 | 0.0652 (5) | −0.0383 (5) | 0.3376 (4) | 0.0318 (10) | |
H11B | 0.0191 | 0.0193 | 0.3884 | 0.038* | |
H11A | 0.0252 | −0.0036 | 0.2728 | 0.038* | |
O12 | 0.3768 (8) | 0.3842 (5) | 0.4156 (5) | 0.0492 (13) | |
H12B | 0.3942 | 0.4764 | 0.3793 | 0.059* | |
H12A | 0.4299 | 0.3285 | 0.3639 | 0.059* | |
O13 | 0.0067 (15) | 0.3583 (14) | 0.5020 (11) | 0.068 (3) | 0.50 |
H13A | 0.0037 | 0.2670 | 0.5003 | 0.081* | 0.50 |
H13B | −0.1035 | 0.3933 | 0.5392 | 0.081* | 0.50 |
Y | 0.39399 (7) | −0.05405 (6) | 0.27921 (5) | 0.01386 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.018 (2) | 0.018 (3) | 0.017 (2) | −0.0018 (19) | −0.005 (2) | −0.004 (2) |
C2 | 0.019 (3) | 0.017 (3) | 0.019 (3) | −0.002 (2) | −0.005 (2) | −0.005 (2) |
C3 | 0.020 (3) | 0.020 (3) | 0.022 (3) | −0.002 (2) | −0.007 (2) | −0.008 (2) |
C4 | 0.020 (3) | 0.024 (3) | 0.015 (2) | −0.004 (2) | −0.004 (2) | −0.007 (2) |
C5 | 0.024 (3) | 0.012 (2) | 0.022 (3) | −0.002 (2) | −0.011 (2) | −0.002 (2) |
C6 | 0.021 (3) | 0.018 (3) | 0.020 (3) | −0.004 (2) | −0.009 (2) | −0.006 (2) |
C7 | 0.022 (3) | 0.021 (3) | 0.020 (3) | −0.002 (2) | −0.009 (2) | −0.005 (2) |
C8 | 0.017 (2) | 0.020 (3) | 0.018 (2) | −0.004 (2) | −0.002 (2) | −0.006 (2) |
C9 | 0.018 (3) | 0.016 (3) | 0.019 (3) | −0.0011 (19) | −0.006 (2) | −0.003 (2) |
N1 | 0.034 (3) | 0.027 (3) | 0.021 (2) | −0.004 (2) | −0.013 (2) | −0.004 (2) |
O1 | 0.044 (2) | 0.0195 (19) | 0.0213 (19) | −0.0005 (17) | −0.0204 (17) | −0.0047 (15) |
O2 | 0.037 (2) | 0.0142 (18) | 0.0217 (19) | −0.0004 (15) | −0.0135 (16) | −0.0062 (15) |
O3 | 0.0254 (19) | 0.0190 (19) | 0.033 (2) | 0.0032 (15) | −0.0188 (17) | −0.0132 (16) |
O4 | 0.0216 (19) | 0.025 (2) | 0.036 (2) | 0.0056 (15) | −0.0149 (17) | −0.0160 (17) |
O5 | 0.113 (5) | 0.028 (3) | 0.036 (3) | 0.007 (3) | −0.046 (3) | 0.000 (2) |
O6 | 0.078 (4) | 0.038 (3) | 0.034 (2) | 0.007 (2) | −0.029 (2) | −0.020 (2) |
O7 | 0.0161 (17) | 0.036 (2) | 0.0171 (18) | −0.0056 (15) | −0.0082 (14) | −0.0089 (16) |
O8 | 0.0213 (19) | 0.037 (2) | 0.0159 (18) | −0.0030 (16) | −0.0066 (15) | −0.0118 (16) |
O9 | 0.0205 (19) | 0.039 (2) | 0.0171 (18) | −0.0029 (16) | −0.0058 (15) | −0.0124 (16) |
O10 | 0.046 (3) | 0.028 (2) | 0.028 (2) | 0.0010 (19) | −0.0182 (19) | −0.0061 (17) |
O11 | 0.0196 (19) | 0.057 (3) | 0.028 (2) | 0.0038 (18) | −0.0103 (16) | −0.027 (2) |
O12 | 0.079 (4) | 0.036 (3) | 0.044 (3) | −0.008 (2) | −0.033 (3) | −0.008 (2) |
O13 | 0.045 (6) | 0.075 (8) | 0.074 (8) | −0.031 (6) | −0.011 (6) | 0.006 (6) |
Y | 0.0155 (2) | 0.0154 (2) | 0.0136 (2) | −0.00013 (16) | −0.00695 (17) | −0.00552 (17) |
C1—O2 | 1.253 (6) | N1—O6 | 1.204 (6) |
C1—O1 | 1.269 (6) | N1—O5 | 1.215 (6) |
C1—C2 | 1.495 (7) | O1—Y | 2.414 (4) |
C1—Y | 2.790 (5) | O2—Y | 2.424 (4) |
C2—C7 | 1.388 (7) | O3—Yii | 2.299 (3) |
C2—C3 | 1.398 (7) | O7—Yi | 2.365 (3) |
C3—C4 | 1.372 (7) | O8—Y | 2.361 (3) |
C3—H3 | 0.9264 | O9—Y | 2.314 (4) |
C4—C5 | 1.397 (7) | O9—H9A | 0.8500 |
C4—N1 | 1.484 (7) | O9—H9B | 0.8501 |
C5—C6 | 1.380 (7) | O10—Y | 2.336 (4) |
C5—H5 | 0.9288 | O10—H10A | 0.8500 |
C6—C7 | 1.398 (7) | O10—H10B | 0.8501 |
C6—C8 | 1.507 (7) | O11—Y | 2.311 (4) |
C7—H7 | 0.9274 | O11—H11B | 0.8500 |
C8—O4 | 1.233 (6) | O11—H11A | 0.8498 |
C8—O3 | 1.268 (6) | O12—H12B | 0.8499 |
C9—O8 | 1.247 (6) | O12—H12A | 0.8500 |
C9—O7 | 1.258 (6) | O13—H13A | 0.8500 |
C9—C9i | 1.527 (9) | O13—H13B | 0.8500 |
O2—C1—O1 | 119.8 (5) | H10A—O10—H10B | 108.3 |
O2—C1—C2 | 120.3 (4) | Y—O11—H11B | 110.1 |
O1—C1—C2 | 119.9 (4) | Y—O11—H11A | 109.8 |
O2—C1—Y | 60.2 (3) | H11B—O11—H11A | 109.8 |
O1—C1—Y | 59.8 (3) | H12B—O12—H12A | 109.7 |
C2—C1—Y | 174.6 (3) | H13A—O13—H13B | 109.5 |
C7—C2—C3 | 119.5 (5) | O3iii—Y—O11 | 74.28 (13) |
C7—C2—C1 | 120.2 (4) | O3iii—Y—O9 | 78.95 (13) |
C3—C2—C1 | 120.3 (4) | O11—Y—O9 | 147.86 (13) |
C4—C3—C2 | 118.1 (5) | O3iii—Y—O10 | 74.18 (13) |
C4—C3—H3 | 121.0 | O11—Y—O10 | 95.62 (16) |
C2—C3—H3 | 120.8 | O9—Y—O10 | 93.86 (15) |
C3—C4—C5 | 123.7 (5) | O3iii—Y—O8 | 138.88 (13) |
C3—C4—N1 | 117.7 (4) | O11—Y—O8 | 139.85 (13) |
C5—C4—N1 | 118.6 (4) | O9—Y—O8 | 72.16 (12) |
C6—C5—C4 | 117.4 (5) | O10—Y—O8 | 79.18 (14) |
C6—C5—H5 | 122.0 | O3iii—Y—O7i | 133.63 (13) |
C4—C5—H5 | 120.5 | O11—Y—O7i | 71.41 (12) |
C5—C6—C7 | 120.3 (5) | O9—Y—O7i | 140.67 (12) |
C5—C6—C8 | 121.3 (5) | O10—Y—O7i | 79.12 (14) |
C7—C6—C8 | 118.4 (4) | O8—Y—O7i | 68.51 (12) |
C2—C7—C6 | 120.9 (5) | O3iii—Y—O1 | 132.35 (12) |
C2—C7—H7 | 118.6 | O11—Y—O1 | 90.19 (15) |
C6—C7—H7 | 120.4 | O9—Y—O1 | 94.96 (14) |
O4—C8—O3 | 125.6 (5) | O10—Y—O1 | 153.26 (13) |
O4—C8—C6 | 119.0 (4) | O8—Y—O1 | 79.61 (13) |
O3—C8—C6 | 115.4 (4) | O7i—Y—O1 | 78.08 (13) |
O8—C9—O7 | 126.2 (4) | O3iii—Y—O2 | 79.18 (12) |
O8—C9—C9i | 117.0 (5) | O11—Y—O2 | 80.27 (14) |
O7—C9—C9i | 116.8 (5) | O9—Y—O2 | 77.50 (13) |
O6—N1—O5 | 123.2 (5) | O10—Y—O2 | 153.13 (13) |
O6—N1—C4 | 118.6 (5) | O8—Y—O2 | 120.73 (13) |
O5—N1—C4 | 118.2 (5) | O7i—Y—O2 | 123.38 (13) |
C1—O1—Y | 93.2 (3) | O1—Y—O2 | 53.60 (12) |
C1—O2—Y | 93.2 (3) | O3iii—Y—C1 | 105.48 (14) |
C8—O3—Yii | 136.0 (3) | O11—Y—C1 | 83.57 (15) |
C9—O7—Yi | 118.6 (3) | O9—Y—C1 | 86.78 (14) |
C9—O8—Y | 119.0 (3) | O10—Y—C1 | 179.19 (14) |
Y—O9—H9A | 109.9 | O8—Y—C1 | 101.50 (14) |
Y—O9—H9B | 109.8 | O7i—Y—C1 | 100.69 (14) |
H9A—O9—H9B | 108.4 | O1—Y—C1 | 27.01 (13) |
Y—O10—H10A | 109.3 | O2—Y—C1 | 26.64 (13) |
Y—O10—H10B | 109.8 | ||
O2—C1—C2—C7 | 169.7 (5) | C9—O8—Y—O3iii | −134.9 (4) |
O1—C1—C2—C7 | −8.3 (7) | C9—O8—Y—O11 | 1.1 (5) |
O2—C1—C2—C3 | −8.9 (7) | C9—O8—Y—O9 | 177.5 (4) |
O1—C1—C2—C3 | 173.0 (5) | C9—O8—Y—O10 | −84.8 (4) |
C7—C2—C3—C4 | −2.3 (7) | C9—O8—Y—O7i | −2.3 (4) |
C1—C2—C3—C4 | 176.3 (4) | C9—O8—Y—O1 | 78.8 (4) |
C2—C3—C4—C5 | −0.8 (8) | C9—O8—Y—O2 | 114.6 (4) |
C2—C3—C4—N1 | −178.6 (4) | C9—O8—Y—C1 | 94.7 (4) |
C3—C4—C5—C6 | 2.9 (8) | C1—O1—Y—O3iii | −6.7 (4) |
N1—C4—C5—C6 | −179.3 (4) | C1—O1—Y—O11 | −75.3 (3) |
C4—C5—C6—C7 | −1.8 (7) | C1—O1—Y—O9 | 72.9 (3) |
C4—C5—C6—C8 | 177.3 (4) | C1—O1—Y—O10 | −178.3 (3) |
C3—C2—C7—C6 | 3.3 (8) | C1—O1—Y—O8 | 143.7 (3) |
C1—C2—C7—C6 | −175.3 (4) | C1—O1—Y—O7i | −146.3 (3) |
C5—C6—C7—C2 | −1.2 (8) | C1—O1—Y—O2 | 2.4 (3) |
C8—C6—C7—C2 | 179.7 (4) | C1—O2—Y—O3iii | 170.8 (3) |
C5—C6—C8—O4 | 44.6 (7) | C1—O2—Y—O11 | 95.1 (3) |
C7—C6—C8—O4 | −136.2 (5) | C1—O2—Y—O9 | −108.3 (3) |
C5—C6—C8—O3 | −136.3 (5) | C1—O2—Y—O10 | 178.3 (3) |
C7—C6—C8—O3 | 42.8 (7) | C1—O2—Y—O8 | −48.1 (3) |
C3—C4—N1—O6 | 0.8 (7) | C1—O2—Y—O7i | 35.1 (3) |
C5—C4—N1—O6 | −177.1 (5) | C1—O2—Y—O1 | −2.4 (3) |
C3—C4—N1—O5 | 179.5 (5) | O2—C1—Y—O3iii | −9.4 (3) |
C5—C4—N1—O5 | 1.5 (8) | O1—C1—Y—O3iii | 174.9 (3) |
O2—C1—O1—Y | −4.3 (5) | O2—C1—Y—O11 | −81.1 (3) |
C2—C1—O1—Y | 173.8 (4) | O1—C1—Y—O11 | 103.2 (3) |
O1—C1—O2—Y | 4.3 (5) | O2—C1—Y—O9 | 68.2 (3) |
C2—C1—O2—Y | −173.8 (4) | O1—C1—Y—O9 | −107.5 (3) |
O4—C8—O3—Yii | −6.0 (8) | O2—C1—Y—O8 | 139.3 (3) |
C6—C8—O3—Yii | 175.0 (3) | O1—C1—Y—O8 | −36.4 (3) |
O8—C9—O7—Yi | −177.9 (4) | O2—C1—Y—O7i | −150.8 (3) |
C9i—C9—O7—Yi | 2.7 (7) | O1—C1—Y—O7i | 33.5 (3) |
O7—C9—O8—Y | −177.5 (4) | O2—C1—Y—O1 | 175.7 (5) |
C9i—C9—O8—Y | 1.9 (7) | O1—C1—Y—O2 | −175.7 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O2iv | 0.85 | 2.14 | 2.735 (5) | 127 |
O9—H9B···O4v | 0.85 | 2.07 | 2.726 (5) | 134 |
O10—H10A···O6iv | 0.85 | 2.36 | 3.115 (7) | 148 |
O10—H10B···O12i | 0.85 | 2.30 | 2.778 (6) | 116 |
O10—H10B···O12i | 0.85 | 2.30 | 2.778 (6) | 116 |
O11—H11A···O4iii | 0.85 | 2.09 | 2.694 (5) | 127 |
O11—H11B···O5vi | 0.85 | 2.57 | 2.987 (6) | 111 |
O11—H11B···O7vii | 0.85 | 2.23 | 2.784 (5) | 123 |
O12—H12A···O1 | 0.85 | 2.11 | 2.841 (6) | 144 |
O12—H12B···O10ii | 0.85 | 2.21 | 2.953 (6) | 147 |
C3—H3···O9iv | 0.93 | 2.54 | 3.432 (6) | 161 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x+1, −y, −z; (v) x+1, y−1, z; (vi) −x, −y+1, −z; (vii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O |
Mr | 846.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.4270 (15), 9.2070 (18), 11.522 (2) |
α, β, γ (°) | 74.16 (3), 71.76 (3), 80.01 (2) |
V (Å3) | 716.5 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 4.14 |
Crystal size (mm) | 0.20 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (XCAD4; Harms & Wocadlo, 1995) |
Tmin, Tmax | 0.48, 0.60 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3018, 2785, 2260 |
Rint | 0.097 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.112, 1.05 |
No. of reflections | 2785 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.64 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.
O1—Y | 2.414 (4) | O8—Y | 2.361 (3) |
O2—Y | 2.424 (4) | O9—Y | 2.314 (4) |
O3—Yi | 2.299 (3) | O10—Y | 2.336 (4) |
O7—Yii | 2.365 (3) | O11—Y | 2.311 (4) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O2iii | 0.85 | 2.14 | 2.735 (5) | 126.5 |
O9—H9B···O4iv | 0.85 | 2.07 | 2.726 (5) | 133.7 |
O10—H10A···O6iii | 0.85 | 2.36 | 3.115 (7) | 148.3 |
O10—H10B···O12ii | 0.85 | 2.30 | 2.778 (6) | 115.7 |
O10—H10B···O12ii | 0.85 | 2.30 | 2.778 (6) | 115.7 |
O11—H11A···O4v | 0.85 | 2.09 | 2.694 (5) | 127.2 |
O11—H11B···O5vi | 0.85 | 2.57 | 2.987 (6) | 111.3 |
O11—H11B···O7vii | 0.85 | 2.23 | 2.784 (5) | 122.7 |
O12—H12A···O1 | 0.85 | 2.11 | 2.841 (6) | 144.0 |
O12—H12B···O10i | 0.85 | 2.21 | 2.953 (6) | 146.5 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) x+1, y−1, z; (v) x, y−1, z; (vi) −x, −y+1, −z; (vii) x−1, y, z. |
Acknowledgements
This work was funded by the Doctoral Research Launch Foundation of Anhui Normal University and the Youth Research Foundation of Anhui Normal University (grant No. 2006xqn64).
References
Biradha, K. (2003). CrystEngComm, 5, 374–384. Web of Science CrossRef CAS Google Scholar
Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1–19. Web of Science CrossRef CAS Google Scholar
Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2003). Eur. J. Inorg. Chem. pp. 766–776. CSD CrossRef Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781–2804. CrossRef Google Scholar
Kongshaug, K. O. & Fjellvag, H. (2006). Inorg. Chem. 45, 2424–2429. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ohmori, O., Kawano, M. & Fujita, M. (2004). CrystEngComm, 6, 51–53. Web of Science CSD CrossRef CAS Google Scholar
Ren, Y., Chen, S. & Gao, S. (2006). J. Coord. Chem. 59, 2135–2142. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Si, S., Li, C., Wang, R. & Li, Y. (2004). J. Mol. Struct. 703, 11–17. Web of Science CSD CrossRef CAS Google Scholar
Tang, E., Dai, Y.-M., Zhang, J., Li, Z.-J., Yao, Y.-G., Zhang, J. & Huang, X.-D. (2006). Inorg. Chem. 45, 6276–6281. Web of Science CSD CrossRef PubMed CAS Google Scholar
Thomas, A. M., Neelakanta, G., Mahadevan, S., Nethaji, M. & Chakravarty, A. R. (2002). Eur. J. Inorg. Chem. pp. 2720–2726. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is an intense research interest for the crystal engineering of coordination polymers owing to their intriguing molecular topologies, such as molecular grids, ladders, rings, diamondoids and honeycombs, and potential applications as functional materials (Biradha, 2003; Braga et al., 2005; Janiak, 2003; Ohmori et al., 2004). In order to construct the infinite structure, plentiful multidentate organic ligands are used to bridge metal ions (Moulton & Zaworotko, 2001). Among them, V-shape molecules, such as isophthalic acid and 5-amino-isophthalic acid, have received much attention because such a molecular geometry can result in unexpected structure comparing with that constructed by linear ligands (Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006; Si et al., 2004; Ren et al., 2006). Herein, we present a novel ladder-like coordination polymer (I): Y2(C8H3NO6)2(C2O4)(H2O)6.3(H2O), in which metal ions are bridged by a V-shape ligand, 5-nitrobenzene-1,3-dicarboxylate (5-nitroisophthalate, abbreviated as 5-NIP), and oxalate ligands.
As shown in Figure 1, the Y(III) ion adopts an eight-coordinate geometry which may be described as a distorted dodecahedron (Table 1): it is bounded to three water oxygen atoms (O9, O10 and O11) and five carboxylate oxygen atoms, in which O1, O2 and O3iii [symmetry code: (iii) x, y - 1, z] are from two 5-NIP ligands and O7i, O8 [symmetry code: (i) 1 - x, -y, 1 - z] are from one oxalate ligand. The H13A/O13/H13B water molecule has a fractional site occupancy of 0.50. The ligand 5-NIP chelates the Y(III) ion via its O1/C1/O2 carboxylate group, while its another O3/C8/O4 carboxylate group coordinates to a symmetry related Y(III) ion in monodentate fashion via the atom O3. The O5/N1/O6 nitro group is almost coplanar with the phenyl ring (C2/C3/C4/C5/C6/C7). The O1/C1/O2 carboxylate group is slightly twisted from the phenyl ring with the dihedral angel of 10.26 (41)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O1/C1/O2) planes. The O3/C8/O4 carboxylate group is out of the phenyl plane with the dihedral angel of 44.41 (36)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the carboxyl (O3/C8/O4) planes. Both two carboxylate groups of the oxalate ligand bridge two symmetry related Y(III) ions in η1:η1:µ2 mode. The oxalate is almost perpendicular to the phenyl plane of 5-NIP with the dihedral angel of 87.42 (26)° based on the phenyl (C2/C3/C4/C5/C6/C7) and the oxalate (O7/C9/O8/C9i/O7i/O8i) [symmetry code: (i) 1 - x, -y, 1 - z] planes. The bond distance of two sp2 C9—C9i [symmetry code: (i) 1 - x, -y, 1 - z] in oxalate is elongated similar with other coordination compounds containing oxalate (Thomas et al., 2002; Nordell et al., 2003). Thus, the ligands 5-NIP link the neighbouring Y(III) ions in the head-to-tail mode to construct an infinite zigzag chain which runs along the b axis direction. Two adjacent zigzag chains are connected via oxalate bridging in the c axis direction to form a ladder-like structure with a grid of 9.207 (11)Å × 6.138 (17)Å based on the intra-ladder intervals of Yttrium (III) ions.
(Burrows et al., 2003; Tang et al., 2006; Kongshaug & Fjellvag, 2006).
All ladders are assembled together through a number of hydrogen bonding (Table 2) between 5-NIP carboxyl O atoms (O1, O2 and O4), nitro O atoms (O5 and O6), oxalate O7 atom and coordination water O atoms (O9, O10 and O11) as well as lattice water molecules (O12 and O13). Among them, H10A and H11B atoms are involved in a three-centered hydrogen bond, respectively. Moreover, the center-center distance between two adjacent phenyl rings of the different ladders is 3.819 (9) Å. It indicates the presence of π-π staking between two adjacent inter-ladder 5-NIP (Janiak et al., 2000). Therefore all ladders are packing via hydrogen bonding and the π-π interactions in the crystal.