organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(2,5,8,11,14-Penta­oxabi­cyclo­[13.4.0]nona­deca-15,17,19-trien-17-yl­­oxy)-2,2′:6′,2′′-terpyridine: a powder study

aA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky prospect 31, 119991 Moscow GSP-1, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 15 November 2007; accepted 2 December 2007; online 6 December 2007)

The central pyridine ring of the 2,2′:6′,2′′-terpyridine fragment of the title compound, C29H29N3O6, forms dihedral angles of 5.2 (5), 10.1 (5) and 86.0 (6)°, respectively, with the two outer pyridine rings and the benzene ring of the benzo-15-crown-5 fragment.

Related literature

For related crystal structures determined from synchrotron powder diffraction data, see Dorokhov et al. (2007[Dorokhov, A. V., Chernyshov, D. Y., Burlov, A. S., Garnovskii, A. D., Ivanova, I. S., Pyatova, E. N., Tsivadze, A. Y., Aslanov, L. A. & Chernyshev, V. V. (2007). Acta Cryst. B63, 402-410.]). For useful applications of 2,2′:6′,2"-terpyridine derivatives, see Andres et al. (2003[Andres, P. R., Hofmeier, H., Lohmeijer Bas, G. G. & Schubert, U. S. (2003). Synthesis, 18, 2865-2871.]). For details of the synthesis of the title compound, see: Constable & Ward (1990[Constable, E. C. & Ward, M. D. (1990). J. Chem. Soc. Dalton Trans. pp. 1405-1409.]); Chitta et al. (2004[Chitta, R., Rogers, L. M., Wanklin, A., Karr, P. A., Kahol, P. K., Zandler, M. E. & D'Souza, F. (2004). Inorg. Chem. 43, 6969-6978.]); Kobayashi (2001[Kobayashi, N. (2001). Coord. Chem. Rev. 219-221, 99-123.]). For details of the indexing algorithm, see Visser (1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29N3O6

  • Mr = 515.55

  • Orthorhombic, F d d 2

  • a = 58.347 (11) Å

  • b = 33.712 (3) Å

  • c = 5.3211 (8) Å

  • V = 10467 (3) Å3

  • Z = 16

  • Cu Kα1 radiation

  • λ = 1.54059 Å

  • μ = 0.76 mm−1

  • T = 295 (2) K

  • Specimen shape: flat sheet

  • 15 × 1 × 1 mm

  • Specimen prepared at 295 (2) K and 101 kPa

  • Particle morphology: no specific habit, colourless

Data collection
  • G670 Guinier camera diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Specimen mounted in transmission mode

  • Scan method: continuous

  • Absorption correction: none

  • 2θmin = 4.5, 2θmax = 75.0°

  • Increment in 2θ = 0.01°

Refinement
  • Rp = 0.019

  • Rwp = 0.024

  • Rexp = 0.018

  • RB = 0.023

  • S = 1.36

  • Excluded region(s): none

  • Profile function: split-type pseudo-Voigt (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.])

  • 148 parameters

  • 173 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: none

Data collection: local program (Huber, 2002[Huber (2002). Software for G670 Imaging Plate Guinier Camera. Version 4.3.16. Huber Diffraktionstechnik GmbH, Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: local program (Huber, 2002[Huber (2002). Software for G670 Imaging Plate Guinier Camera. Version 4.3.16. Huber Diffraktionstechnik GmbH, Rimsting, Germany.]); program(s) used to solve structure: grid search (Chernyshev & Schenk, 1998[Chernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1-3.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: MRIA, SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]).

Supporting information


Comment top

Ability of 2,2':6',2"-terpyridines to form complexes with transition metals, such as Zn(II), Fe(II), Co(II), Ni(II) and Ru(II) is widely used in supramolecular chemistry to control self organization processes. Introduction of additional fragments with various coordinating groups to a molecule of 2,2':6',2"-terpyridine opens broad prospects for purposeful design of supramolecular compounds (Andres et al., 2003). 4'-(Benzo-15-crown-5) substituted 2,2':6',2"-terpyridines represent a new interesting class of compounds involving both terpyridine fragment, which selectively binds the d-element cations, and benzo-15-crown-5 with unique ability for complexation of cations of alkaline, alkaline-earth metals as well as those of organic amines. Compounds of this class offer new opportunities for use of metal-ligand interactions for controllable assembly of the supramolecular complexes. We present here the structure of title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are comparable with those reported earlier for the related compounds (Dorokhov et al., 2007). The six-membered rings N2/C5—C9 (A), N3/C10—C14 (B), N4/C15—C19 (C) and C25—C30 (D) form the following dihedral angles - A/B 5.2 (5)°, A/C 10.1 (5)° and A/D 86.0 (6)°.

Related literature top

For related crystal structures determined from synchrotron powder diffraction data, see Dorokhov et al. (2007). For useful applications of 2,2':6',2"-terpyridine derivatives, see Andres et al. (2003). For details of the synthesis of the title compound, see: Constable & Ward (1990); Chitta et al. (2004); Kobayashi (2001). For details of the indexing algorithm, see Visser (1969).

Experimental top

The synthesis of 2,2':6',2"-terpyridine was carried out according to Constable & Ward (1990). 4'-Hydroxy-benzo-15-crown-5 was obtained on the basis of commercially accessible benzo-15-crown-5 by the formylation reaction (Chitta et al., 2004) and the subsequent oxidizing decarbonylation (Kobayashi, 2001). 4'-(4'''-Benzo-15-crown-5)-oxy-2,2':6',2''-terpyridine has been synthesized using reaction of nucleophilic replacement of 4'-chloro-2,2':6',2''-terpyridine with 4'-hydroxy-benzo-15-crown-5 in the dry DMSO in the presence of a base (KOH).

The synthesis of 4'-(4'''-benzo-15-crown-5)-oxy-2,2':6',2''-terpyridine (Scheme 2): to a stirred suspension of powdered KOH (890 mg, 15,90 mmol) in dry DMSO (12 ml) in the argon atmosphere at 70 °C, the 4'-hydroxy-benzo-15-crown-5 (928 mg, 3,269 mmol) was added. After 30 min, 4'-chloro-2,2':6',2''-terpyridine (873 mg, 3,269 mmol) was added and the mixture was stirred for 8 h at 70 °C and then poured into 150 ml of ice water. The water phase was extracted with chloroform (150 x 100 x 50 x 50 ml), dried over MgSO4 and evaporated in vacuum. The residue (20 ml) was purified by column chromatography on the neutral Al2O3 (CHCl3). After evaporation, the product, obtained as a yellowish oil, was crystallized from diethyl ether, then filtered and washed on the filter by the cooled diethyl ether, recrystallized from methyl alcohol (25 ml) and dried in vacuum at 60 °C. The yield of the target product as white solid was 623 mg (37,2%). (M. p. = 151 °C)

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The orthorhombic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M20=44, using the first 35 peak positions. The space group Fdd2 was chosen on the basis of systematic extinction rules and confirmed later by the crystal structure solution. The structure of (I) was solved by the systematic grid search procedure (Chernyshev & Schenk, 1998) and refined following the methodology described in detail elsewhere (Dorokhov et al., 2007) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). All O atoms were refined isotropically with the overall Uiso parameter. The Uiso for the rest of non-H atoms were fixed at 0.051 Å2. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Structure description top

Ability of 2,2':6',2"-terpyridines to form complexes with transition metals, such as Zn(II), Fe(II), Co(II), Ni(II) and Ru(II) is widely used in supramolecular chemistry to control self organization processes. Introduction of additional fragments with various coordinating groups to a molecule of 2,2':6',2"-terpyridine opens broad prospects for purposeful design of supramolecular compounds (Andres et al., 2003). 4'-(Benzo-15-crown-5) substituted 2,2':6',2"-terpyridines represent a new interesting class of compounds involving both terpyridine fragment, which selectively binds the d-element cations, and benzo-15-crown-5 with unique ability for complexation of cations of alkaline, alkaline-earth metals as well as those of organic amines. Compounds of this class offer new opportunities for use of metal-ligand interactions for controllable assembly of the supramolecular complexes. We present here the structure of title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are comparable with those reported earlier for the related compounds (Dorokhov et al., 2007). The six-membered rings N2/C5—C9 (A), N3/C10—C14 (B), N4/C15—C19 (C) and C25—C30 (D) form the following dihedral angles - A/B 5.2 (5)°, A/C 10.1 (5)° and A/D 86.0 (6)°.

For related crystal structures determined from synchrotron powder diffraction data, see Dorokhov et al. (2007). For useful applications of 2,2':6',2"-terpyridine derivatives, see Andres et al. (2003). For details of the synthesis of the title compound, see: Constable & Ward (1990); Chitta et al. (2004); Kobayashi (2001). For details of the indexing algorithm, see Visser (1969).

Computing details top

Data collection: local program (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: local program (Huber, 2002); program(s) used to solve structure: grid search (Chernyshev & Schenk, 1998); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992), SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering and 50% displacement spheres. H atoms omitted for clarity.
[Figure 2] Fig. 2. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.
[Figure 3] Fig. 3. The formation of the title compound.
4'-(2,5,8,11,14-Pentaoxadicyclo[13.4.0]nonadeca-15,17,19-trien-17-yloxy)-\2,2':6',2''-terpyridine top
Crystal data top
C29H29N3O6Dx = 1.309 Mg m3
Mr = 515.55Cu Kα1 radiation, λ = 1.54059 Å
Orthorhombic, Fdd2µ = 0.76 mm1
a = 58.347 (11) ÅT = 295 K
b = 33.712 (3) ÅParticle morphology: no specific habit
c = 5.3211 (8) Åcolourless
V = 10467 (3) Å3flat_sheet, 15 × 1 mm
Z = 16Specimen preparation: Prepared at 295 K and 101 kPa
F(000) = 4352
Data collection top
Guinier camera G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 4.50°, 2θmax = 75.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on Inet148 parameters
Least-squares matrix: full with fixed elements per cycle173 restraints
Rp = 0.0197 constraints
Rwp = 0.024H-atom parameters not refined
Rexp = 0.018Weighting scheme based on measured s.u.'s
RBragg = 0.023(Δ/σ)max = 0.007
7051 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: none
Profile function: split-type pseudo-Voigt (Toraya, 1986)
Crystal data top
C29H29N3O6V = 10467 (3) Å3
Mr = 515.55Z = 16
Orthorhombic, Fdd2Cu Kα1 radiation, λ = 1.54059 Å
a = 58.347 (11) ŵ = 0.76 mm1
b = 33.712 (3) ÅT = 295 K
c = 5.3211 (8) Åflat_sheet, 15 × 1 mm
Data collection top
Guinier camera G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 4.50°, 2θmax = 75.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0197051 data points
Rwp = 0.024148 parameters
Rexp = 0.018173 restraints
RBragg = 0.023H-atom parameters not refined
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0046 (3)0.6614 (4)0.13460.067 (3)*
N20.0097 (3)0.5679 (6)0.655 (3)0.051*
N30.0633 (3)0.5704 (6)0.288 (4)0.051*
N40.0478 (3)0.6009 (6)0.858 (4)0.051*
C50.0253 (4)0.5800 (7)0.478 (4)0.051*
C60.0209 (4)0.6110 (7)0.301 (4)0.051*
H60.03190.61800.18240.061*
C70.0000 (4)0.6304 (7)0.310 (4)0.051*
C80.0160 (4)0.6196 (7)0.486 (4)0.051*
H80.03010.63250.49400.061*
C90.0108 (4)0.5887 (7)0.654 (4)0.051*
C100.0482 (4)0.5595 (7)0.471 (4)0.051*
C110.0544 (4)0.5322 (6)0.660 (4)0.051*
H110.04450.52700.79340.061*
C120.0756 (3)0.5132 (7)0.645 (4)0.051*
H120.07980.49450.76430.061*
C130.0905 (4)0.5225 (7)0.448 (4)0.051*
H130.10450.50960.42990.061*
C140.0837 (4)0.5518 (7)0.278 (4)0.051*
H140.09380.55890.15100.061*
C150.0286 (3)0.5771 (6)0.840 (3)0.051*
C160.0263 (4)0.5425 (7)0.984 (4)0.051*
H160.01370.52590.96150.061*
C170.0431 (4)0.5332 (7)1.161 (4)0.051*
H170.04150.51101.26280.061*
C180.0624 (4)0.5579 (7)1.183 (4)0.051*
H180.07440.55161.29090.061*
C190.0630 (4)0.5925 (7)1.035 (4)0.051*
H190.07480.61061.06310.061*
O200.0608 (2)0.7962 (4)0.187 (3)0.067 (3)*
O210.0911 (2)0.8612 (4)0.246 (3)0.067 (3)*
O220.1263 (3)0.8329 (4)0.111 (3)0.067 (3)*
O230.1184 (2)0.7296 (4)0.314 (3)0.067 (3)*
O240.0706 (2)0.7416 (4)0.138 (3)0.067 (3)*
C250.0511 (4)0.7344 (7)0.001 (4)0.051*
C260.0454 (4)0.7653 (7)0.176 (4)0.051*
C270.0263 (3)0.7608 (7)0.327 (4)0.051*
H270.02150.78160.42910.061*
C280.0139 (4)0.7242 (7)0.325 (4)0.051*
H280.00250.71960.44330.061*
C290.0190 (4)0.6956 (8)0.146 (4)0.051*
C300.0376 (3)0.6998 (6)0.014 (4)0.051*
H300.04110.68000.12920.061*
C310.0540 (4)0.8312 (7)0.328 (4)0.051*
H31A0.04440.82350.46890.061*
H31B0.04530.84900.22150.061*
C320.0743 (4)0.8510 (7)0.419 (4)0.051*
H32A0.08130.83410.54470.061*
H32B0.06950.87510.50380.061*
C330.1144 (3)0.8536 (7)0.324 (4)0.051*
H33A0.11880.87390.44370.061*
H33B0.11470.82840.41190.061*
C340.1324 (4)0.8524 (7)0.116 (4)0.051*
H34A0.14600.83960.18230.061*
H34B0.13660.87950.07500.061*
C350.1172 (4)0.7936 (7)0.091 (4)0.051*
H35A0.12020.78290.07540.061*
H35B0.10080.79400.11770.061*
C360.1289 (4)0.7680 (7)0.291 (4)0.051*
H36A0.14490.76470.24770.061*
H36B0.12810.78150.45180.061*
C370.0982 (4)0.7268 (6)0.462 (4)0.051*
H37A0.09450.75290.52730.061*
H37B0.10120.70950.60390.061*
C380.0776 (4)0.7110 (6)0.319 (4)0.051*
H38A0.08160.68670.23140.061*
H38B0.06510.70530.43410.061*
Geometric parameters (Å, º) top
O1—C71.43 (3)C28—C291.39 (3)
O1—C291.43 (3)C29—C301.39 (3)
O20—C261.38 (3)C31—C321.44 (3)
O20—C311.45 (3)C33—C341.53 (3)
O21—C321.39 (3)C35—C361.53 (3)
O21—C331.45 (2)C37—C381.52 (3)
O22—C341.42 (3)C6—H60.93
O22—C351.43 (3)C8—H80.93
O23—C361.44 (3)C11—H110.93
O23—C371.42 (3)C12—H120.93
O24—C251.37 (3)C13—H130.93
O24—C381.47 (3)C14—H140.93
N2—C51.38 (3)C16—H160.93
N2—C91.39 (3)C17—H170.93
N3—C101.36 (3)C18—H180.93
N3—C141.35 (3)C19—H190.93
N4—C151.38 (3)C27—H270.93
N4—C191.32 (3)C28—H280.93
C5—C61.43 (3)C30—H300.93
C5—C101.50 (3)C31—H31A0.97
C6—C71.38 (3)C31—H31B0.97
C7—C81.37 (3)C32—H32A0.97
C8—C91.41 (3)C32—H32B0.97
C9—C151.49 (3)C33—H33A0.97
C10—C111.41 (3)C33—H33B0.97
C11—C121.40 (3)C34—H34A0.97
C12—C131.40 (3)C34—H34B0.97
C13—C141.39 (3)C35—H35A0.97
C15—C161.40 (3)C35—H35B0.97
C16—C171.40 (3)C36—H36A0.97
C17—C181.41 (3)C36—H36B0.97
C18—C191.41 (3)C37—H37A0.97
C25—C261.44 (3)C37—H37B0.97
C25—C301.41 (3)C38—H38A0.97
C26—C271.38 (3)C38—H38B0.97
C27—C281.43 (3)
C7—O1—C29132.4 (14)C11—C12—H12120
C26—O20—C31117.3 (16)C13—C12—H12120
C32—O21—C33115.2 (16)C12—C13—H13121
C34—O22—C35117.3 (16)C14—C13—H13121
C36—O23—C37117.4 (15)N3—C14—H14118
C25—O24—C38117.0 (16)C13—C14—H14118
C5—N2—C9114.7 (19)C15—C16—H16120
C10—N3—C14118.3 (19)C17—C16—H16120
C15—N4—C19117.9 (19)C16—C17—H17120
N2—C5—C6123 (2)C18—C17—H17121
N2—C5—C10117.8 (19)C17—C18—H18121
C6—C5—C10118.8 (19)C19—C18—H18121
C5—C6—C7119 (2)N4—C19—H19118
O1—C7—C6119.3 (19)C18—C19—H19118
O1—C7—C8121 (2)C26—C27—H27120
C6—C7—C8120 (2)C28—C27—H27120
C7—C8—C9119 (2)C27—C28—H28120
N2—C9—C8124 (2)C29—C28—H28120
N2—C9—C15117.8 (19)C25—C30—H30120
C8—C9—C15118 (2)C29—C30—H30120
N3—C10—C5117.7 (16)O20—C31—H31A110
N3—C10—C11121 (2)O20—C31—H31B110
C5—C10—C11120.8 (19)C32—C31—H31A110
C10—C11—C12119 (2)C32—C31—H31B110
C11—C12—C13119 (2)H31A—C31—H31B108
C12—C13—C14118 (2)O21—C32—H32A108
N3—C14—C13124 (2)O21—C32—H32B108
N4—C15—C9117.4 (18)C31—C32—H32A108
N4—C15—C16121.5 (18)C31—C32—H32B108
C9—C15—C16121.0 (18)H32A—C32—H32B107
C15—C16—C17119 (2)O21—C33—H33A108
C16—C17—C18119 (2)O21—C33—H33B108
C17—C18—C19118 (2)C34—C33—H33A108
N4—C19—C18124 (2)C34—C33—H33B108
O24—C25—C26114.2 (19)H33A—C33—H33B107
O24—C25—C30125.7 (19)O22—C34—H34A108
C26—C25—C30120 (2)O22—C34—H34B108
O20—C26—C25115.1 (19)C33—C34—H34A108
O20—C26—C27126 (2)C33—C34—H34B108
C25—C26—C27119 (2)H34A—C34—H34B107
C26—C27—C28120 (2)O22—C35—H35A110
C27—C28—C29120 (2)O22—C35—H35B110
O1—C29—C28117.6 (19)C36—C35—H35A110
O1—C29—C30121 (2)C36—C35—H35B110
C28—C29—C30121 (2)H35A—C35—H35B108
C25—C30—C29119 (2)O23—C36—H36A109
O20—C31—C32108.9 (18)O23—C36—H36B109
O21—C32—C31118.0 (18)C35—C36—H36A109
O21—C33—C34116.2 (17)C35—C36—H36B109
O22—C34—C33117.2 (19)H36A—C36—H36B108
O22—C35—C36107.7 (18)O23—C37—H37A109
O23—C36—C35112.1 (18)O23—C37—H37B109
O23—C37—C38113.7 (17)C38—C37—H37A109
O24—C38—C37107.6 (16)C38—C37—H37B109
C5—C6—H6120H37A—C37—H37B108
C7—C6—H6120O24—C38—H38A110
C7—C8—H8120O24—C38—H38B110
C9—C8—H8120C37—C38—H38A110
C10—C11—H11120C37—C38—H38B110
C12—C11—H11120H38A—C38—H38B108

Experimental details

Crystal data
Chemical formulaC29H29N3O6
Mr515.55
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)58.347 (11), 33.712 (3), 5.3211 (8)
V3)10467 (3)
Z16
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)0.76
Specimen shape, size (mm)Flat_sheet, 15 × 1
Data collection
DiffractometerGuinier camera G670
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 4.50 2θmax = 75.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.019, Rwp = 0.024, Rexp = 0.018, RBragg = 0.023, χ2 = 1.857
No. of parameters148
No. of restraints173
H-atom treatmentH-atom parameters not refined

Computer programs: local program (Huber, 2002), grid search (Chernyshev & Schenk, 1998), PLATON (Spek, 2003), MRIA (Zlokazov & Chernyshev, 1992), SHELXL97 (Sheldrick, 1997).

 

References

First citationAndres, P. R., Hofmeier, H., Lohmeijer Bas, G. G. & Schubert, U. S. (2003). Synthesis, 18, 2865–2871.  Google Scholar
First citationChernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1–3.  Web of Science CrossRef CAS Google Scholar
First citationChitta, R., Rogers, L. M., Wanklin, A., Karr, P. A., Kahol, P. K., Zandler, M. E. & D'Souza, F. (2004). Inorg. Chem. 43, 6969–6978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConstable, E. C. & Ward, M. D. (1990). J. Chem. Soc. Dalton Trans. pp. 1405–1409.  CrossRef Web of Science Google Scholar
First citationDorokhov, A. V., Chernyshov, D. Y., Burlov, A. S., Garnovskii, A. D., Ivanova, I. S., Pyatova, E. N., Tsivadze, A. Y., Aslanov, L. A. & Chernyshev, V. V. (2007). Acta Cryst. B63, 402–410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuber (2002). Software for G670 Imaging Plate Guinier Camera. Version 4.3.16. Huber Diffraktionstechnik GmbH, Rimsting, Germany.  Google Scholar
First citationKobayashi, N. (2001). Coord. Chem. Rev. 219–221, 99–123.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds