organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3-di­hydro-1H-naphtho[1,2-e][1,3]oxazine

aDepartment of Chemistry, Henan Institute of Education, Zhengzhou 450014, People's Republic of China, bSchool of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China, and cKey Laboratory of Surface and Interface Science of Henan, School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinzhigang3141@yahoo.com.cn

(Received 24 November 2007; accepted 25 November 2007; online 6 December 2007)

In the title compound, C25H19NO3, the oxazine ring displays a half-chair conformation. The fused benzene ring is nearly parallel to the naphthyl ring system, the dihedral angle between this benzene ring and the naphthyl system being 8.52 (11)°. The imino group is not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Katayama & Oshiyama (1997[Katayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.]); Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Femandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19NO3

  • Mr = 381.41

  • Monoclinic, P 21

  • a = 9.180 (3) Å

  • b = 5.7585 (18) Å

  • c = 17.320 (5) Å

  • β = 97.707 (4)°

  • V = 907.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.97, Tmax = 0.98

  • 5964 measured reflections

  • 2412 independent reflections

  • 1824 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.134

  • S = 1.18

  • 2412 reflections

  • 265 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The oxazine derivatives display various applications and widespresd potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antitumor (Katayama & Oshiyama, 1997) and antihistaminic (Mishra et al., 1998). In view of these important properties, we reported the crystal strucutre of the tilte compound.

The oxazine ring in the molecular is not planar. The 1,3-benzodioxole ring makes the dihedral angles of 68.24 (11)° and 8.52 (11)° with the benzene ring and the naphthyl ring, respectively, while the plane O1/C1/C10/C11 is co-planar with the naphthalene ring with the dihedral angle 1.43 (11)°. The dihedral angle between the benzene ring and the naphthalene ring is 71.48 (16)°.

Related literature top

For general background, see: Katayama & Oshiyama (1997); Mahajan et al. (1991); Mishra et al. (1998).

Experimental top

1-(Amino(phenyl)methyl)naphthalen-2-ol (1 mmol, 0.249 g) was dissolved in anhydrous methanol, the mixture was stirred for several minitutes, 1,3-benzodioxole-5-carbaldehyde (1 mmol, 0.150 g) in methanol (6 ml) was added dropwise and the mixture was stirred at room temperature for 2 h. The product was isolated and recrystallized in dichloromethane. Colorless single crystals of (I) was obtained after 4 d.

Refinement top

Imino H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H)=1.2Ueq(C). In absence of significant anomalous scattering, Friedel pairs were merged.

Structure description top

The oxazine derivatives display various applications and widespresd potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antitumor (Katayama & Oshiyama, 1997) and antihistaminic (Mishra et al., 1998). In view of these important properties, we reported the crystal strucutre of the tilte compound.

The oxazine ring in the molecular is not planar. The 1,3-benzodioxole ring makes the dihedral angles of 68.24 (11)° and 8.52 (11)° with the benzene ring and the naphthyl ring, respectively, while the plane O1/C1/C10/C11 is co-planar with the naphthalene ring with the dihedral angle 1.43 (11)°. The dihedral angle between the benzene ring and the naphthalene ring is 71.48 (16)°.

For general background, see: Katayama & Oshiyama (1997); Mahajan et al. (1991); Mishra et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of (I). Displacement ellipsoids are drawn at the 30% probability level.
3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine top
Crystal data top
C25H19NO3F(000) = 400
Mr = 381.41Dx = 1.396 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 912 reflections
a = 9.180 (3) Åθ = 2.1–25.1°
b = 5.7585 (18) ŵ = 0.09 mm1
c = 17.320 (5) ÅT = 291 K
β = 97.707 (4)°Block, colorless
V = 907.3 (5) Å30.30 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Radiation source: sealed tube1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 28.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.97, Tmax = 0.98k = 77
5964 measured reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1645P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C25H19NO3V = 907.3 (5) Å3
Mr = 381.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.180 (3) ŵ = 0.09 mm1
b = 5.7585 (18) ÅT = 291 K
c = 17.320 (5) Å0.30 × 0.26 × 0.24 mm
β = 97.707 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1824 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.041
5964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.21 e Å3
2412 reflectionsΔρmin = 0.20 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4757 (4)1.2105 (7)0.2026 (2)0.0336 (8)
C20.5763 (4)1.3803 (7)0.1817 (2)0.0357 (9)
H20.54491.49020.14380.043*
C30.7154 (4)1.3826 (8)0.2163 (2)0.0394 (9)
H30.77941.49580.20260.047*
C40.7663 (4)1.2181 (7)0.2729 (2)0.0333 (8)
C50.9118 (4)1.2228 (7)0.3104 (2)0.0366 (9)
H50.97191.34570.29990.044*
C60.9709 (5)1.0510 (8)0.3631 (2)0.0407 (10)
H61.06641.06030.38880.049*
C70.8740 (4)0.8566 (8)0.3752 (2)0.0402 (9)
H70.90910.72950.40520.048*
C80.7357 (4)0.8655 (8)0.3425 (2)0.0386 (9)
H80.67350.75030.35680.046*
C90.6719 (4)1.0330 (7)0.2877 (2)0.0321 (8)
C100.5191 (4)1.0343 (8)0.2527 (2)0.0376 (9)
C110.4128 (4)0.8432 (8)0.2724 (2)0.0400 (9)
H110.46130.69360.26700.048*
C120.3653 (4)0.8494 (7)0.3526 (2)0.0362 (8)
C130.4046 (4)1.0273 (7)0.4006 (2)0.0328 (8)
H130.45691.15310.38490.039*
C140.3628 (4)1.0156 (8)0.4770 (2)0.0421 (10)
H140.38931.13630.51180.051*
C150.2837 (5)0.8292 (9)0.5011 (3)0.0461 (10)
H150.25810.82230.55120.055*
C160.2441 (4)0.6531 (8)0.4472 (2)0.0395 (9)
H160.18810.52930.46130.047*
C170.2874 (4)0.6570 (9)0.3703 (3)0.0441 (10)
H170.26420.53690.33490.053*
C180.2306 (4)1.0885 (7)0.2003 (2)0.0378 (9)
H180.21621.14990.25150.045*
C190.0807 (5)1.1079 (8)0.1429 (2)0.0411 (9)
C200.0568 (4)1.2985 (8)0.0972 (2)0.0368 (9)
H200.13111.40840.09730.044*
C210.0776 (4)1.3335 (8)0.0497 (2)0.0360 (8)
H210.09991.47010.02190.043*
C220.1737 (4)1.1502 (7)0.0475 (2)0.0326 (8)
C230.1516 (5)0.9640 (8)0.0947 (2)0.0427 (10)
C240.0182 (4)0.9259 (8)0.1459 (2)0.0360 (9)
H240.00020.79550.17730.043*
C250.3700 (5)0.9157 (8)0.0285 (2)0.0459 (11)
H25A0.46220.93720.04910.055*
H25B0.38750.81630.01700.055*
N10.2826 (4)0.8559 (7)0.2088 (2)0.0388 (8)
H10.246 (5)0.740 (9)0.182 (3)0.047*
O10.3362 (3)1.2333 (5)0.16696 (15)0.0380 (7)
O20.3139 (3)1.1315 (6)0.00830 (16)0.0414 (7)
O30.2657 (3)0.8142 (5)0.08500 (15)0.0392 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.030 (2)0.0311 (18)0.0063 (17)0.0014 (15)0.0124 (15)
C20.0389 (19)0.037 (2)0.0284 (16)0.0056 (18)0.0063 (14)0.0042 (17)
C30.0299 (17)0.043 (2)0.047 (2)0.0083 (18)0.0127 (16)0.0024 (19)
C40.0272 (17)0.034 (2)0.0397 (19)0.0003 (16)0.0071 (15)0.0007 (16)
C50.045 (2)0.038 (2)0.0265 (17)0.0072 (18)0.0017 (16)0.0114 (16)
C60.040 (2)0.041 (2)0.038 (2)0.0099 (19)0.0060 (17)0.0057 (18)
C70.0345 (19)0.041 (2)0.044 (2)0.0158 (19)0.0009 (16)0.0089 (19)
C80.0339 (18)0.043 (2)0.041 (2)0.0136 (18)0.0123 (16)0.0105 (19)
C90.0268 (17)0.033 (2)0.0381 (18)0.0110 (16)0.0101 (14)0.0079 (17)
C100.0371 (19)0.043 (2)0.0286 (17)0.0135 (19)0.0113 (15)0.0011 (17)
C110.0356 (18)0.040 (2)0.044 (2)0.001 (2)0.0023 (16)0.0123 (19)
C120.0419 (19)0.0265 (19)0.0380 (19)0.0106 (17)0.0025 (16)0.0006 (17)
C130.0241 (16)0.034 (2)0.0412 (19)0.0112 (15)0.0079 (14)0.0127 (16)
C140.046 (2)0.045 (2)0.0308 (18)0.007 (2)0.0139 (16)0.0014 (19)
C150.044 (2)0.048 (3)0.044 (2)0.011 (2)0.0022 (18)0.001 (2)
C160.0318 (18)0.042 (2)0.044 (2)0.0108 (18)0.0020 (16)0.012 (2)
C170.037 (2)0.044 (2)0.052 (2)0.0013 (19)0.0081 (17)0.007 (2)
C180.045 (2)0.035 (2)0.0345 (18)0.0014 (19)0.0093 (16)0.0072 (17)
C190.046 (2)0.035 (2)0.040 (2)0.0108 (19)0.0046 (17)0.0032 (18)
C200.0304 (17)0.045 (2)0.0375 (19)0.0078 (18)0.0136 (15)0.0042 (19)
C210.0363 (18)0.037 (2)0.0359 (18)0.0073 (18)0.0113 (15)0.0153 (17)
C220.0390 (19)0.0253 (18)0.0303 (16)0.0039 (17)0.0076 (14)0.0012 (16)
C230.047 (2)0.036 (2)0.042 (2)0.0057 (19)0.0068 (18)0.0018 (18)
C240.0367 (19)0.039 (2)0.0338 (18)0.0135 (17)0.0096 (15)0.0067 (17)
C250.039 (2)0.049 (3)0.045 (2)0.007 (2)0.0106 (18)0.001 (2)
N10.0329 (16)0.0346 (19)0.0460 (18)0.0174 (15)0.0059 (13)0.0043 (16)
O10.0395 (14)0.0368 (15)0.0384 (14)0.0117 (13)0.0078 (11)0.0163 (13)
O20.0378 (14)0.0425 (17)0.0416 (14)0.0021 (14)0.0035 (12)0.0058 (14)
O30.0398 (14)0.0368 (16)0.0396 (13)0.0003 (13)0.0003 (11)0.0185 (13)
Geometric parameters (Å, º) top
C1—O11.351 (4)C14—H140.9300
C1—C101.359 (6)C15—C161.393 (7)
C1—C21.425 (6)C15—H150.9300
C2—C31.336 (5)C16—C171.440 (6)
C2—H20.9300C16—H160.9300
C3—C41.398 (6)C17—H170.9300
C3—H30.9300C18—N11.424 (6)
C4—C51.405 (5)C18—O11.456 (5)
C4—C91.419 (5)C18—C191.589 (6)
C5—C61.405 (6)C18—H180.9800
C5—H50.9300C19—C201.354 (6)
C6—C71.462 (6)C19—C241.392 (6)
C6—H60.9300C20—C211.403 (5)
C7—C81.320 (5)C20—H200.9300
C7—H70.9300C21—C221.373 (5)
C8—C91.423 (5)C21—H210.9300
C8—H80.9300C22—C231.347 (6)
C9—C101.452 (5)C22—O21.376 (4)
C10—C111.539 (6)C23—O31.350 (5)
C11—C121.511 (5)C23—C241.429 (5)
C11—N11.514 (5)C24—H240.9300
C11—H110.9800C25—O31.401 (5)
C12—C131.339 (5)C25—O21.408 (6)
C12—C171.375 (6)C25—H25A0.9700
C13—C141.428 (5)C25—H25B0.9700
C13—H130.9300N1—H10.86 (5)
C14—C151.391 (7)
O1—C1—C10122.9 (4)C14—C15—C16117.4 (4)
O1—C1—C2115.1 (3)C14—C15—H15121.3
C10—C1—C2122.0 (3)C16—C15—H15121.3
C3—C2—C1120.4 (4)C15—C16—C17121.9 (4)
C3—C2—H2119.8C15—C16—H16119.0
C1—C2—H2119.8C17—C16—H16119.0
C2—C3—C4121.2 (4)C12—C17—C16115.8 (4)
C2—C3—H3119.4C12—C17—H17122.1
C4—C3—H3119.4C16—C17—H17122.1
C3—C4—C5121.3 (4)N1—C18—O1110.3 (3)
C3—C4—C9118.7 (3)N1—C18—C19112.4 (3)
C5—C4—C9119.8 (4)O1—C18—C19106.2 (3)
C4—C5—C6123.2 (4)N1—C18—H18109.3
C4—C5—H5118.4O1—C18—H18109.3
C6—C5—H5118.4C19—C18—H18109.3
C5—C6—C7116.3 (3)C20—C19—C24125.2 (4)
C5—C6—H6121.9C20—C19—C18118.8 (4)
C7—C6—H6121.9C24—C19—C18116.0 (4)
C8—C7—C6118.5 (4)C19—C20—C21121.3 (4)
C8—C7—H7120.7C19—C20—H20119.3
C6—C7—H7120.7C21—C20—H20119.3
C7—C8—C9126.8 (4)C22—C21—C20114.6 (4)
C7—C8—H8116.6C22—C21—H21122.7
C9—C8—H8116.6C20—C21—H21122.7
C4—C9—C8115.0 (3)C23—C22—C21123.5 (3)
C4—C9—C10120.0 (3)C23—C22—O2107.0 (3)
C8—C9—C10124.8 (4)C21—C22—O2128.9 (3)
C1—C10—C9117.0 (4)C22—C23—O3112.5 (3)
C1—C10—C11122.3 (3)C22—C23—C24123.0 (4)
C9—C10—C11120.6 (3)O3—C23—C24124.4 (4)
C12—C11—N1111.8 (3)C19—C24—C23111.7 (4)
C12—C11—C10117.1 (3)C19—C24—H24124.1
N1—C11—C10105.4 (3)C23—C24—H24124.1
C12—C11—H11107.3O3—C25—O2107.7 (3)
N1—C11—H11107.3O3—C25—H25A110.2
C10—C11—H11107.3O2—C25—H25A110.2
C13—C12—C17125.6 (4)O3—C25—H25B110.2
C13—C12—C11120.2 (4)O2—C25—H25B110.2
C17—C12—C11114.2 (4)H25A—C25—H25B108.5
C12—C13—C14117.2 (4)C18—N1—C11110.0 (3)
C12—C13—H13121.4C18—N1—H1125 (3)
C14—C13—H13121.4C11—N1—H1125 (3)
C15—C14—C13122.0 (4)C1—O1—C18113.8 (3)
C15—C14—H14119.0C22—O2—C25107.2 (3)
C13—C14—H14119.0C23—O3—C25105.4 (3)

Experimental details

Crystal data
Chemical formulaC25H19NO3
Mr381.41
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)9.180 (3), 5.7585 (18), 17.320 (5)
β (°) 97.707 (4)
V3)907.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
5964, 2412, 1824
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.134, 1.18
No. of reflections2412
No. of parameters265
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

 

Acknowledgements

The authors express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry, China (No.2005001).

References

First citationBruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913–919.  CrossRef CAS Web of Science Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Femandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.  CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds