metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[chloridobis(di­methyl sulfoxide)dioxidouranium(VI)]

aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

(Received 20 November 2007; accepted 29 November 2007; online 6 December 2007)

In the crystal structure of the title compound, [U2Cl4O4(C2H6OS)4], the compound has a centrosymmetric dimeric structure bridged by two chloride anions. Each UVI atom is seven-coordinate in a penta­gonal-bipyramidal geometry. In the equatorial plane of the uranyl unit there are two O atoms from non-adjacent dimethyl sulfoxides and three chloride ions (of which two chlorides are bridging). The compound is of inter­est as an anhydrous starting material of the uran­yl(VI) ion.

Related literature

For related structures, see: Berthet et al. (2000[Berthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969-1973.]); Charpin et al. (1987[Charpin, P., Lance, M., Nierlich, M., Vigner, D. & Baudin, C. (1987). Acta Cryst. C43, 1832-1833.]); Rebizant et al. (1987[Rebizant, J., Van den Bossche, G., Spirlet, M. R. & Goffart, J. (1987). Acta Cryst. C43, 1298-1300.]); Wilkerson et al. (1999[Wilkerson, M. P., Burns, C. J., Paine, R. T. & Scott, B. L. (1999). Inorg. Chem. 38, 4156-4158.]). For the synthesis, see: Calderazzo et al. (1997[Calderazzo, F., De Benedetto, G. E., Detti, S. & Pampaloni, G. (1997). J. Chem. Soc. Dalton Trans. pp. 3319-3324.]); Berthet et al. (2000[Berthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969-1973.]).

[Scheme 1]

Experimental

Crystal data
  • [U2Cl4O4(C2H6OS)4]

  • Mr = 994.37

  • Monoclinic, P 21 /c

  • a = 9.172 (3) Å

  • b = 12.833 (4) Å

  • c = 10.691 (2) Å

  • β = 97.72 (2)°

  • V = 1247.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.76 mm−1

  • T = 173 (2) K

  • 0.33 × 0.21 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.051, Tmax = 0.128

  • 10244 measured reflections

  • 2849 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.10

  • 2849 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 2.54 e Å−3

  • Δρmin = −2.25 e Å−3

Table 1
Selected interatomic distances (Å)

U1—O1 1.746 (7)
U1—O2 1.757 (6)
U1—O3 2.349 (6)
U1—O4 2.360 (6)
U1—Cl2 2.686 (2)
U1—Cl1 2.844 (2)
U1—Cl1i 2.909 (2)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2000-2006[Rigaku/MSC (2000-2006). CrystalStructure (Version 3.8) and PROCESS-AUTO (Version 2.01), Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000-2006[Rigaku/MSC (2000-2006). CrystalStructure (Version 3.8) and PROCESS-AUTO (Version 2.01), Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al. 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound (I) was unexpectedly obtained from a hydrochloric acid aqueous solution containing U4+ and dimethyl sulfoxide (DMSO). It is reasonable to consider that I was formed by aerobic oxidation of U4+ to UO22+.

The title compound I has a dimeric structure which is bridged by two µ-Cl- between UO2Cl(DMSO)2 fragments as shown in Fig. 1. There is an inversion center in the molecular structure of I. Each U atom is seven-coordinated in a pentagonal-bipyramidal geometry. Two O atoms are at the axial positions [mean U=Oyl = 1.75 (1) Å] (Table 1). In the equatorial plane of each U, there are three Cl- ions; two of them act as µ-Cl- to bridge the U atoms in I [mean U–Clbridge = 2.88 (3) Å], and the remaining Cl- is placed at the position independent of the bridge formation [U–Clnon-bridge = 2.686 (2) Å]. The DMSO molecules in the equatorial plane coordinates to U through its O, and are non-adjacent [mean U–ODMSO = 2.35 (1) Å]. Deviations of Cl- and O of DMSO from the mean equatorial plane are within 0.15 Å. Interatomic distances between U(1)···U(1)i and µ-Cl(1)···µ-Cl(1)i [symmetry code: (i) -x + 2, -y + 1, -z + 1] are 4.7669 (3) and 3.221 (3) Å, respectively, which indicate no interatomic interaction in each pair. These structural features of I are similar to that of [UO2Cl(THF)2]2(µ-Cl)2 (THF = tetrahydrofuran) reported by Charpin et al. (1987).

Previously, some anhydrous uranyl(VI) salts, UO2Br2(THF)3, UO2Cl2(THF)3, [UO2Cl(THF)2]2(µ-Cl)2, and UO2(CF3SO3)2L3 (L = THF, pyridine), were reported (Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987, Berthet et al. 2000, respectively). In syntheses of water-sensitive uranyl(VI) compounds, e.g., alkoxides and amides, anhydrous starting materials must be used. On the other hand, THF is not very stable, and may be decomposed by its polymerization in presence of a strong acid, e.g. CF3SO3H (Calderazzo et al. 1997 and Berthet et al. 2000). Compound I also has simple composition, i.e., consisting only of UO22+, Cl-, and DMSO. The use of DMSO insead of THF expands the number of choices of the anhydrous uranyl(VI) salts as the starting material.

Related literature top

For related structures, see: Berthet et al. (2000); Charpin et al. (1987); Rebizant et al. (1987); Wilkerson et al. (1999). For the synthesis, see: Calderazzo et al. (1997); Berthet et al. (2000).

Experimental top

Uranium(VI) trioxide was dissolved in 5 M hydrochloric acid solution. With heating and vigrous stirring, 2 molar amount of silver powder was added in the HCl aq. After 30 min, the mixture was cooled to room temperature. The insoluble residure of AgCl was removed by filtration. Small portion (ca 1 ml) of this filtrate was separated in a test tube. In this sample, some drops of dimethyl sulfoxide was added. The mixture was allowed to the air. After several days, yellow crystals of the title compound deposited.

Refinement top

H atoms were placed in calculated positions with C—H = 0.98 Å and torsion angles were refined to fit the electron density, with Uiso(H) = 1.2Ueq(C). The highest peak in the final difference Fourier map is 0.91 Å apart from the U atom.

Structure description top

The title compound (I) was unexpectedly obtained from a hydrochloric acid aqueous solution containing U4+ and dimethyl sulfoxide (DMSO). It is reasonable to consider that I was formed by aerobic oxidation of U4+ to UO22+.

The title compound I has a dimeric structure which is bridged by two µ-Cl- between UO2Cl(DMSO)2 fragments as shown in Fig. 1. There is an inversion center in the molecular structure of I. Each U atom is seven-coordinated in a pentagonal-bipyramidal geometry. Two O atoms are at the axial positions [mean U=Oyl = 1.75 (1) Å] (Table 1). In the equatorial plane of each U, there are three Cl- ions; two of them act as µ-Cl- to bridge the U atoms in I [mean U–Clbridge = 2.88 (3) Å], and the remaining Cl- is placed at the position independent of the bridge formation [U–Clnon-bridge = 2.686 (2) Å]. The DMSO molecules in the equatorial plane coordinates to U through its O, and are non-adjacent [mean U–ODMSO = 2.35 (1) Å]. Deviations of Cl- and O of DMSO from the mean equatorial plane are within 0.15 Å. Interatomic distances between U(1)···U(1)i and µ-Cl(1)···µ-Cl(1)i [symmetry code: (i) -x + 2, -y + 1, -z + 1] are 4.7669 (3) and 3.221 (3) Å, respectively, which indicate no interatomic interaction in each pair. These structural features of I are similar to that of [UO2Cl(THF)2]2(µ-Cl)2 (THF = tetrahydrofuran) reported by Charpin et al. (1987).

Previously, some anhydrous uranyl(VI) salts, UO2Br2(THF)3, UO2Cl2(THF)3, [UO2Cl(THF)2]2(µ-Cl)2, and UO2(CF3SO3)2L3 (L = THF, pyridine), were reported (Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987, Berthet et al. 2000, respectively). In syntheses of water-sensitive uranyl(VI) compounds, e.g., alkoxides and amides, anhydrous starting materials must be used. On the other hand, THF is not very stable, and may be decomposed by its polymerization in presence of a strong acid, e.g. CF3SO3H (Calderazzo et al. 1997 and Berthet et al. 2000). Compound I also has simple composition, i.e., consisting only of UO22+, Cl-, and DMSO. The use of DMSO insead of THF expands the number of choices of the anhydrous uranyl(VI) salts as the starting material.

For related structures, see: Berthet et al. (2000); Charpin et al. (1987); Rebizant et al. (1987); Wilkerson et al. (1999). For the synthesis, see: Calderazzo et al. (1997); Berthet et al. (2000).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2000-2006); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2000-2006); data reduction: CrystalStructure (Rigaku/MSC, 2000-2006); program(s) used to solve structure: SIR92 (Altomare et al. 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC).

Figures top
[Figure 1] Fig. 1. Molecular structure of I drawn by thermal ellipsoids in 50% probability level. Asymmetric unit was expanded by the symmetry operation; (i) -x + 2, -y + 1, -z + 1. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing view of I drawn by thermal ellipsoids in 50% probability level. Hydrogen atoms are omitted for clarity.
Di-µ-chlorido-bis[chloridobis(dimethyl sulfoxide)dioxidouranium(VI)] top
Crystal data top
[U2Cl4O4(C2H6OS)4]F(000) = 904
Mr = 994.37Dx = 2.648 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 10519 reflections
a = 9.172 (3) Åθ = 3.1–27.5°
b = 12.833 (4) ŵ = 13.76 mm1
c = 10.691 (2) ÅT = 173 K
β = 97.72 (2)°Block, yellow
V = 1247.0 (6) Å30.33 × 0.21 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(Higashi, 1999)
k = 1615
Tmin = 0.051, Tmax = 0.128l = 1313
10244 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2849 reflectionsΔρmax = 2.54 e Å3
120 parametersΔρmin = 2.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (2)
Crystal data top
[U2Cl4O4(C2H6OS)4]V = 1247.0 (6) Å3
Mr = 994.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.172 (3) ŵ = 13.76 mm1
b = 12.833 (4) ÅT = 173 K
c = 10.691 (2) Å0.33 × 0.21 × 0.15 mm
β = 97.72 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(Higashi, 1999)
2330 reflections with I > 2σ(I)
Tmin = 0.051, Tmax = 0.128Rint = 0.084
10244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.10Δρmax = 2.54 e Å3
2849 reflectionsΔρmin = 2.25 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.78418 (3)0.51860 (2)0.35047 (3)0.02280 (14)
Cl10.9986 (2)0.37721 (17)0.4687 (2)0.0309 (5)
Cl20.5528 (3)0.5489 (2)0.1718 (2)0.0381 (5)
S10.7780 (2)0.28472 (17)0.1748 (2)0.0279 (5)
S20.8069 (3)0.78684 (18)0.3045 (2)0.0319 (5)
O10.6738 (8)0.4945 (5)0.4683 (6)0.0310 (14)
O20.8996 (8)0.5398 (5)0.2345 (6)0.0327 (15)
O30.7203 (7)0.3496 (5)0.2783 (5)0.0280 (13)
O40.7311 (7)0.6977 (5)0.3661 (5)0.0296 (14)
C10.7963 (11)0.1587 (7)0.2424 (9)0.037 (2)
H1A0.88100.15750.30890.044*
H1B0.81120.10770.17710.044*
H1C0.70680.14120.27880.044*
C20.6207 (11)0.2632 (8)0.0621 (8)0.038 (2)
H2A0.59580.32750.01450.045*
H2B0.53770.24240.10550.045*
H2C0.64160.20780.00390.045*
C30.8216 (13)0.8880 (8)0.4207 (9)0.047 (3)
H3A0.89730.86940.49070.057*
H3B0.72690.89650.45230.057*
H3C0.84870.95340.38260.057*
C40.6660 (13)0.8391 (8)0.1913 (8)0.044 (3)
H4A0.64620.79090.11990.053*
H4B0.69800.90640.16120.053*
H4C0.57620.84880.23030.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0247 (2)0.0179 (2)0.0251 (2)0.00006 (13)0.00058 (12)0.00017 (11)
Cl10.0314 (12)0.0197 (11)0.0385 (11)0.0033 (9)0.0067 (8)0.0050 (8)
Cl20.0366 (13)0.0324 (13)0.0412 (13)0.0003 (10)0.0095 (9)0.0021 (10)
S10.0264 (12)0.0235 (12)0.0338 (11)0.0005 (9)0.0040 (8)0.0015 (8)
S20.0318 (13)0.0245 (12)0.0395 (12)0.0020 (9)0.0052 (9)0.0044 (9)
O10.036 (4)0.025 (3)0.032 (3)0.001 (3)0.004 (3)0.003 (2)
O20.036 (4)0.033 (4)0.029 (3)0.003 (3)0.004 (2)0.000 (3)
O30.032 (4)0.023 (3)0.027 (3)0.000 (3)0.000 (2)0.003 (2)
O40.038 (4)0.014 (3)0.036 (3)0.002 (3)0.004 (2)0.002 (2)
C10.038 (6)0.020 (5)0.051 (6)0.010 (4)0.001 (4)0.002 (4)
C20.043 (6)0.037 (6)0.030 (5)0.008 (5)0.007 (4)0.002 (4)
C30.051 (7)0.027 (6)0.061 (7)0.013 (5)0.001 (5)0.001 (5)
C40.055 (7)0.041 (6)0.036 (5)0.011 (5)0.001 (4)0.018 (4)
Geometric parameters (Å, º) top
U1—O11.746 (7)S2—C41.779 (9)
U1—O21.757 (6)S2—C31.789 (10)
U1—O32.349 (6)C1—H1A0.9800
U1—O42.360 (6)C1—H1B0.9800
U1—Cl22.686 (2)C1—H1C0.9800
U1—Cl12.844 (2)C2—H2A0.9800
U1—Cl1i2.909 (2)C2—H2B0.9800
Cl1—U1i2.909 (2)C2—H2C0.9800
U1—U1i4.7669 (16)C3—H3A0.9800
Cl1—Cl1i3.221 (3)C3—H3B0.9800
S1—O31.535 (6)C3—H3C0.9800
S1—C11.770 (9)C4—H4A0.9800
S1—C21.773 (9)C4—H4B0.9800
S2—O41.533 (6)C4—H4C0.9800
O1—U1—O2178.0 (3)C4—S2—C3100.3 (5)
O1—U1—O386.0 (2)S1—O3—U1130.0 (4)
O2—U1—O393.4 (2)S2—O4—U1125.9 (4)
O1—U1—O488.6 (3)S1—C1—H1A109.5
O2—U1—O492.8 (3)S1—C1—H1B109.5
O3—U1—O4151.3 (2)H1A—C1—H1B109.5
O1—U1—Cl293.4 (2)S1—C1—H1C109.5
O2—U1—Cl288.2 (2)H1A—C1—H1C109.5
O3—U1—Cl276.21 (15)H1B—C1—H1C109.5
O4—U1—Cl276.03 (16)S1—C2—H2A109.5
O1—U1—Cl190.0 (2)S1—C2—H2B109.5
O2—U1—Cl188.1 (2)H2A—C2—H2B109.5
O3—U1—Cl171.59 (15)S1—C2—H2C109.5
O4—U1—Cl1136.62 (15)H2A—C2—H2C109.5
Cl2—U1—Cl1147.29 (7)H2B—C2—H2C109.5
O1—U1—Cl1i90.8 (2)S2—C3—H3A109.5
O2—U1—Cl1i88.5 (2)S2—C3—H3B109.5
O3—U1—Cl1i139.54 (15)H3A—C3—H3B109.5
O4—U1—Cl1i68.58 (15)S2—C3—H3C109.5
Cl2—U1—Cl1i144.24 (7)H3A—C3—H3C109.5
Cl1—U1—Cl1i68.09 (7)H3B—C3—H3C109.5
U1—Cl1—U1i111.91 (7)S2—C4—H4A109.5
O3—S1—C1102.9 (4)S2—C4—H4B109.5
O3—S1—C2104.3 (4)H4A—C4—H4B109.5
C1—S1—C299.2 (5)S2—C4—H4C109.5
O4—S2—C4104.1 (5)H4A—C4—H4C109.5
O4—S2—C3103.9 (4)H4B—C4—H4C109.5
O1—U1—Cl1—U1i90.9 (2)Cl2—U1—O3—S192.7 (4)
O2—U1—Cl1—U1i89.2 (2)Cl1—U1—O3—S181.5 (4)
O3—U1—Cl1—U1i176.64 (17)Cl1i—U1—O3—S186.3 (4)
O4—U1—Cl1—U1i2.9 (3)C4—S2—O4—U1113.6 (5)
Cl2—U1—Cl1—U1i172.88 (11)C3—S2—O4—U1141.8 (5)
Cl1i—U1—Cl1—U1i0.0O1—U1—O4—S2169.6 (5)
C1—S1—O3—U1138.5 (5)O2—U1—O4—S29.0 (5)
C2—S1—O3—U1118.4 (5)O3—U1—O4—S2111.3 (5)
O1—U1—O3—S1172.8 (5)Cl2—U1—O4—S296.5 (4)
O2—U1—O3—S15.3 (5)Cl1—U1—O4—S281.1 (4)
O4—U1—O3—S1107.4 (5)Cl1i—U1—O4—S278.3 (4)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U2Cl4O4(C2H6OS)4]
Mr994.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.172 (3), 12.833 (4), 10.691 (2)
β (°) 97.72 (2)
V3)1247.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)13.76
Crystal size (mm)0.33 × 0.21 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(Higashi, 1999)
Tmin, Tmax0.051, 0.128
No. of measured, independent and
observed [I > 2σ(I)] reflections
10244, 2849, 2330
Rint0.084
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.10
No. of reflections2849
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.54, 2.25

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2000-2006), CrystalStructure (Rigaku/MSC, 2000-2006), SIR92 (Altomare et al. 1994), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), CrystalStructure (Rigaku/MSC).

Selected bond lengths (Å) top
U1—O11.746 (7)U1—Cl12.844 (2)
U1—O21.757 (6)U1—Cl1i2.909 (2)
U1—O32.349 (6)U1—U1i4.7669 (16)
U1—O42.360 (6)Cl1—Cl1i3.221 (3)
U1—Cl22.686 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

Footnotes

This author's last name has been changed from `Mizuoka'.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBerthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969–1973.  CrossRef Google Scholar
First citationCalderazzo, F., De Benedetto, G. E., Detti, S. & Pampaloni, G. (1997). J. Chem. Soc. Dalton Trans. pp. 3319–3324.  CrossRef Web of Science Google Scholar
First citationCharpin, P., Lance, M., Nierlich, M., Vigner, D. & Baudin, C. (1987). Acta Cryst. C43, 1832–1833.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRebizant, J., Van den Bossche, G., Spirlet, M. R. & Goffart, J. (1987). Acta Cryst. C43, 1298–1300.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2000–2006). CrystalStructure (Version 3.8) and PROCESS-AUTO (Version 2.01), Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilkerson, M. P., Burns, C. J., Paine, R. T. & Scott, B. L. (1999). Inorg. Chem. 38, 4156–4158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds