metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(7-amino-2,4-di­methyl-1,8-naphthyridine-κ2N,N′)cobalt(II) methanol disolvate

aFaculty of Science, Zhejiang Forestry University, Lin'An 311300, People's Republic of China, and bDepartment of Chemistry, Chengde National Teachers College, Chengde 067000 People's Republic of China
*Correspondence e-mail: jinsw@zjfc.edu.cn

(Received 2 November 2007; accepted 1 December 2007; online 6 December 2007)

The title compound, [CoCl2(C10H11N3)2]·2CH3OH, crystallizes with an elongated Co coordination polyhedron in a very distorted octa­hedral geometry. Both naphthyridine ligands coordinate to the Co atom via two N atoms in a bidentate chelating mode. The remaining coordination sites are occupied by two Cl atoms. Two uncoordinated solvent methanol mol­ecules are hydrogen bonded to the Cl atoms. Additional N—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen bonds, and ππ stacking inter­actions [centroid–centroid distance 3.664 (4) Å], give rise to a three-dimensional network structure.

Related literature

For related literature, see: Bayer (1979[Bayer, J. W. (1979). US Patent 4 169 092, 1-14.]); Che et al. (2001[Che, C. M., Wan, C. W., Hoa, K. Y. & Zhou, Z. Y. (2001). New J. Chem. 25, 63-65.]); Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Harvey et al. (2004[Harvey, B. G., Arif, A. M. & Ernst, R. D. (2004). Polyhedron, 23, 2725-2731.]); Jin et al. (2007[Jin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 26, 287-290.]); Kukrek et al. (2006[Kukrek, A., Wang, D., Hou, Y. J., Zong, R. F. & Thummel, R. (2006). Inorg. Chem. 45, 10131-10137.]); Mintert & Sheldrick (1995a[Mintert, M. & Sheldrick, W. S. (1995a). Inorg. Chim. Acta, 236, 13-20.],b[Mintert, M. & Sheldrick, W. S. (1995b). J. Chem. Soc. Dalton Trans. pp. 2663-2669.]); Oskui et al. (1999[Oskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72-81.]); Oskui & Sheldrick (1999[Oskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325-1328.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C10H11N3)2]·2CH4O

  • Mr = 540.35

  • Triclinic, [P \overline 1]

  • a = 9.694 (3) Å

  • b = 10.651 (3) Å

  • c = 14.154 (4) Å

  • α = 79.523 (4)°

  • β = 78.548 (4)°

  • γ = 65.697 (4)°

  • V = 1297.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 (2) K

  • 0.27 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.794, Tmax = 0.855

  • 6885 measured reflections

  • 4521 independent reflections

  • 2999 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.04

  • 4521 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1i 0.82 2.35 3.162 (4) 172
O1—H1⋯Cl1ii 0.82 2.44 3.194 (4) 154
N6—H6B⋯O2iii 0.86 2.06 2.918 (4) 175
N6—H6A⋯Cl2 0.86 2.45 3.269 (4) 159
N3—H3B⋯O1iv 0.86 2.09 2.947 (4) 175
N3—H3A⋯Cl1 0.86 2.51 3.309 (3) 156
C22—H22B⋯C17i 0.96 2.91 3.789 (7) 154
C22—H22B⋯C18i 0.96 2.71 3.575 (6) 150
C4—H4⋯Cl2v 0.93 2.85 3.705 (4) 153
C7—H7⋯Cl1vi 0.93 2.87 3.757 (4) 160
C13—H13⋯Cl1ii 0.93 2.88 3.733 (4) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) x, y, z-1; (v) -x+2, -y+2, -z; (vi) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention (Kukrek et al., 2006; Che et al., 2001) as the ligands can link to metals via several coordination modes such as monodentate, chelating bidentate, and in a dinuclear bridging fashion (Gavrilova & Bosnich, 2004). 5,7-Dimethyl-1,8-naphthyridin-2-amine is a potentially tridentate ligand and is capable of linking two to four metal atoms together to form metal aggregates (Oskui et al., 1999; Mintert & Sheldrick, 1995a; Oskui & Sheldrick, 1999; Mintert & Sheldrick, 1995b). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Co(II) complex (Co(L)2Cl2) was once described in a US patent (Bayer, 1979). As an extension of our study on naphthyridine coordination chemistry (Jin et al., 2007), herein we report the synthesis and structure of the title complex as its bis methanol solvate, (Co(L)2(Cl)2).2(CH3OH).

The title compound was obtained as violet crystals by reacting cobalt chloride hexahydrate and L in methanol. The compound is air stable and light insensitive, and does not dissolve in water and most organic solvents. X-ray structural analysis shows that the complex is mononuclear, its molecular structure is shown in Fig. 1. The Co atom is positioned on an inversion center and is bonded to two L ligands and two chloride ions. Both of the two ligands coordinate to the metal center via two nitrogen atoms in a bidentate chelating fashion. The two chloride anions coordinated to the Co ion complete a very distorted octahedral geometry. With a N—Co—N bite angle of only 58.86 (11), and 60.39 (11) ° the structure can also be seen as a pseudotetrahedral complex with each of the naphthyridine ligands L counted as a singly bonded entity. The N—Co—N angle is of necessity quite small, thereby allowing for the Cl(2)—Co(1)—Cl(1) angle to expand to 96.99 (5) °. Perhaps as a result of the smaller spatial requirements of the chelating naphthyridine, the chloride ions are in cis-arrangement which is different from reported results (Harvey et al., 2004).

The two naphthyridine rings are basically planar with an r.m.s. deviation of only 0.0098, and 0.0183 ° respectively, and both ligands are almost perpendicular to each other with an angle between the root mean square planes of the two ligands of 85.4 °.

The free methanol molecules are connected to the (Co(L)2(Cl)2) moieties via O—H···Cl and N—H···O hydrogen bonds, and the (Co(L)2(Cl)2) moieties themselves are connected with each other by N—H···Cl hydrogen bonds (see Table 1). The closest C—C distance between adjacent parallel naphthyridyl rings is 3.378 (4) Å, the corresponding centroid to centroid distance for the naphthyridyl rings is 3.664 Å, which implies the presence of π-π stacking interactions between the naphthyridyl rings. Via all these interactions the compound forms a three-dimensional network structure as shown in Fig. 2.

Related literature top

For related literature, see: Bayer (1979); Che et al. (2001); Gavrilova & Bosnich (2004); Harvey et al. (2004); Jin et al. (2007); Kukrek et al. (2006); Mintert & Sheldrick (1995a,b); Oskui et al. (1999); Oskui & Sheldrick (1999).

Experimental top

All reagents and solvents were used as obtained without further purification. The CHN elemental analyses were performed on a Perkin-Elmer model 2400 elemental analyzer.

To a methanol solution of cobalt chloride hexahydrate (24 mg, 0.1 mmol), was added L (17.4 mg, 0.1 mmol) in 10 ml of methanol. The solution was stirred for three minutes, then the solution was filtered. The solution was left standing at room temperature for several days, and violet crystals were isolated after slow evaporation of the methanol solution in air. Yield: 38 mg, 70.3%. Anal. Calcd for C22H30Cl2CoN6O2: C, 48.86; H, 5.55; N, 15.55; Found: C, 48.81; H, 5.52; N, 15.49.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, and methyl C—H = 0.96 Å. Hydrogen atoms bound to methanol molecules and amine groups were fixed, and restrained to O—H = 0.85 (1) Å, and N—H = 0.86 (1) Å.

Structure description top

Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention (Kukrek et al., 2006; Che et al., 2001) as the ligands can link to metals via several coordination modes such as monodentate, chelating bidentate, and in a dinuclear bridging fashion (Gavrilova & Bosnich, 2004). 5,7-Dimethyl-1,8-naphthyridin-2-amine is a potentially tridentate ligand and is capable of linking two to four metal atoms together to form metal aggregates (Oskui et al., 1999; Mintert & Sheldrick, 1995a; Oskui & Sheldrick, 1999; Mintert & Sheldrick, 1995b). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Co(II) complex (Co(L)2Cl2) was once described in a US patent (Bayer, 1979). As an extension of our study on naphthyridine coordination chemistry (Jin et al., 2007), herein we report the synthesis and structure of the title complex as its bis methanol solvate, (Co(L)2(Cl)2).2(CH3OH).

The title compound was obtained as violet crystals by reacting cobalt chloride hexahydrate and L in methanol. The compound is air stable and light insensitive, and does not dissolve in water and most organic solvents. X-ray structural analysis shows that the complex is mononuclear, its molecular structure is shown in Fig. 1. The Co atom is positioned on an inversion center and is bonded to two L ligands and two chloride ions. Both of the two ligands coordinate to the metal center via two nitrogen atoms in a bidentate chelating fashion. The two chloride anions coordinated to the Co ion complete a very distorted octahedral geometry. With a N—Co—N bite angle of only 58.86 (11), and 60.39 (11) ° the structure can also be seen as a pseudotetrahedral complex with each of the naphthyridine ligands L counted as a singly bonded entity. The N—Co—N angle is of necessity quite small, thereby allowing for the Cl(2)—Co(1)—Cl(1) angle to expand to 96.99 (5) °. Perhaps as a result of the smaller spatial requirements of the chelating naphthyridine, the chloride ions are in cis-arrangement which is different from reported results (Harvey et al., 2004).

The two naphthyridine rings are basically planar with an r.m.s. deviation of only 0.0098, and 0.0183 ° respectively, and both ligands are almost perpendicular to each other with an angle between the root mean square planes of the two ligands of 85.4 °.

The free methanol molecules are connected to the (Co(L)2(Cl)2) moieties via O—H···Cl and N—H···O hydrogen bonds, and the (Co(L)2(Cl)2) moieties themselves are connected with each other by N—H···Cl hydrogen bonds (see Table 1). The closest C—C distance between adjacent parallel naphthyridyl rings is 3.378 (4) Å, the corresponding centroid to centroid distance for the naphthyridyl rings is 3.664 Å, which implies the presence of π-π stacking interactions between the naphthyridyl rings. Via all these interactions the compound forms a three-dimensional network structure as shown in Fig. 2.

For related literature, see: Bayer (1979); Che et al. (2001); Gavrilova & Bosnich (2004); Harvey et al. (2004); Jin et al. (2007); Kukrek et al. (2006); Mintert & Sheldrick (1995a,b); Oskui et al. (1999); Oskui & Sheldrick (1999).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The three dimensional network structure with π-π interactions and hydrogen bonds. The dashed lines present hydrogen bonds, the hydrogen atoms were omitted for clarity.
Dichloridobis(7-amino-2,4-dimethyl-1,8-naphthyridine-κ2N,N')cobalt(II) methanol disolvate top
Crystal data top
[CoCl2(C10H11N3)2]·2CH4OZ = 2
Mr = 540.35F(000) = 562
Triclinic, P1Dx = 1.383 Mg m3
a = 9.694 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.651 (3) ÅCell parameters from 2019 reflections
c = 14.154 (4) Åθ = 2.4–24.7°
α = 79.523 (4)°µ = 0.90 mm1
β = 78.548 (4)°T = 298 K
γ = 65.697 (4)°Block, violet
V = 1297.2 (6) Å30.27 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4521 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.794, Tmax = 0.855k = 1212
6885 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2762P]
where P = (Fo2 + 2Fc2)/3
4521 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[CoCl2(C10H11N3)2]·2CH4Oγ = 65.697 (4)°
Mr = 540.35V = 1297.2 (6) Å3
Triclinic, P1Z = 2
a = 9.694 (3) ÅMo Kα radiation
b = 10.651 (3) ŵ = 0.90 mm1
c = 14.154 (4) ÅT = 298 K
α = 79.523 (4)°0.27 × 0.21 × 0.18 mm
β = 78.548 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4521 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2999 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.855Rint = 0.021
6885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
4521 reflectionsΔρmin = 0.27 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.96112 (6)0.72223 (5)0.23994 (3)0.04516 (18)
Cl10.94391 (12)0.51632 (9)0.20816 (7)0.0583 (3)
Cl21.22929 (11)0.63991 (12)0.21805 (8)0.0690 (3)
N10.9345 (3)0.9511 (3)0.2182 (2)0.0448 (7)
N20.8771 (3)0.8510 (3)0.1144 (2)0.0426 (7)
N30.8215 (4)0.7345 (3)0.0155 (2)0.0671 (10)
H3A0.85410.65960.05440.080*
H3B0.78720.73400.03590.080*
N40.7015 (3)0.7946 (3)0.3218 (2)0.0460 (7)
N50.9139 (3)0.7129 (3)0.3919 (2)0.0437 (7)
N61.1406 (4)0.6339 (4)0.4536 (2)0.0703 (10)
H6A1.18850.62850.39550.084*
H6B1.19060.61100.50210.084*
O10.7241 (4)0.7211 (4)0.8345 (2)0.0855 (10)
H10.79140.64780.81860.089 (18)*
O20.2964 (4)0.5474 (4)0.6250 (2)0.0891 (11)
H20.24130.52610.67130.12 (2)*
C10.8775 (4)0.9703 (4)0.1350 (3)0.0425 (9)
C20.8242 (4)0.8508 (4)0.0350 (3)0.0481 (9)
C30.7689 (4)0.9765 (4)0.0293 (3)0.0545 (10)
H30.73210.97620.08510.065*
C40.7702 (4)1.0942 (4)0.0091 (3)0.0544 (10)
H40.73481.17480.05130.065*
C50.8252 (4)1.0972 (4)0.0763 (3)0.0463 (9)
C60.8331 (4)1.2114 (4)0.1076 (3)0.0523 (10)
C70.8943 (5)1.1897 (4)0.1915 (3)0.0584 (11)
H70.90181.26360.21320.070*
C80.9459 (4)1.0583 (4)0.2454 (3)0.0492 (9)
C90.7767 (5)1.3537 (4)0.0519 (3)0.0749 (13)
H9A0.76721.42130.09190.112*
H9B0.67891.37390.03370.112*
H9C0.84811.35640.00530.112*
C101.0178 (5)1.0346 (5)0.3348 (3)0.0726 (13)
H10A1.04930.93870.36030.109*
H10B0.94511.09090.38240.109*
H10C1.10521.05920.31890.109*
C110.7591 (4)0.7613 (3)0.4062 (3)0.0423 (9)
C120.9893 (5)0.6778 (4)0.4685 (3)0.0499 (9)
C130.9068 (5)0.6885 (4)0.5642 (3)0.0590 (11)
H130.95960.66160.61740.071*
C140.7540 (5)0.7371 (4)0.5777 (3)0.0593 (11)
H140.70170.74420.64040.071*
C150.6711 (4)0.7778 (4)0.4986 (3)0.0486 (9)
C160.5117 (5)0.8313 (4)0.5007 (3)0.0578 (11)
C170.4541 (5)0.8647 (4)0.4146 (3)0.0638 (12)
H170.34880.90140.41490.077*
C180.5506 (5)0.8449 (4)0.3259 (3)0.0548 (10)
C190.4055 (5)0.8563 (5)0.5956 (3)0.0776 (14)
H19A0.31380.93650.58540.116*
H19B0.45520.87130.64230.116*
H19C0.38020.77690.61920.116*
C200.4863 (5)0.8810 (5)0.2316 (3)0.0796 (14)
H20A0.44010.97990.21750.119*
H20B0.41070.84270.23670.119*
H20C0.56700.84320.18040.119*
C210.5865 (6)0.7043 (6)0.8635 (4)0.1029 (18)
H21A0.59100.64610.92410.154*
H21B0.56870.66200.81520.154*
H21C0.50470.79320.87120.154*
C220.4434 (6)0.4976 (5)0.6469 (5)0.107 (2)
H22A0.50420.53420.59710.161*
H22B0.48660.39820.65090.161*
H22C0.44160.52560.70800.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0519 (3)0.0477 (3)0.0353 (3)0.0186 (2)0.0107 (2)0.0001 (2)
Cl10.0749 (7)0.0444 (5)0.0566 (6)0.0238 (5)0.0118 (5)0.0039 (4)
Cl20.0498 (6)0.0887 (8)0.0553 (6)0.0175 (6)0.0085 (5)0.0021 (6)
N10.0479 (18)0.0481 (18)0.0417 (18)0.0220 (15)0.0064 (14)0.0046 (14)
N20.0510 (19)0.0451 (17)0.0352 (17)0.0225 (15)0.0070 (14)0.0027 (13)
N30.100 (3)0.064 (2)0.056 (2)0.043 (2)0.032 (2)0.0022 (17)
N40.0452 (19)0.0450 (17)0.0464 (19)0.0159 (15)0.0101 (15)0.0016 (14)
N50.0458 (19)0.0458 (17)0.0383 (17)0.0171 (15)0.0091 (14)0.0001 (13)
N60.053 (2)0.103 (3)0.051 (2)0.023 (2)0.0185 (17)0.004 (2)
O10.066 (2)0.104 (3)0.074 (2)0.010 (2)0.0108 (17)0.037 (2)
O20.066 (2)0.135 (3)0.067 (2)0.046 (2)0.0200 (18)0.017 (2)
C10.042 (2)0.046 (2)0.040 (2)0.0202 (17)0.0012 (16)0.0053 (17)
C20.053 (2)0.055 (2)0.041 (2)0.027 (2)0.0087 (18)0.0019 (18)
C30.057 (3)0.067 (3)0.039 (2)0.023 (2)0.0149 (18)0.0002 (19)
C40.057 (3)0.048 (2)0.047 (2)0.015 (2)0.0100 (19)0.0091 (19)
C50.046 (2)0.046 (2)0.043 (2)0.0183 (18)0.0006 (17)0.0012 (17)
C60.057 (2)0.043 (2)0.054 (3)0.0209 (19)0.002 (2)0.0043 (18)
C70.067 (3)0.052 (2)0.062 (3)0.029 (2)0.003 (2)0.019 (2)
C80.046 (2)0.057 (2)0.049 (2)0.0237 (19)0.0045 (18)0.0111 (19)
C90.092 (4)0.047 (2)0.082 (3)0.028 (2)0.012 (3)0.003 (2)
C100.078 (3)0.088 (3)0.067 (3)0.040 (3)0.017 (2)0.019 (3)
C110.050 (2)0.0359 (19)0.042 (2)0.0175 (17)0.0092 (17)0.0023 (16)
C120.059 (3)0.049 (2)0.044 (2)0.022 (2)0.0132 (19)0.0022 (18)
C130.077 (3)0.062 (3)0.038 (2)0.025 (2)0.020 (2)0.0027 (19)
C140.076 (3)0.059 (3)0.041 (2)0.027 (2)0.002 (2)0.0054 (19)
C150.059 (3)0.043 (2)0.043 (2)0.0211 (19)0.0025 (19)0.0063 (17)
C160.061 (3)0.052 (2)0.057 (3)0.024 (2)0.006 (2)0.011 (2)
C170.043 (2)0.065 (3)0.077 (3)0.016 (2)0.003 (2)0.012 (2)
C180.054 (3)0.053 (2)0.058 (3)0.020 (2)0.016 (2)0.0018 (19)
C190.070 (3)0.082 (3)0.070 (3)0.029 (3)0.019 (2)0.015 (3)
C200.066 (3)0.093 (4)0.076 (3)0.025 (3)0.033 (3)0.010 (3)
C210.081 (4)0.111 (5)0.113 (5)0.030 (3)0.013 (3)0.024 (4)
C220.083 (4)0.075 (3)0.168 (6)0.034 (3)0.036 (4)0.009 (4)
Geometric parameters (Å, º) top
Co1—N52.100 (3)C7—C81.406 (5)
Co1—N22.115 (3)C7—H70.9300
Co1—N12.312 (3)C8—C101.497 (5)
Co1—Cl22.3508 (13)C9—H9A0.9600
Co1—Cl12.3936 (12)C9—H9B0.9600
Co1—N42.417 (3)C9—H9C0.9600
N1—C81.321 (5)C10—H10A0.9600
N1—C11.345 (4)C10—H10B0.9600
N2—C21.325 (4)C10—H10C0.9600
N2—C11.356 (4)C11—C151.409 (5)
N3—C21.329 (5)C12—C131.428 (5)
N3—H3A0.8600C13—C141.339 (6)
N3—H3B0.8600C13—H130.9300
N4—C181.328 (5)C14—C151.408 (5)
N4—C111.346 (4)C14—H140.9300
N5—C121.339 (5)C15—C161.406 (5)
N5—C111.356 (4)C16—C171.368 (6)
N6—C121.327 (5)C16—C191.513 (5)
N6—H6A0.8600C17—C181.401 (5)
N6—H6B0.8600C17—H170.9300
O1—C211.391 (6)C18—C201.505 (6)
O1—H10.8200C19—H19A0.9600
O2—C221.379 (5)C19—H19B0.9600
O2—H20.8200C19—H19C0.9600
C1—C51.403 (5)C20—H20A0.9600
C2—C31.439 (5)C20—H20B0.9600
C3—C41.341 (5)C20—H20C0.9600
C3—H30.9300C21—H21A0.9600
C4—C51.425 (5)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C5—C61.403 (5)C22—H22A0.9600
C6—C71.372 (5)C22—H22B0.9600
C6—C91.507 (5)C22—H22C0.9600
N5—Co1—N2140.51 (11)C6—C9—H9B109.5
N5—Co1—N194.22 (11)H9A—C9—H9B109.5
N2—Co1—N160.40 (11)C6—C9—H9C109.5
N5—Co1—Cl2100.61 (9)H9A—C9—H9C109.5
N2—Co1—Cl2109.61 (8)H9B—C9—H9C109.5
N1—Co1—Cl292.55 (8)C8—C10—H10A109.5
N5—Co1—Cl1103.03 (8)C8—C10—H10B109.5
N2—Co1—Cl197.99 (8)H10A—C10—H10B109.5
N1—Co1—Cl1158.32 (8)C8—C10—H10C109.5
Cl2—Co1—Cl196.99 (4)H10A—C10—H10C109.5
N5—Co1—N458.85 (10)H10B—C10—H10C109.5
N2—Co1—N488.79 (10)N4—C11—N5111.7 (3)
N1—Co1—N488.66 (10)N4—C11—C15124.9 (3)
Cl2—Co1—N4159.45 (8)N5—C11—C15123.4 (3)
Cl1—Co1—N489.14 (8)N6—C12—N5118.9 (3)
C8—N1—C1117.8 (3)N6—C12—C13121.1 (4)
C8—N1—Co1152.4 (3)N5—C12—C13119.9 (4)
C1—N1—Co189.8 (2)C14—C13—C12120.4 (4)
C2—N2—C1119.8 (3)C14—C13—H13119.8
C2—N2—Co1141.9 (3)C12—C13—H13119.8
C1—N2—Co198.2 (2)C13—C14—C15121.1 (4)
C2—N3—H3A120.0C13—C14—H14119.5
C2—N3—H3B120.0C15—C14—H14119.5
H3A—N3—H3B120.0C16—C15—C14127.9 (4)
C18—N4—C11117.6 (3)C16—C15—C11116.2 (4)
C18—N4—Co1154.6 (3)C14—C15—C11115.9 (4)
C11—N4—Co187.8 (2)C17—C16—C15118.5 (4)
C12—N5—C11119.3 (3)C17—C16—C19120.5 (4)
C12—N5—Co1139.0 (3)C15—C16—C19120.9 (4)
C11—N5—Co1101.6 (2)C16—C17—C18121.3 (4)
C12—N6—H6A120.0C16—C17—H17119.3
C12—N6—H6B120.0C18—C17—H17119.3
H6A—N6—H6B120.0N4—C18—C17121.5 (4)
C21—O1—H1109.5N4—C18—C20117.6 (4)
C22—O2—H2109.5C17—C18—C20120.9 (4)
N1—C1—N2111.5 (3)C16—C19—H19A109.5
N1—C1—C5124.7 (3)C16—C19—H19B109.5
N2—C1—C5123.8 (3)H19A—C19—H19B109.5
N2—C2—N3119.8 (3)C16—C19—H19C109.5
N2—C2—C3119.9 (4)H19A—C19—H19C109.5
N3—C2—C3120.3 (3)H19B—C19—H19C109.5
C4—C3—C2120.2 (4)C18—C20—H20A109.5
C4—C3—H3119.9C18—C20—H20B109.5
C2—C3—H3119.9H20A—C20—H20B109.5
C3—C4—C5120.8 (3)C18—C20—H20C109.5
C3—C4—H4119.6H20A—C20—H20C109.5
C5—C4—H4119.6H20B—C20—H20C109.5
C1—C5—C6117.0 (3)O1—C21—H21A109.5
C1—C5—C4115.5 (3)O1—C21—H21B109.5
C6—C5—C4127.5 (3)H21A—C21—H21B109.5
C7—C6—C5117.7 (3)O1—C21—H21C109.5
C7—C6—C9120.5 (4)H21A—C21—H21C109.5
C5—C6—C9121.8 (4)H21B—C21—H21C109.5
C6—C7—C8121.6 (4)O2—C22—H22A109.5
C6—C7—H7119.2O2—C22—H22B109.5
C8—C7—H7119.2H22A—C22—H22B109.5
N1—C8—C7121.2 (4)O2—C22—H22C109.5
N1—C8—C10117.7 (4)H22A—C22—H22C109.5
C7—C8—C10121.1 (4)H22B—C22—H22C109.5
C6—C9—H9A109.5
N5—Co1—N1—C832.8 (5)N3—C2—C3—C4179.3 (4)
N2—Co1—N1—C8179.2 (6)C2—C3—C4—C50.4 (6)
Cl2—Co1—N1—C868.0 (5)N1—C1—C5—C60.3 (5)
Cl1—Co1—N1—C8175.7 (4)N2—C1—C5—C6180.0 (3)
N4—Co1—N1—C891.4 (5)N1—C1—C5—C4179.6 (3)
N5—Co1—N1—C1146.2 (2)N2—C1—C5—C40.1 (5)
N2—Co1—N1—C11.79 (19)C3—C4—C5—C10.6 (5)
Cl2—Co1—N1—C1112.95 (19)C3—C4—C5—C6179.6 (4)
Cl1—Co1—N1—C13.3 (3)C1—C5—C6—C71.5 (5)
N4—Co1—N1—C187.6 (2)C4—C5—C6—C7178.3 (4)
N5—Co1—N2—C2121.2 (4)C1—C5—C6—C9178.5 (3)
N1—Co1—N2—C2177.4 (4)C4—C5—C6—C91.7 (6)
Cl2—Co1—N2—C2101.1 (4)C5—C6—C7—C80.8 (6)
Cl1—Co1—N2—C20.7 (4)C9—C6—C7—C8179.2 (4)
N4—Co1—N2—C288.3 (4)C1—N1—C8—C72.6 (5)
N5—Co1—N2—C154.4 (3)Co1—N1—C8—C7176.3 (4)
N1—Co1—N2—C11.79 (19)C1—N1—C8—C10176.5 (3)
Cl2—Co1—N2—C183.3 (2)Co1—N1—C8—C104.6 (7)
Cl1—Co1—N2—C1176.32 (19)C6—C7—C8—N11.4 (6)
N4—Co1—N2—C187.4 (2)C6—C7—C8—C10177.7 (4)
N5—Co1—N4—C18178.9 (6)C18—N4—C11—N5179.3 (3)
N2—Co1—N4—C1822.7 (6)Co1—N4—C11—N50.3 (3)
N1—Co1—N4—C1883.1 (6)C18—N4—C11—C151.1 (5)
Cl2—Co1—N4—C18176.8 (5)Co1—N4—C11—C15178.5 (3)
Cl1—Co1—N4—C1875.3 (6)C12—N5—C11—N4178.6 (3)
N5—Co1—N4—C110.21 (19)Co1—N5—C11—N40.4 (3)
N2—Co1—N4—C11156.4 (2)C12—N5—C11—C150.4 (5)
N1—Co1—N4—C1196.0 (2)Co1—N5—C11—C15178.6 (3)
Cl2—Co1—N4—C112.3 (3)C11—N5—C12—N6178.3 (3)
Cl1—Co1—N4—C11105.60 (19)Co1—N5—C12—N60.1 (6)
N2—Co1—N5—C12138.9 (3)C11—N5—C12—C131.4 (5)
N1—Co1—N5—C1292.5 (4)Co1—N5—C12—C13179.8 (3)
Cl2—Co1—N5—C120.9 (4)N6—C12—C13—C14177.9 (4)
Cl1—Co1—N5—C12100.7 (4)N5—C12—C13—C141.8 (6)
N4—Co1—N5—C12178.4 (4)C12—C13—C14—C150.4 (6)
N2—Co1—N5—C1139.7 (3)C13—C14—C15—C16179.6 (4)
N1—Co1—N5—C1186.1 (2)C13—C14—C15—C111.2 (6)
Cl2—Co1—N5—C11179.49 (19)N4—C11—C15—C161.0 (5)
Cl1—Co1—N5—C1180.7 (2)N5—C11—C15—C16179.0 (3)
N4—Co1—N5—C110.22 (19)N4—C11—C15—C14179.6 (3)
C8—N1—C1—N2177.9 (3)N5—C11—C15—C141.7 (5)
Co1—N1—C1—N22.6 (3)C14—C15—C16—C17179.9 (4)
C8—N1—C1—C51.8 (5)C11—C15—C16—C170.9 (5)
Co1—N1—C1—C5177.6 (3)C14—C15—C16—C192.1 (6)
C2—N2—C1—N1179.8 (3)C11—C15—C16—C19178.7 (3)
Co1—N2—C1—N12.9 (3)C15—C16—C17—C180.9 (6)
C2—N2—C1—C50.5 (5)C19—C16—C17—C18178.7 (4)
Co1—N2—C1—C5177.4 (3)C11—N4—C18—C170.9 (5)
C1—N2—C2—N3178.9 (3)Co1—N4—C18—C17178.0 (4)
Co1—N2—C2—N33.9 (6)C11—N4—C18—C20179.5 (4)
C1—N2—C2—C30.7 (5)Co1—N4—C18—C201.6 (8)
Co1—N2—C2—C3175.7 (3)C16—C17—C18—N40.9 (6)
N2—C2—C3—C40.2 (6)C16—C17—C18—C20179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.353.162 (4)172
O1—H1···Cl1ii0.822.443.194 (4)154
N6—H6B···O2iii0.862.062.918 (4)175
N6—H6A···Cl20.862.453.269 (4)159
N3—H3B···O1iv0.862.092.947 (4)175
N3—H3A···Cl10.862.513.309 (3)156
C22—H22B···C17i0.962.913.789 (7)154
C22—H22B···C18i0.962.713.575 (6)150
C4—H4···Cl2v0.932.853.705 (4)153
C7—H7···Cl1vi0.932.873.757 (4)160
C13—H13···Cl1ii0.932.883.733 (4)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x+2, y+2, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C10H11N3)2]·2CH4O
Mr540.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.694 (3), 10.651 (3), 14.154 (4)
α, β, γ (°)79.523 (4), 78.548 (4), 65.697 (4)
V3)1297.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.27 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.794, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
6885, 4521, 2999
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.04
No. of reflections4521
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.353.162 (4)172.2
O1—H1···Cl1ii0.822.443.194 (4)153.7
N6—H6B···O2iii0.862.062.918 (4)174.6
N6—H6A···Cl20.862.453.269 (4)159.0
N3—H3B···O1iv0.862.092.947 (4)174.8
N3—H3A···Cl10.862.513.309 (3)155.9
C22—H22B···C17i0.962.913.789 (7)153.6
C22—H22B···C18i0.962.713.575 (6)149.8
C4—H4···Cl2v0.932.853.705 (4)153.2
C7—H7···Cl1vi0.932.873.757 (4)159.8
C13—H13···Cl1ii0.932.883.733 (4)152.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x+2, y+2, z; (vi) x, y+1, z.
 

Acknowledgements

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

References

First citationBayer, J. W. (1979). US Patent 4 169 092, 1–14.  Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, C. M., Wan, C. W., Hoa, K. Y. & Zhou, Z. Y. (2001). New J. Chem. 25, 63–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarvey, B. G., Arif, A. M. & Ernst, R. D. (2004). Polyhedron, 23, 2725–2731.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 26, 287–290.  CAS Google Scholar
First citationKukrek, A., Wang, D., Hou, Y. J., Zong, R. F. & Thummel, R. (2006). Inorg. Chem. 45, 10131–10137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMintert, M. & Sheldrick, W. S. (1995a). Inorg. Chim. Acta, 236, 13–20.  CrossRef CAS Web of Science Google Scholar
First citationMintert, M. & Sheldrick, W. S. (1995b). J. Chem. Soc. Dalton Trans. pp. 2663–2669.  CSD CrossRef Web of Science Google Scholar
First citationOskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationOskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325–1328.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds