metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­pyridinium) bis­­(oxalato-κ2O,O′)cuprate(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 November 2007; accepted 20 November 2007; online 18 December 2007)

The CuII atom in the title salt, (C5H7N2)2[Cu(C2O4)2]·2H2O, is located on a center of inversion and is chelated by two oxalate groups in a square-planar coordination geometry. The cation, anion and water mol­ecules inter­act through hydrogen bonds, forming a three-dimensional hydrogen-bonded network.

Related literature

See Geiser et al. (1987[Geiser, U., Ramakrishna, B. L., Willett, R. D., Hulsberg, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750-3756.]) for the square-planar pyridinium dioxalatocuprate(II) oxalic acid co-crystal. See Sun et al. (2004[Sun, Y.-Q., Zhang, J., Chen, J.-L. & Yang, G.-Y. (2004). Eur. J. Inorg. Chem. pp. 3837-3841.]) for 2,6-bis­(4′-pyridyl-1′-pyridinium)pyrazine bis­(bis­(oxalato)cuprate(II), which is also square planar. In bis­(2-amino­anilinium) bis­(oxalato)cuprate(II), the amino groups coordinate to the metal atom, which exhibits octa­hedral coordination (Keene et al., 2003[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131-m1133.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)2[Cu(C2O4)2]·2H2O

  • Mr = 465.86

  • Monoclinic, P 21 /c

  • a = 3.7105 (3) Å

  • b = 20.311 (1) Å

  • c = 11.9261 (9) Å

  • β = 90.450 (1)°

  • V = 898.8 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 295 (2) K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.764, Tmax = 0.905

  • 2623 measured reflections

  • 1590 independent reflections

  • 1498 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.12

  • 1590 reflections

  • 153 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.932 (2)
Cu1—O3 1.927 (2)
O1—Cu1—O3 85.4 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.85 (3) 2.03 (2) 2.852 (3) 164 (5)
O1w—H12⋯O3i 0.85 (3) 2.12 (5) 2.931 (3) 160 (5)
N1—H1⋯O2 0.85 (3) 2.12 (2) 2.858 (4) 146 (4)
N2—H21⋯O4ii 0.85 (1) 2.07 (1) 2.906 (4) 168 (4)
N2—H22⋯O1wiii 0.85 (3) 2.02 (3) 2.867 (4) 176 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+3, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem., 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

There are many crystallographic studies of coordination compounds of oxalic acid (Cambridge Structural Database, Version 5.28, Nov. 2006). The copper(II) center in the title compound shows square-planar coordination (Table 1); the cations, anions and lattice water molecules interact through hydrogen bonds (Table 2) to give rise to a three-dimensional network motif.

Related literature top

See Geiser et al. (1987) for the square-planar pyridinium dioxalatocuprate oxalic acid co-crystal. See Sun et al. (2004) for 2,6-bis(4'-pyridyl-1'-pyridinium)pyrazine bis(bis(oxalato)cuprate, which is also square planar. In bis(2-aminoanilinium) bis(oxalato)cuprate, the amino groups coordinate to the metal atom, which exhibits an octahedral coordination (Keene et al., 2003).

Experimental top

Potassium oxalate monohydrate (0.036 g, 0.2 mmol) dissolved in water (5 ml) was reacted with copper nitrate trihydrate (0.048 g, 0.2 mmol) in water (5 ml). To this solution was added 4-C5H4N–NH–C(O)–C(O)–NH–4–C5H4N (0.048 g, 0.2 mmol) dissolved in methanol (15 ml). Blue crystals separated after a few days in 60% yield. CH&N elemental analysis. Calc. for C14H18CuN4O10: C 36.09, H 3.89, N 12.02%. Found: C 36.43, H 3.74, N 12.18%.

Refinement top

The carbon-bound H atoms were placed in calculated positions and were allowed to ride on the parent atoms. The oxygen- and nitrogen-bound H atoms were refined with a distance restraint O–H = N–H = 0.85±0.01 Å. Their temperature factors were freely refined.

Structure description top

There are many crystallographic studies of coordination compounds of oxalic acid (Cambridge Structural Database, Version 5.28, Nov. 2006). The copper(II) center in the title compound shows square-planar coordination (Table 1); the cations, anions and lattice water molecules interact through hydrogen bonds (Table 2) to give rise to a three-dimensional network motif.

See Geiser et al. (1987) for the square-planar pyridinium dioxalatocuprate oxalic acid co-crystal. See Sun et al. (2004) for 2,6-bis(4'-pyridyl-1'-pyridinium)pyrazine bis(bis(oxalato)cuprate, which is also square planar. In bis(2-aminoanilinium) bis(oxalato)cuprate, the amino groups coordinate to the metal atom, which exhibits an octahedral coordination (Keene et al., 2003).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of 2[C5H7N2]+[Cu(C2O4)2]2-.2H2O; Displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radii.
Bis(4-aminopyridinium) bis(oxalato-κ2O,O')cuprate(II) dihydrate top
Crystal data top
(C5H7N2)2[Cu(C2O4)2]·2H2OF(000) = 478
Mr = 465.86Dx = 1.721 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2198 reflections
a = 3.7105 (3) Åθ = 2.0–25.1°
b = 20.311 (1) ŵ = 1.28 mm1
c = 11.9261 (9) ÅT = 295 K
β = 90.450 (1)°Block, blue
V = 898.8 (1) Å30.14 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART area-detector
diffractometer
1590 independent reflections
Radiation source: fine-focus sealed tube1498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.764, Tmax = 0.905k = 2124
2623 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0536P)2 + 1.2237P]
where P = (Fo2 + 2Fc2)/3
1590 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.23 e Å3
5 restraintsΔρmin = 0.49 e Å3
Crystal data top
(C5H7N2)2[Cu(C2O4)2]·2H2OV = 898.8 (1) Å3
Mr = 465.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.7105 (3) ŵ = 1.28 mm1
b = 20.311 (1) ÅT = 295 K
c = 11.9261 (9) Å0.14 × 0.10 × 0.08 mm
β = 90.450 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
1590 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1498 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.905Rint = 0.016
2623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.23 e Å3
1590 reflectionsΔρmin = 0.49 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0283 (2)
O10.8063 (6)0.52464 (11)0.37661 (18)0.0352 (5)
O21.0084 (7)0.48225 (12)0.21648 (19)0.0399 (6)
O30.4985 (6)0.41370 (10)0.43287 (17)0.0313 (5)
O40.7190 (7)0.36328 (11)0.28166 (19)0.0386 (5)
O1w1.1418 (8)0.65099 (13)0.3772 (2)0.0477 (6)
N11.1417 (8)0.37249 (17)0.0727 (2)0.0439 (7)
N21.5342 (8)0.27528 (14)0.1995 (2)0.0365 (6)
C10.8457 (8)0.47791 (15)0.3044 (2)0.0275 (6)
C20.6748 (8)0.41168 (14)0.3400 (2)0.0275 (6)
C31.1500 (8)0.3067 (2)0.0721 (3)0.0411 (8)
H31.06740.28370.13430.049*
C41.2757 (8)0.27283 (17)0.0171 (3)0.0354 (7)
H41.27760.22700.01600.043*
C51.4040 (7)0.30699 (15)0.1115 (2)0.0266 (6)
C61.3848 (8)0.37643 (16)0.1090 (3)0.0344 (7)
H61.46090.40110.17020.041*
C71.2545 (9)0.40679 (17)0.0167 (3)0.0428 (8)
H71.24290.45250.01510.051*
H111.045 (13)0.6140 (13)0.363 (4)0.084 (17)*
H121.268 (11)0.642 (3)0.434 (3)0.077 (17)*
H11.068 (10)0.3915 (18)0.132 (2)0.046 (11)*
H211.563 (10)0.2337 (6)0.199 (3)0.042 (10)*
H221.621 (11)0.2979 (18)0.253 (2)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0380 (3)0.0234 (3)0.0237 (3)0.00362 (19)0.0082 (2)0.00456 (18)
O10.0493 (13)0.0257 (11)0.0309 (11)0.0074 (10)0.0139 (10)0.0061 (9)
O20.0526 (14)0.0358 (12)0.0314 (12)0.0023 (11)0.0165 (11)0.0029 (10)
O30.0416 (12)0.0258 (11)0.0265 (11)0.0047 (9)0.0058 (9)0.0030 (8)
O40.0550 (14)0.0256 (11)0.0354 (12)0.0043 (10)0.0117 (10)0.0088 (9)
O1w0.0663 (17)0.0358 (14)0.0411 (14)0.0106 (12)0.0018 (13)0.0083 (11)
N10.0379 (15)0.064 (2)0.0295 (15)0.0085 (14)0.0009 (12)0.0171 (14)
N20.0476 (16)0.0320 (15)0.0300 (14)0.0043 (12)0.0065 (12)0.0016 (12)
C10.0325 (15)0.0265 (15)0.0236 (15)0.0023 (12)0.0016 (12)0.0007 (11)
C20.0310 (14)0.0277 (15)0.0240 (14)0.0019 (11)0.0004 (12)0.0020 (12)
C30.0321 (16)0.065 (2)0.0265 (16)0.0059 (15)0.0001 (13)0.0060 (16)
C40.0328 (15)0.0393 (17)0.0342 (16)0.0024 (13)0.0023 (13)0.0077 (14)
C50.0248 (13)0.0307 (15)0.0244 (14)0.0030 (11)0.0051 (11)0.0015 (12)
C60.0353 (16)0.0330 (16)0.0348 (17)0.0010 (13)0.0012 (13)0.0021 (13)
C70.0436 (18)0.0353 (18)0.049 (2)0.0056 (14)0.0018 (16)0.0133 (16)
Geometric parameters (Å, º) top
Cu1—O11.932 (2)N2—C51.325 (4)
Cu1—O31.927 (2)N2—H210.85 (1)
Cu1—O3i1.927 (2)N2—H220.85 (3)
Cu1—O1i1.932 (2)C1—C21.548 (4)
O1—C11.290 (4)C3—C41.352 (5)
O2—C11.217 (4)C3—H30.9300
O3—C21.291 (4)C4—C51.409 (4)
O4—C21.216 (4)C4—H40.9300
O1w—H110.85 (3)C5—C61.413 (4)
O1w—H120.85 (3)C6—C71.355 (5)
N1—C31.337 (5)C6—H60.9300
N1—C71.343 (5)C7—H70.9300
N1—H10.85 (3)
O3—Cu1—O3i180O4—C2—O3126.0 (3)
O3—Cu1—O1i94.7 (1)O4—C2—C1119.2 (3)
O3i—Cu1—O1i85.4 (1)O3—C2—C1114.8 (2)
O1—Cu1—O385.4 (1)N1—C3—C4121.4 (3)
O3i—Cu1—O194.7 (1)N1—C3—H3119.3
O1i—Cu1—O1180C4—C3—H3119.3
C1—O1—Cu1112.83 (19)C3—C4—C5119.9 (3)
C2—O3—Cu1112.66 (18)C3—C4—H4120.0
H11—O1w—H12101 (5)C5—C4—H4120.0
C3—N1—C7120.4 (3)N2—C5—C4121.4 (3)
C3—N1—H1118 (3)N2—C5—C6121.4 (3)
C7—N1—H1122 (3)C4—C5—C6117.2 (3)
C5—N2—H21122 (3)C7—C6—C5119.3 (3)
C5—N2—H22118 (3)C7—C6—H6120.3
H21—N2—H22120 (4)C5—C6—H6120.3
O2—C1—O1125.5 (3)N1—C7—C6121.7 (3)
O2—C1—C2120.4 (3)N1—C7—H7119.2
O1—C1—C2114.0 (2)C6—C7—H7119.2
O3—Cu1—O1—C15.3 (2)O2—C1—C2—O3177.7 (3)
O3i—Cu1—O1—C1174.7 (2)O1—C1—C2—O34.2 (4)
O1i—Cu1—O3—C2177.2 (2)C7—N1—C3—C41.0 (5)
O1—Cu1—O3—C22.8 (2)N1—C3—C4—C50.5 (5)
Cu1—O1—C1—O2175.7 (3)C3—C4—C5—N2178.9 (3)
Cu1—O1—C1—C26.3 (3)C3—C4—C5—C61.7 (4)
Cu1—O3—C2—O4179.1 (3)N2—C5—C6—C7179.1 (3)
Cu1—O3—C2—C10.2 (3)C4—C5—C6—C71.6 (4)
O2—C1—C2—O43.3 (4)C3—N1—C7—C61.1 (5)
O1—C1—C2—O4174.8 (3)C5—C6—C7—N10.2 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.85 (3)2.03 (2)2.852 (3)164 (5)
O1w—H12···O3ii0.85 (3)2.12 (5)2.931 (3)160 (5)
N1—H1···O20.85 (3)2.12 (2)2.858 (4)146 (4)
N2—H21···O4iii0.85 (1)2.07 (1)2.906 (4)168 (4)
N2—H22···O1wiv0.85 (3)2.02 (3)2.867 (4)176 (4)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z1/2; (iv) x+3, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)2[Cu(C2O4)2]·2H2O
Mr465.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)3.7105 (3), 20.311 (1), 11.9261 (9)
β (°) 90.450 (1)
V3)898.8 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.764, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
2623, 1590, 1498
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.12
No. of reflections1590
No. of parameters153
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Cu1—O11.932 (2)Cu1—O31.927 (2)
O1—Cu1—O385.4 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.85 (3)2.03 (2)2.852 (3)164 (5)
O1w—H12···O3i0.85 (3)2.12 (5)2.931 (3)160 (5)
N1—H1···O20.85 (3)2.12 (2)2.858 (4)146 (4)
N2—H21···O4ii0.85 (1)2.07 (1)2.906 (4)168 (4)
N2—H22···O1wiii0.85 (3)2.02 (3)2.867 (4)176 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x+3, y+1, z.
 

Acknowledgements

We thank the Foundation of Jiangsu Provincial Key Program of Physical Chemistry in Yangzhou University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem., 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationGeiser, U., Ramakrishna, B. L., Willett, R. D., Hulsberg, F. B. & Reedijk, J. (1987). Inorg. Chem. 26, 3750–3756.  CSD CrossRef CAS Web of Science Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSun, Y.-Q., Zhang, J., Chen, J.-L. & Yang, G.-Y. (2004). Eur. J. Inorg. Chem. pp. 3837–3841.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds