organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(4-Oxoheptane-1,7-di­yl)bis­­(2-methyl-1H-benzimidazole) penta­hydrate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: liuyy21@yahoo.com.cn

(Received 30 October 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C23H26N4O·5H2O, has noncrystallographic twofold rotation symmetry in the solid state. It crystallizes with five solvent water mol­ecules in the asymmetric unit. Four of these water mol­ecules are connected with each other via hydrogen-bonding inter­actions to form two types of centrosymmetric hexa­meric (H2O)6 rings. Via edge sharing of the hexa­mers, the water clusters thus build infinite chains that stretch parallel to the a axis. The fifth water mol­ecule provides an additional connection between the two hexa­meric (H2O)6 units via hydrogen bonds to both rings. The water mol­ecules in the channels along the a axis are also bonded via O—H⋯N hydrogen bonds to the organic units, and face-to-face ππ inter­actions [with centroid-to-centroid distances of 3.656 (1) Å and average face-to-face distances of 3.431 (5) Å] between the aromatic rings of adjacent mol­ecules complete the inter­molecular inter­actions in this structure.

Related literature

Hay et al. (1998[Hay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575-3581.]) report the use of benzimidazole complexes to model the active site of a variety of metalloenzymes, such as carbonic anhydrase and carboxy­peptidase.

[Scheme 1]

Experimental

Crystal data
  • C23H26N4O·5H2O

  • Mr = 464.56

  • Monoclinic, P 21 /n

  • a = 8.814 (5) Å

  • b = 25.664 (13) Å

  • c = 11.635 (6) Å

  • β = 109.06 (1)°

  • V = 2488 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.982

  • 12521 measured reflections

  • 4424 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.222

  • S = 1.01

  • 4424 reflections

  • 311 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N4 0.93 (2) 1.95 (4) 2.758 (6) 144 (5)
O1W—H1B⋯O3Wi 0.92 (4) 2.31 (5) 2.954 (5) 127 (5)
O2W—H2B⋯O4W 0.90 (5) 2.61 (6) 3.308 (7) 135 (7)
O2W—H2B⋯O5Wii 0.90 (5) 2.05 (7) 2.770 (6) 136 (8)
O3W—H3B⋯O1iii 0.88 (5) 2.18 (5) 3.054 (6) 171 (7)
O4W—H4B⋯O1Wi 0.92 (8) 2.00 (7) 2.900 (7) 166 (8)
O4W—H4A⋯O5Wii 0.92 (7) 2.33 (4) 3.200 (7) 157 (7)
O5W—H5B⋯N1iv 0.90 (5) 1.93 (5) 2.822 (5) 175 (6)
O5W—H5A⋯O3Wv 0.90 (6) 1.92 (6) 2.811 (6) 167 (6)
O3W—H3A⋯O2Wi 0.91 (2) 1.94 (2) 2.840 (7) 170 (6)
O2W—H2A⋯O1Wi 0.90 (2) 2.14 (5) 2.823 (6) 132 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Currently there is considerable interest in the use of benzimidazole complexes to model the active site of a variety of metalloenzymes such as carbonic anhydrase and carboxypeptidase (Hay et al., 1998). In this context we prepared (Fig 4) and analyzed the title benzimidazole compound, and its structure is described here.

The title molecule (Fig 1) has non-crystallographic two fold symmetry with an r.m.s. deviation for both halves of 0.066 Å. It crystallizes with five lattice water molecules in the asymmetric part of the unit cell. Four of these water molecules (O1W, O2W, O3W and O5W) are connected with each other via hydrogen bonding interactions to form two types of centrosymmetric hexameric (H2O)6 rings. Via edge sharing of the hexamers the water clusters thus build infinite chains that stretch parallel to the a axis. The fifth water molecule O4W provides an additional connection between the two hexameric (H2O)6 rings via hydrogen bonds to both units. Water molecules O1W and O5W in the channels along a axis are also bonded via O—H···N hydrogen bonds to N4 and N1 of the organic unit, and all water molecules act both as donors and acceptors (Fig. 2).

Face-to-face π-π interactions between adjacent benzimidazoles made up by the atoms C1—C7, N3 and N4 and their symmetry equivalents at 1 - x, -y, 2 - z (with centroid-to-centriod distances of 3.656 (1) Å and an average face-to-face distance of 3.431 (5) Å, Fig. 3) complete the intermolecular interactions in this structure and lead to the formation of a 1-D supramolecuar chain along the a axis.

Related literature top

Hay et al. (1998) report the use of benzimidazole complexes to model the active site of a variety of metalloenzymes, such as carbonic anhydrase and carboxypeptidase.

Experimental top

To a solution of 1,7-dichloro-4-oxoheptane (8.3 g, 47 mmol) and ethylene glycol (2.9 g, 47 mmol) in cyclohexane (35 ml) was added 0.024 g sodium bisulfate. The reaction mixture was refluxed for 3 h with azeotropic removal of water via a Dean–Stark trap, until there was no more water created. The resulting clear solution was cooled down, washed with water twice, and then distilled. The fraction distilling between 447 K and 453 K was collected to obtain 1,11-dichloro-(5,8-dioxaspiro[4.2]undecane) as a clear liquid (5.5 g, 25 mmol, 53%).

A mixture of 2-methyl-benzimidazole (6.6 g, 50 mmol) and NaOH (2.0 g, 50 mmol) in DMSO (10 ml) was stirred at 333 K for 1 h, and then the collected distillate (5.5 g, 25 mmol) from the previous step was added. The mixture was cooled to room temperature after stirring at 333 K for 2 h, then poured into 200 ml of water and a white solid formed immediately. The compound (5,8-dioxaspiro[4.2]undecyl)bis(2-methyl-benzimidazole) was obtained in 74% yield (7.6 g, 19 mmol).

After washing with 50 ml water, the solid was transfered into 150 ml water with 10 ml HCl (12 mol l-1). The mixture was refluxed for 3.5 h, and then filtered. The obtained residue was dissolved in 100 ml me thanol, and colorless single crystals of the title compound were obtained after several days at room temperature (3.7 g, 10 mmol, 55%).

Refinement top

The methyl H atoms were refined as members of rigid groups with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(parent atom), and were allowed to rotate around the C—C bonds. Other H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(parent atom). Water H atoms were located in a difference Fourier map and refined as riding atoms, with an O—H distance of 0.89 (2) Å, and with Uiso(H) = 1.5Ueq(O). An anti-bumping restraint (standard deviation 0.01 Å) was used to avoid chemically not meaningful close contacts between the hydrogen atoms of the water molecules.

Structure description top

Currently there is considerable interest in the use of benzimidazole complexes to model the active site of a variety of metalloenzymes such as carbonic anhydrase and carboxypeptidase (Hay et al., 1998). In this context we prepared (Fig 4) and analyzed the title benzimidazole compound, and its structure is described here.

The title molecule (Fig 1) has non-crystallographic two fold symmetry with an r.m.s. deviation for both halves of 0.066 Å. It crystallizes with five lattice water molecules in the asymmetric part of the unit cell. Four of these water molecules (O1W, O2W, O3W and O5W) are connected with each other via hydrogen bonding interactions to form two types of centrosymmetric hexameric (H2O)6 rings. Via edge sharing of the hexamers the water clusters thus build infinite chains that stretch parallel to the a axis. The fifth water molecule O4W provides an additional connection between the two hexameric (H2O)6 rings via hydrogen bonds to both units. Water molecules O1W and O5W in the channels along a axis are also bonded via O—H···N hydrogen bonds to N4 and N1 of the organic unit, and all water molecules act both as donors and acceptors (Fig. 2).

Face-to-face π-π interactions between adjacent benzimidazoles made up by the atoms C1—C7, N3 and N4 and their symmetry equivalents at 1 - x, -y, 2 - z (with centroid-to-centriod distances of 3.656 (1) Å and an average face-to-face distance of 3.431 (5) Å, Fig. 3) complete the intermolecular interactions in this structure and lead to the formation of a 1-D supramolecuar chain along the a axis.

Hay et al. (1998) report the use of benzimidazole complexes to model the active site of a variety of metalloenzymes, such as carbonic anhydrase and carboxypeptidase.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The water filled channels along the a axis. Hydrogen bonds are represented by dashed lines.
[Figure 3] Fig. 3. The π-π interactions in the structure of the title compound. H atoms have been omitted for clarity. Symmetry codes: (i) 1 - x, -y, 2 - z.
[Figure 4] Fig. 4. The synthesis of the title compound as described in the experimental section.
1,1'-(4-Oxoheptane-1,7-diyl)bis(2-methyl-1H-benzimidazole) pentahydrate top
Crystal data top
C23H26N4O·5H2OF(000) = 1000
Mr = 464.56Dx = 1.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4407 reflections
a = 8.814 (5) Åθ = 1.6–25.3°
b = 25.664 (13) ŵ = 0.09 mm1
c = 11.635 (6) ÅT = 293 K
β = 109.06 (1)°Block, colorless
V = 2488 (2) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4424 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ω scansθmax = 25.3°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.970, Tmax = 0.982k = 2430
12521 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4424 reflectionsΔρmax = 0.33 e Å3
311 parametersΔρmin = 0.27 e Å3
15 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C23H26N4O·5H2OV = 2488 (2) Å3
Mr = 464.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.814 (5) ŵ = 0.09 mm1
b = 25.664 (13) ÅT = 293 K
c = 11.635 (6) Å0.40 × 0.30 × 0.25 mm
β = 109.06 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4424 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2623 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.109
12521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07915 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
4424 reflectionsΔρmin = 0.27 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7657 (6)0.03465 (19)0.9184 (5)0.0691 (15)
H10.81540.01790.86930.083*
C20.6000 (5)0.03845 (18)0.8828 (4)0.0554 (13)
C30.5296 (5)0.06379 (18)0.9592 (4)0.0551 (13)
C40.6183 (6)0.08559 (19)1.0686 (5)0.0670 (14)
H40.56970.10261.11800.080*
C50.7824 (7)0.0810 (2)1.1012 (5)0.0804 (17)
H50.84670.09501.17470.096*
C60.8542 (6)0.0558 (2)1.0266 (6)0.0785 (17)
H60.96550.05341.05130.094*
C70.3447 (6)0.0363 (2)0.7922 (4)0.0603 (13)
C80.1824 (2)0.02679 (8)0.70124 (17)0.0900 (19)
H8A0.10140.03960.73260.135*
H8B0.16750.00990.68580.135*
H8C0.17420.04460.62690.135*
C90.8388 (2)0.22467 (8)0.63617 (17)0.0538 (13)
C100.9846 (2)0.24529 (8)0.63617 (17)0.0691 (15)
H101.08040.23090.58630.083*
C110.9873 (2)0.28737 (8)0.71070 (17)0.0743 (16)
H111.08490.30120.71070.089*
C120.8442 (2)0.30882 (8)0.78523 (17)0.0753 (16)
H120.84600.33700.83510.090*
C130.6984 (2)0.28820 (8)0.78522 (17)0.0648 (14)
H130.60270.30260.83510.078*
C140.6957 (2)0.24613 (8)0.71069 (17)0.0497 (12)
C150.6463 (6)0.18141 (19)0.6109 (4)0.0615 (14)
C160.5526 (6)0.1420 (2)0.5672 (5)0.0935 (19)
H16A0.62430.12220.50180.140*
H16B0.49810.11900.63270.140*
H16C0.47520.15950.53890.140*
C170.4031 (5)0.22546 (18)0.7553 (4)0.0645 (15)
H17A0.38200.26180.77780.077*
H17B0.34470.21650.70050.077*
C180.3436 (5)0.19203 (18)0.8684 (4)0.0582 (13)
H18A0.40140.20130.92340.070*
H18B0.36640.15580.84590.070*
C190.1661 (5)0.19827 (19)0.9332 (4)0.0640 (14)
H19A0.14070.23510.93760.077*
H19B0.14230.18571.01580.077*
C200.0576 (5)0.17074 (18)0.8769 (5)0.0549 (13)
C210.1192 (5)0.17729 (19)0.9435 (4)0.0640 (14)
H21A0.13900.16871.02830.077*
H21B0.14590.21380.94010.077*
C220.2331 (5)0.14550 (19)0.8985 (4)0.0629 (14)
H22A0.19770.14700.81040.075*
H22B0.33910.16110.92860.075*
C230.2449 (5)0.08920 (19)0.9373 (4)0.0656 (14)
H23A0.27370.08731.02510.079*
H23B0.14130.07250.90210.079*
N10.8030 (5)0.18326 (15)0.5730 (3)0.0632 (11)
N20.5748 (4)0.21841 (15)0.6929 (3)0.0551 (11)
N30.3650 (4)0.06156 (15)0.8987 (4)0.0570 (11)
N40.4803 (5)0.02109 (15)0.7805 (4)0.0659 (12)
O10.1070 (3)0.14430 (13)0.7855 (3)0.0654 (10)
O1W0.5198 (5)0.06286 (16)0.6451 (4)0.1008 (14)
H1A0.548 (7)0.0316 (14)0.687 (4)0.151*
H1B0.455 (7)0.052 (2)0.570 (3)0.151*
O2W0.2025 (6)0.02126 (17)0.3906 (5)0.1258 (18)
H2A0.308 (3)0.028 (3)0.425 (5)0.189*
H2B0.155 (7)0.0522 (16)0.366 (8)0.189*
O3W0.7904 (5)0.08554 (17)0.5440 (4)0.0971 (13)
H3A0.780 (8)0.0512 (11)0.559 (6)0.146*
H3B0.825 (8)0.099 (3)0.618 (3)0.146*
O4W0.2093 (7)0.1308 (3)0.2426 (5)0.153 (2)
H4A0.129 (7)0.126 (4)0.276 (8)0.229*
H4B0.289 (7)0.109 (3)0.289 (8)0.229*
O5W0.5163 (4)0.39697 (15)0.9246 (3)0.0828 (12)
H5A0.457 (6)0.404 (3)0.973 (5)0.124*
H5B0.576 (6)0.3710 (17)0.968 (5)0.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (3)0.058 (4)0.097 (4)0.009 (3)0.030 (3)0.006 (3)
C20.054 (3)0.047 (3)0.069 (3)0.003 (2)0.025 (3)0.004 (3)
C30.050 (3)0.053 (3)0.058 (3)0.005 (2)0.012 (3)0.010 (3)
C40.067 (3)0.058 (4)0.071 (4)0.008 (3)0.015 (3)0.003 (3)
C50.066 (4)0.078 (4)0.082 (4)0.001 (3)0.003 (3)0.004 (3)
C60.048 (3)0.082 (4)0.097 (5)0.002 (3)0.010 (3)0.004 (4)
C70.053 (3)0.067 (4)0.059 (3)0.004 (3)0.015 (3)0.003 (3)
C80.063 (3)0.108 (5)0.086 (4)0.009 (3)0.005 (3)0.006 (3)
C90.050 (3)0.050 (3)0.055 (3)0.003 (2)0.008 (2)0.001 (3)
C100.045 (3)0.084 (4)0.071 (3)0.004 (3)0.008 (3)0.012 (3)
C110.065 (3)0.076 (4)0.084 (4)0.022 (3)0.026 (3)0.007 (3)
C120.082 (4)0.062 (4)0.086 (4)0.015 (3)0.032 (3)0.002 (3)
C130.064 (3)0.057 (4)0.070 (3)0.003 (3)0.017 (3)0.005 (3)
C140.050 (3)0.042 (3)0.056 (3)0.006 (2)0.015 (2)0.000 (2)
C150.064 (3)0.052 (4)0.067 (3)0.009 (3)0.019 (3)0.004 (3)
C160.085 (4)0.096 (5)0.100 (4)0.011 (3)0.030 (3)0.026 (4)
C170.047 (3)0.051 (3)0.088 (4)0.001 (2)0.013 (3)0.002 (3)
C180.042 (3)0.062 (3)0.068 (3)0.004 (2)0.015 (2)0.003 (3)
C190.047 (3)0.066 (4)0.074 (3)0.012 (2)0.015 (3)0.008 (3)
C200.059 (3)0.043 (3)0.059 (3)0.002 (2)0.014 (3)0.005 (3)
C210.044 (3)0.062 (3)0.078 (3)0.006 (2)0.010 (3)0.000 (3)
C220.048 (3)0.064 (4)0.078 (4)0.010 (2)0.023 (3)0.012 (3)
C230.052 (3)0.067 (4)0.080 (3)0.015 (3)0.023 (3)0.015 (3)
N10.054 (2)0.062 (3)0.065 (3)0.000 (2)0.008 (2)0.012 (2)
N20.044 (2)0.055 (3)0.063 (3)0.0036 (19)0.012 (2)0.001 (2)
N30.046 (2)0.063 (3)0.061 (3)0.0081 (19)0.016 (2)0.002 (2)
N40.059 (3)0.065 (3)0.070 (3)0.001 (2)0.017 (2)0.008 (2)
O10.057 (2)0.070 (3)0.066 (2)0.0025 (17)0.0161 (17)0.0130 (19)
O1W0.073 (3)0.117 (3)0.113 (3)0.002 (2)0.031 (2)0.033 (3)
O2W0.099 (3)0.099 (4)0.187 (5)0.008 (3)0.057 (4)0.019 (3)
O3W0.080 (3)0.098 (3)0.106 (3)0.000 (3)0.020 (2)0.023 (3)
O4W0.135 (5)0.180 (6)0.129 (4)0.010 (4)0.023 (4)0.042 (4)
O5W0.079 (3)0.077 (3)0.080 (3)0.004 (2)0.009 (2)0.008 (2)
Geometric parameters (Å, º) top
C1—C61.359 (7)C16—H16B0.9600
C1—C21.385 (6)C16—H16C0.9600
C1—H10.9300C17—N21.460 (5)
C2—N41.382 (6)C17—C181.513 (6)
C2—C31.400 (6)C17—H17A0.9700
C3—C41.376 (6)C17—H17B0.9700
C3—N31.392 (5)C18—C191.507 (5)
C4—C51.376 (6)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.388 (7)C19—C201.501 (6)
C5—H50.9300C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—N41.306 (6)C20—O11.216 (5)
C7—N31.358 (6)C20—C211.506 (6)
C7—C81.496 (5)C21—C221.513 (6)
C8—H8A0.9600C21—H21A0.9700
C8—H8B0.9600C21—H21B0.9700
C8—H8C0.9600C22—C231.507 (6)
C9—N11.386 (4)C22—H22A0.9700
C9—C101.390 (3)C22—H22B0.9700
C9—C141.390 (3)C23—N31.461 (5)
C10—C111.390 (3)C23—H23A0.9700
C10—H100.9300C23—H23B0.9700
C11—C121.390 (3)O1W—H1A0.93 (2)
C11—H110.9300O1W—H1B0.92 (4)
C12—C131.390 (3)O2W—H2A0.90 (2)
C12—H120.9300O2W—H2B0.90 (5)
C13—C141.390 (3)O3W—H3A0.91 (2)
C13—H130.9300O3W—H3B0.88 (5)
C14—N21.352 (4)O4W—H4A0.92 (7)
C15—N11.307 (6)O4W—H4B0.92 (8)
C15—N21.348 (6)O5W—H5A0.90 (6)
C15—C161.496 (7)O5W—H5B0.90 (5)
C16—H16A0.9600
C6—C1—C2118.6 (5)H16B—C16—H16C109.5
C6—C1—H1120.7N2—C17—C18111.8 (4)
C2—C1—H1120.7N2—C17—H17A109.3
N4—C2—C1132.0 (5)C18—C17—H17A109.3
N4—C2—C3109.0 (4)N2—C17—H17B109.3
C1—C2—C3119.0 (5)C18—C17—H17B109.3
C4—C3—N3131.9 (5)H17A—C17—H17B107.9
C4—C3—C2122.7 (4)C19—C18—C17112.6 (4)
N3—C3—C2105.4 (4)C19—C18—H18A109.1
C3—C4—C5116.6 (5)C17—C18—H18A109.1
C3—C4—H4121.7C19—C18—H18B109.1
C5—C4—H4121.7C17—C18—H18B109.1
C4—C5—C6121.4 (5)H18A—C18—H18B107.8
C4—C5—H5119.3C20—C19—C18115.9 (4)
C6—C5—H5119.3C20—C19—H19A108.3
C1—C6—C5121.6 (5)C18—C19—H19A108.3
C1—C6—H6119.2C20—C19—H19B108.3
C5—C6—H6119.2C18—C19—H19B108.3
N4—C7—N3112.7 (4)H19A—C19—H19B107.4
N4—C7—C8125.0 (4)O1—C20—C19123.2 (4)
N3—C7—C8122.3 (4)O1—C20—C21121.8 (4)
C7—C8—H8A109.5C19—C20—C21115.0 (4)
C7—C8—H8B109.5C20—C21—C22117.0 (4)
H8A—C8—H8B109.5C20—C21—H21A108.1
C7—C8—H8C109.5C22—C21—H21A108.1
H8A—C8—H8C109.5C20—C21—H21B108.1
H8B—C8—H8C109.5C22—C21—H21B108.1
N1—C9—C10131.51 (17)H21A—C21—H21B107.3
N1—C9—C14108.49 (18)C23—C22—C21113.7 (4)
C10—C9—C14119.99 (18)C23—C22—H22A108.8
C11—C10—C9120.00 (18)C21—C22—H22A108.8
C11—C10—H10120.0C23—C22—H22B108.8
C9—C10—H10120.0C21—C22—H22B108.8
C12—C11—C10120.00 (18)H22A—C22—H22B107.7
C12—C11—H11120.0N3—C23—C22111.1 (4)
C10—C11—H11120.0N3—C23—H23A109.4
C13—C12—C11119.99 (18)C22—C23—H23A109.4
C13—C12—H12120.0N3—C23—H23B109.4
C11—C12—H12120.0C22—C23—H23B109.4
C14—C13—C12120.00 (18)H23A—C23—H23B108.0
C14—C13—H13120.0C15—N1—C9104.4 (3)
C12—C13—H13120.0C15—N2—C14105.6 (3)
N2—C14—C13132.77 (18)C15—N2—C17127.5 (4)
N2—C14—C9107.23 (18)C14—N2—C17126.8 (4)
C13—C14—C9120.01 (18)C7—N3—C3106.6 (4)
N1—C15—N2114.3 (4)C7—N3—C23128.3 (4)
N1—C15—C16123.4 (5)C3—N3—C23124.4 (4)
N2—C15—C16122.3 (5)C7—N4—C2106.3 (4)
C15—C16—H16A109.5H1A—O1W—H1B102 (3)
C15—C16—H16B109.5H2A—O2W—H2B106 (4)
H16A—C16—H16B109.5H3A—O3W—H3B103 (7)
C15—C16—H16C109.5H4A—O4W—H4B102 (7)
H16A—C16—H16C109.5H5A—O5W—H5B99 (6)
C6—C1—C2—N4179.8 (5)C21—C22—C23—N3175.9 (4)
C6—C1—C2—C30.1 (7)N2—C15—N1—C90.7 (5)
N4—C2—C3—C4179.8 (4)C16—C15—N1—C9179.7 (4)
C1—C2—C3—C40.5 (7)C10—C9—N1—C15178.9 (2)
N4—C2—C3—N30.7 (5)C14—C9—N1—C150.2 (4)
C1—C2—C3—N3179.5 (4)N1—C15—N2—C140.8 (5)
N3—C3—C4—C5179.4 (5)C16—C15—N2—C14179.6 (4)
C2—C3—C4—C50.6 (7)N1—C15—N2—C17177.5 (4)
C3—C4—C5—C60.4 (8)C16—C15—N2—C172.9 (8)
C2—C1—C6—C50.1 (8)C13—C14—N2—C15178.8 (2)
C4—C5—C6—C10.1 (9)C9—C14—N2—C150.6 (3)
N1—C9—C10—C11179.1 (2)C13—C14—N2—C172.1 (5)
C14—C9—C10—C110.0C9—C14—N2—C17177.3 (3)
C9—C10—C11—C120.0C18—C17—N2—C1585.2 (6)
C10—C11—C12—C130.0C18—C17—N2—C1490.8 (5)
C11—C12—C13—C140.0N4—C7—N3—C31.7 (5)
C12—C13—C14—N2179.4 (2)C8—C7—N3—C3179.4 (4)
C12—C13—C14—C90.0N4—C7—N3—C23172.2 (4)
N1—C9—C14—N20.3 (2)C8—C7—N3—C238.9 (7)
C10—C9—C14—N2179.52 (18)C4—C3—N3—C7178.4 (5)
N1—C9—C14—C13179.26 (19)C2—C3—N3—C70.5 (5)
C10—C9—C14—C130.0C4—C3—N3—C237.4 (8)
N2—C17—C18—C19179.3 (4)C2—C3—N3—C23171.5 (4)
C17—C18—C19—C2076.8 (5)C22—C23—N3—C788.9 (6)
C18—C19—C20—O10.8 (7)C22—C23—N3—C380.1 (5)
C18—C19—C20—C21179.7 (4)N3—C7—N4—C22.1 (5)
O1—C20—C21—C225.5 (7)C8—C7—N4—C2179.0 (4)
C19—C20—C21—C22173.4 (4)C1—C2—N4—C7178.6 (5)
C20—C21—C22—C2377.5 (5)C3—C2—N4—C71.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N40.93 (2)1.95 (4)2.758 (6)144 (5)
O1W—H1B···O3Wi0.92 (4)2.31 (5)2.954 (5)127 (5)
O2W—H2B···O4W0.90 (5)2.61 (6)3.308 (7)135 (7)
O2W—H2B···O5Wii0.90 (5)2.05 (7)2.770 (6)136 (8)
O3W—H3B···O1iii0.88 (5)2.18 (5)3.054 (6)171 (7)
O4W—H4B···O1Wi0.92 (8)2.00 (7)2.900 (7)166 (8)
O4W—H4A···O5Wii0.92 (7)2.33 (4)3.200 (7)157 (7)
O5W—H5B···N1iv0.90 (5)1.93 (5)2.822 (5)175 (6)
O5W—H5A···O3Wv0.90 (6)1.92 (6)2.811 (6)167 (6)
O3W—H3A···O2Wi0.91 (2)1.94 (2)2.840 (7)170 (6)
O2W—H2A···O1Wi0.90 (2)2.14 (5)2.823 (6)132 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H26N4O·5H2O
Mr464.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.814 (5), 25.664 (13), 11.635 (6)
β (°) 109.06 (1)
V3)2488 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12521, 4424, 2623
Rint0.109
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.222, 1.01
No. of reflections4424
No. of parameters311
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N40.93 (2)1.95 (4)2.758 (6)144 (5)
O1W—H1B···O3Wi0.92 (4)2.31 (5)2.954 (5)127 (5)
O2W—H2B···O4W0.90 (5)2.61 (6)3.308 (7)135 (7)
O2W—H2B···O5Wii0.90 (5)2.05 (7)2.770 (6)136 (8)
O3W—H3B···O1iii0.88 (5)2.18 (5)3.054 (6)171 (7)
O4W—H4B···O1Wi0.92 (8)2.00 (7)2.900 (7)166 (8)
O4W—H4A···O5Wii0.92 (7)2.33 (4)3.200 (7)157 (7)
O5W—H5B···N1iv0.90 (5)1.93 (5)2.822 (5)175 (6)
O5W—H5A···O3Wv0.90 (6)1.92 (6)2.811 (6)167 (6)
O3W—H3A···O2Wi0.91 (2)1.94 (2)2.840 (7)170 (6)
O2W—H2A···O1Wi0.90 (2)2.14 (5)2.823 (6)132 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Science Foundation for Young Teachers of Northeast Normal University (No. 20070314) for support.

References

First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575–3581.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds