metal-organic compounds
Dichloridobis(7-amino-2,4-dimethyl-1,8-naphthyridine-κ2N,N′)cobalt(II) methanol disolvate
aFaculty of Science, Zhejiang Forestry University, Lin'An 311300, People's Republic of China, and bDepartment of Chemistry, Chengde National Teachers College, Chengde 067000 People's Republic of China
*Correspondence e-mail: jinsw@zjfc.edu.cn
The title compound, [CoCl2(C10H11N3)2]·2CH3OH, crystallizes with an elongated Co in a very distorted octahedral geometry. Both naphthyridine ligands coordinate to the Co atom via two N atoms in a bidentate chelating mode. The remaining coordination sites are occupied by two Cl atoms. Two uncoordinated solvent methanol molecules are hydrogen bonded to the Cl atoms. Additional N—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen bonds, and π–π stacking interactions [centroid–centroid distance 3.664 (4) Å], give rise to a three-dimensional network structure.
Related literature
For related literature, see: Bayer (1979); Che et al. (2001); Gavrilova & Bosnich (2004); Harvey et al. (2004); Jin et al. (2007); Kukrek et al. (2006); Mintert & Sheldrick (1995a,b); Oskui et al. (1999); Oskui & Sheldrick (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680706494X/zl2083sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680706494X/zl2083Isup2.hkl
All reagents and solvents were used as obtained without further purification. The CHN elemental analyses were performed on a Perkin-Elmer model 2400 elemental analyzer.
To a methanol solution of cobalt chloride hexahydrate (24 mg, 0.1 mmol), was added L (17.4 mg, 0.1 mmol) in 10 ml of methanol. The solution was stirred for three minutes, then the solution was filtered. The solution was left standing at room temperature for several days, and violet crystals were isolated after slow evaporation of the methanol solution in air. Yield: 38 mg, 70.3%. Anal. Calcd for C22H30Cl2CoN6O2: C, 48.86; H, 5.55; N, 15.55; Found: C, 48.81; H, 5.52; N, 15.49.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, and methyl C—H = 0.96 Å. Hydrogen atoms bound to methanol molecules and amine groups were fixed, and restrained to O—H = 0.85 (1) Å, and N—H = 0.86 (1) Å.
Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention (Kukrek et al., 2006; Che et al., 2001) as the ligands can link to metals via several coordination modes such as monodentate, chelating bidentate, and in a dinuclear bridging fashion (Gavrilova & Bosnich, 2004). 5,7-Dimethyl-1,8-naphthyridin-2-amine is a potentially tridentate ligand and is capable of linking two to four metal atoms together to form metal aggregates (Oskui et al., 1999; Mintert & Sheldrick, 1995a; Oskui & Sheldrick, 1999; Mintert & Sheldrick, 1995b). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Co(II) complex (Co(L)2Cl2) was once described in a US patent (Bayer, 1979). As an extension of our study on naphthyridine coordination chemistry (Jin et al., 2007), herein we report the synthesis and structure of the title complex as its bis methanol solvate, (Co(L)2(Cl)2).2(CH3OH).
The title compound was obtained as violet crystals by reacting cobalt chloride hexahydrate and L in methanol. The compound is air stable and light insensitive, and does not dissolve in water and most organic solvents. X-ray structural analysis shows that the complex is mononuclear, its molecular structure is shown in Fig. 1. The Co atom is positioned on an inversion center and is bonded to two L ligands and two chloride ions. Both of the two ligands coordinate to the metal center via two nitrogen atoms in a bidentate chelating fashion. The two chloride anions coordinated to the Co ion complete a very distorted octahedral geometry. With a N—Co—N bite angle of only 58.86 (11), and 60.39 (11) ° the structure can also be seen as a pseudotetrahedral complex with each of the naphthyridine ligands L counted as a singly bonded entity. The N—Co—N angle is of necessity quite small, thereby allowing for the Cl(2)—Co(1)—Cl(1) angle to expand to 96.99 (5) °. Perhaps as a result of the smaller spatial requirements of the chelating naphthyridine, the chloride ions are in cis-arrangement which is different from reported results (Harvey et al., 2004).
The two naphthyridine rings are basically planar with an r.m.s. deviation of only 0.0098, and 0.0183 ° respectively, and both ligands are almost perpendicular to each other with an angle between the root mean square planes of the two ligands of 85.4 °.
The free methanol molecules are connected to the (Co(L)2(Cl)2) moieties via O—H···Cl and N—H···O hydrogen bonds, and the (Co(L)2(Cl)2) moieties themselves are connected with each other by N—H···Cl hydrogen bonds (see Table 1). The closest C—C distance between adjacent parallel naphthyridyl rings is 3.378 (4) Å, the corresponding centroid to centroid distance for the naphthyridyl rings is 3.664 Å, which implies the presence of π-π stacking interactions between the naphthyridyl rings. Via all these interactions the compound forms a three-dimensional network structure as shown in Fig. 2.
For related literature, see: Bayer (1979); Che et al. (2001); Gavrilova & Bosnich (2004); Harvey et al. (2004); Jin et al. (2007); Kukrek et al. (2006); Mintert & Sheldrick (1995a,b); Oskui et al. (1999); Oskui & Sheldrick (1999).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. The three dimensional network structure with π-π interactions and hydrogen bonds. The dashed lines present hydrogen bonds, the hydrogen atoms were omitted for clarity. |
[CoCl2(C10H11N3)2]·2CH4O | Z = 2 |
Mr = 540.35 | F(000) = 562 |
Triclinic, P1 | Dx = 1.383 Mg m−3 |
a = 9.694 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.651 (3) Å | Cell parameters from 2019 reflections |
c = 14.154 (4) Å | θ = 2.4–24.7° |
α = 79.523 (4)° | µ = 0.90 mm−1 |
β = 78.548 (4)° | T = 298 K |
γ = 65.697 (4)° | Block, violet |
V = 1297.2 (6) Å3 | 0.27 × 0.21 × 0.18 mm |
Bruker SMART APEX CCD diffractometer | 4521 independent reflections |
Radiation source: fine-focus sealed tube | 2999 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
phi and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→11 |
Tmin = 0.794, Tmax = 0.855 | k = −12→12 |
6885 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2762P] where P = (Fo2 + 2Fc2)/3 |
4521 reflections | (Δ/σ)max < 0.001 |
300 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[CoCl2(C10H11N3)2]·2CH4O | γ = 65.697 (4)° |
Mr = 540.35 | V = 1297.2 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.694 (3) Å | Mo Kα radiation |
b = 10.651 (3) Å | µ = 0.90 mm−1 |
c = 14.154 (4) Å | T = 298 K |
α = 79.523 (4)° | 0.27 × 0.21 × 0.18 mm |
β = 78.548 (4)° |
Bruker SMART APEX CCD diffractometer | 4521 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2999 reflections with I > 2σ(I) |
Tmin = 0.794, Tmax = 0.855 | Rint = 0.021 |
6885 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.45 e Å−3 |
4521 reflections | Δρmin = −0.27 e Å−3 |
300 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.96112 (6) | 0.72223 (5) | 0.23994 (3) | 0.04516 (18) | |
Cl1 | 0.94391 (12) | 0.51632 (9) | 0.20816 (7) | 0.0583 (3) | |
Cl2 | 1.22929 (11) | 0.63991 (12) | 0.21805 (8) | 0.0690 (3) | |
N1 | 0.9345 (3) | 0.9511 (3) | 0.2182 (2) | 0.0448 (7) | |
N2 | 0.8771 (3) | 0.8510 (3) | 0.1144 (2) | 0.0426 (7) | |
N3 | 0.8215 (4) | 0.7345 (3) | 0.0155 (2) | 0.0671 (10) | |
H3A | 0.8541 | 0.6596 | 0.0544 | 0.080* | |
H3B | 0.7872 | 0.7340 | −0.0359 | 0.080* | |
N4 | 0.7015 (3) | 0.7946 (3) | 0.3218 (2) | 0.0460 (7) | |
N5 | 0.9139 (3) | 0.7129 (3) | 0.3919 (2) | 0.0437 (7) | |
N6 | 1.1406 (4) | 0.6339 (4) | 0.4536 (2) | 0.0703 (10) | |
H6A | 1.1885 | 0.6285 | 0.3955 | 0.084* | |
H6B | 1.1906 | 0.6110 | 0.5021 | 0.084* | |
O1 | 0.7241 (4) | 0.7211 (4) | 0.8345 (2) | 0.0855 (10) | |
H1 | 0.7914 | 0.6478 | 0.8186 | 0.089 (18)* | |
O2 | 0.2964 (4) | 0.5474 (4) | 0.6250 (2) | 0.0891 (11) | |
H2 | 0.2413 | 0.5261 | 0.6713 | 0.12 (2)* | |
C1 | 0.8775 (4) | 0.9703 (4) | 0.1350 (3) | 0.0425 (9) | |
C2 | 0.8242 (4) | 0.8508 (4) | 0.0350 (3) | 0.0481 (9) | |
C3 | 0.7689 (4) | 0.9765 (4) | −0.0293 (3) | 0.0545 (10) | |
H3 | 0.7321 | 0.9762 | −0.0851 | 0.065* | |
C4 | 0.7702 (4) | 1.0942 (4) | −0.0091 (3) | 0.0544 (10) | |
H4 | 0.7348 | 1.1748 | −0.0513 | 0.065* | |
C5 | 0.8252 (4) | 1.0972 (4) | 0.0763 (3) | 0.0463 (9) | |
C6 | 0.8331 (4) | 1.2114 (4) | 0.1076 (3) | 0.0523 (10) | |
C7 | 0.8943 (5) | 1.1897 (4) | 0.1915 (3) | 0.0584 (11) | |
H7 | 0.9018 | 1.2636 | 0.2132 | 0.070* | |
C8 | 0.9459 (4) | 1.0583 (4) | 0.2454 (3) | 0.0492 (9) | |
C9 | 0.7767 (5) | 1.3537 (4) | 0.0519 (3) | 0.0749 (13) | |
H9A | 0.7672 | 1.4213 | 0.0919 | 0.112* | |
H9B | 0.6789 | 1.3739 | 0.0337 | 0.112* | |
H9C | 0.8481 | 1.3564 | −0.0053 | 0.112* | |
C10 | 1.0178 (5) | 1.0346 (5) | 0.3348 (3) | 0.0726 (13) | |
H10A | 1.0493 | 0.9387 | 0.3603 | 0.109* | |
H10B | 0.9451 | 1.0909 | 0.3824 | 0.109* | |
H10C | 1.1052 | 1.0592 | 0.3189 | 0.109* | |
C11 | 0.7591 (4) | 0.7613 (3) | 0.4062 (3) | 0.0423 (9) | |
C12 | 0.9893 (5) | 0.6778 (4) | 0.4685 (3) | 0.0499 (9) | |
C13 | 0.9068 (5) | 0.6885 (4) | 0.5642 (3) | 0.0590 (11) | |
H13 | 0.9596 | 0.6616 | 0.6174 | 0.071* | |
C14 | 0.7540 (5) | 0.7371 (4) | 0.5777 (3) | 0.0593 (11) | |
H14 | 0.7017 | 0.7442 | 0.6404 | 0.071* | |
C15 | 0.6711 (4) | 0.7778 (4) | 0.4986 (3) | 0.0486 (9) | |
C16 | 0.5117 (5) | 0.8313 (4) | 0.5007 (3) | 0.0578 (11) | |
C17 | 0.4541 (5) | 0.8647 (4) | 0.4146 (3) | 0.0638 (12) | |
H17 | 0.3488 | 0.9014 | 0.4149 | 0.077* | |
C18 | 0.5506 (5) | 0.8449 (4) | 0.3259 (3) | 0.0548 (10) | |
C19 | 0.4055 (5) | 0.8563 (5) | 0.5956 (3) | 0.0776 (14) | |
H19A | 0.3138 | 0.9365 | 0.5854 | 0.116* | |
H19B | 0.4552 | 0.8713 | 0.6423 | 0.116* | |
H19C | 0.3802 | 0.7769 | 0.6192 | 0.116* | |
C20 | 0.4863 (5) | 0.8810 (5) | 0.2316 (3) | 0.0796 (14) | |
H20A | 0.4401 | 0.9799 | 0.2175 | 0.119* | |
H20B | 0.4107 | 0.8427 | 0.2367 | 0.119* | |
H20C | 0.5670 | 0.8432 | 0.1804 | 0.119* | |
C21 | 0.5865 (6) | 0.7043 (6) | 0.8635 (4) | 0.1029 (18) | |
H21A | 0.5910 | 0.6461 | 0.9241 | 0.154* | |
H21B | 0.5687 | 0.6620 | 0.8152 | 0.154* | |
H21C | 0.5047 | 0.7932 | 0.8712 | 0.154* | |
C22 | 0.4434 (6) | 0.4976 (5) | 0.6469 (5) | 0.107 (2) | |
H22A | 0.5042 | 0.5342 | 0.5971 | 0.161* | |
H22B | 0.4866 | 0.3982 | 0.6509 | 0.161* | |
H22C | 0.4416 | 0.5256 | 0.7080 | 0.161* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0519 (3) | 0.0477 (3) | 0.0353 (3) | −0.0186 (2) | −0.0107 (2) | −0.0001 (2) |
Cl1 | 0.0749 (7) | 0.0444 (5) | 0.0566 (6) | −0.0238 (5) | −0.0118 (5) | −0.0039 (4) |
Cl2 | 0.0498 (6) | 0.0887 (8) | 0.0553 (6) | −0.0175 (6) | −0.0085 (5) | 0.0021 (6) |
N1 | 0.0479 (18) | 0.0481 (18) | 0.0417 (18) | −0.0220 (15) | −0.0064 (14) | −0.0046 (14) |
N2 | 0.0510 (19) | 0.0451 (17) | 0.0352 (17) | −0.0225 (15) | −0.0070 (14) | −0.0027 (13) |
N3 | 0.100 (3) | 0.064 (2) | 0.056 (2) | −0.043 (2) | −0.032 (2) | 0.0022 (17) |
N4 | 0.0452 (19) | 0.0450 (17) | 0.0464 (19) | −0.0159 (15) | −0.0101 (15) | −0.0016 (14) |
N5 | 0.0458 (19) | 0.0458 (17) | 0.0383 (17) | −0.0171 (15) | −0.0091 (14) | −0.0001 (13) |
N6 | 0.053 (2) | 0.103 (3) | 0.051 (2) | −0.023 (2) | −0.0185 (17) | −0.004 (2) |
O1 | 0.066 (2) | 0.104 (3) | 0.074 (2) | −0.010 (2) | −0.0108 (17) | −0.037 (2) |
O2 | 0.066 (2) | 0.135 (3) | 0.067 (2) | −0.046 (2) | −0.0200 (18) | 0.017 (2) |
C1 | 0.042 (2) | 0.046 (2) | 0.040 (2) | −0.0202 (17) | 0.0012 (16) | −0.0053 (17) |
C2 | 0.053 (2) | 0.055 (2) | 0.041 (2) | −0.027 (2) | −0.0087 (18) | −0.0019 (18) |
C3 | 0.057 (3) | 0.067 (3) | 0.039 (2) | −0.023 (2) | −0.0149 (18) | −0.0002 (19) |
C4 | 0.057 (3) | 0.048 (2) | 0.047 (2) | −0.015 (2) | −0.0100 (19) | 0.0091 (19) |
C5 | 0.046 (2) | 0.046 (2) | 0.043 (2) | −0.0183 (18) | −0.0006 (17) | −0.0012 (17) |
C6 | 0.057 (2) | 0.043 (2) | 0.054 (3) | −0.0209 (19) | 0.002 (2) | −0.0043 (18) |
C7 | 0.067 (3) | 0.052 (2) | 0.062 (3) | −0.029 (2) | 0.003 (2) | −0.019 (2) |
C8 | 0.046 (2) | 0.057 (2) | 0.049 (2) | −0.0237 (19) | −0.0045 (18) | −0.0111 (19) |
C9 | 0.092 (4) | 0.047 (2) | 0.082 (3) | −0.028 (2) | −0.012 (3) | 0.003 (2) |
C10 | 0.078 (3) | 0.088 (3) | 0.067 (3) | −0.040 (3) | −0.017 (2) | −0.019 (3) |
C11 | 0.050 (2) | 0.0359 (19) | 0.042 (2) | −0.0175 (17) | −0.0092 (17) | −0.0023 (16) |
C12 | 0.059 (3) | 0.049 (2) | 0.044 (2) | −0.022 (2) | −0.0132 (19) | −0.0022 (18) |
C13 | 0.077 (3) | 0.062 (3) | 0.038 (2) | −0.025 (2) | −0.020 (2) | 0.0027 (19) |
C14 | 0.076 (3) | 0.059 (3) | 0.041 (2) | −0.027 (2) | −0.002 (2) | −0.0054 (19) |
C15 | 0.059 (3) | 0.043 (2) | 0.043 (2) | −0.0211 (19) | −0.0025 (19) | −0.0063 (17) |
C16 | 0.061 (3) | 0.052 (2) | 0.057 (3) | −0.024 (2) | 0.006 (2) | −0.011 (2) |
C17 | 0.043 (2) | 0.065 (3) | 0.077 (3) | −0.016 (2) | −0.003 (2) | −0.012 (2) |
C18 | 0.054 (3) | 0.053 (2) | 0.058 (3) | −0.020 (2) | −0.016 (2) | −0.0018 (19) |
C19 | 0.070 (3) | 0.082 (3) | 0.070 (3) | −0.029 (3) | 0.019 (2) | −0.015 (3) |
C20 | 0.066 (3) | 0.093 (4) | 0.076 (3) | −0.025 (3) | −0.033 (3) | 0.010 (3) |
C21 | 0.081 (4) | 0.111 (5) | 0.113 (5) | −0.030 (3) | −0.013 (3) | −0.024 (4) |
C22 | 0.083 (4) | 0.075 (3) | 0.168 (6) | −0.034 (3) | −0.036 (4) | 0.009 (4) |
Co1—N5 | 2.100 (3) | C7—C8 | 1.406 (5) |
Co1—N2 | 2.115 (3) | C7—H7 | 0.9300 |
Co1—N1 | 2.312 (3) | C8—C10 | 1.497 (5) |
Co1—Cl2 | 2.3508 (13) | C9—H9A | 0.9600 |
Co1—Cl1 | 2.3936 (12) | C9—H9B | 0.9600 |
Co1—N4 | 2.417 (3) | C9—H9C | 0.9600 |
N1—C8 | 1.321 (5) | C10—H10A | 0.9600 |
N1—C1 | 1.345 (4) | C10—H10B | 0.9600 |
N2—C2 | 1.325 (4) | C10—H10C | 0.9600 |
N2—C1 | 1.356 (4) | C11—C15 | 1.409 (5) |
N3—C2 | 1.329 (5) | C12—C13 | 1.428 (5) |
N3—H3A | 0.8600 | C13—C14 | 1.339 (6) |
N3—H3B | 0.8600 | C13—H13 | 0.9300 |
N4—C18 | 1.328 (5) | C14—C15 | 1.408 (5) |
N4—C11 | 1.346 (4) | C14—H14 | 0.9300 |
N5—C12 | 1.339 (5) | C15—C16 | 1.406 (5) |
N5—C11 | 1.356 (4) | C16—C17 | 1.368 (6) |
N6—C12 | 1.327 (5) | C16—C19 | 1.513 (5) |
N6—H6A | 0.8600 | C17—C18 | 1.401 (5) |
N6—H6B | 0.8600 | C17—H17 | 0.9300 |
O1—C21 | 1.391 (6) | C18—C20 | 1.505 (6) |
O1—H1 | 0.8200 | C19—H19A | 0.9600 |
O2—C22 | 1.379 (5) | C19—H19B | 0.9600 |
O2—H2 | 0.8200 | C19—H19C | 0.9600 |
C1—C5 | 1.403 (5) | C20—H20A | 0.9600 |
C2—C3 | 1.439 (5) | C20—H20B | 0.9600 |
C3—C4 | 1.341 (5) | C20—H20C | 0.9600 |
C3—H3 | 0.9300 | C21—H21A | 0.9600 |
C4—C5 | 1.425 (5) | C21—H21B | 0.9600 |
C4—H4 | 0.9300 | C21—H21C | 0.9600 |
C5—C6 | 1.403 (5) | C22—H22A | 0.9600 |
C6—C7 | 1.372 (5) | C22—H22B | 0.9600 |
C6—C9 | 1.507 (5) | C22—H22C | 0.9600 |
N5—Co1—N2 | 140.51 (11) | C6—C9—H9B | 109.5 |
N5—Co1—N1 | 94.22 (11) | H9A—C9—H9B | 109.5 |
N2—Co1—N1 | 60.40 (11) | C6—C9—H9C | 109.5 |
N5—Co1—Cl2 | 100.61 (9) | H9A—C9—H9C | 109.5 |
N2—Co1—Cl2 | 109.61 (8) | H9B—C9—H9C | 109.5 |
N1—Co1—Cl2 | 92.55 (8) | C8—C10—H10A | 109.5 |
N5—Co1—Cl1 | 103.03 (8) | C8—C10—H10B | 109.5 |
N2—Co1—Cl1 | 97.99 (8) | H10A—C10—H10B | 109.5 |
N1—Co1—Cl1 | 158.32 (8) | C8—C10—H10C | 109.5 |
Cl2—Co1—Cl1 | 96.99 (4) | H10A—C10—H10C | 109.5 |
N5—Co1—N4 | 58.85 (10) | H10B—C10—H10C | 109.5 |
N2—Co1—N4 | 88.79 (10) | N4—C11—N5 | 111.7 (3) |
N1—Co1—N4 | 88.66 (10) | N4—C11—C15 | 124.9 (3) |
Cl2—Co1—N4 | 159.45 (8) | N5—C11—C15 | 123.4 (3) |
Cl1—Co1—N4 | 89.14 (8) | N6—C12—N5 | 118.9 (3) |
C8—N1—C1 | 117.8 (3) | N6—C12—C13 | 121.1 (4) |
C8—N1—Co1 | 152.4 (3) | N5—C12—C13 | 119.9 (4) |
C1—N1—Co1 | 89.8 (2) | C14—C13—C12 | 120.4 (4) |
C2—N2—C1 | 119.8 (3) | C14—C13—H13 | 119.8 |
C2—N2—Co1 | 141.9 (3) | C12—C13—H13 | 119.8 |
C1—N2—Co1 | 98.2 (2) | C13—C14—C15 | 121.1 (4) |
C2—N3—H3A | 120.0 | C13—C14—H14 | 119.5 |
C2—N3—H3B | 120.0 | C15—C14—H14 | 119.5 |
H3A—N3—H3B | 120.0 | C16—C15—C14 | 127.9 (4) |
C18—N4—C11 | 117.6 (3) | C16—C15—C11 | 116.2 (4) |
C18—N4—Co1 | 154.6 (3) | C14—C15—C11 | 115.9 (4) |
C11—N4—Co1 | 87.8 (2) | C17—C16—C15 | 118.5 (4) |
C12—N5—C11 | 119.3 (3) | C17—C16—C19 | 120.5 (4) |
C12—N5—Co1 | 139.0 (3) | C15—C16—C19 | 120.9 (4) |
C11—N5—Co1 | 101.6 (2) | C16—C17—C18 | 121.3 (4) |
C12—N6—H6A | 120.0 | C16—C17—H17 | 119.3 |
C12—N6—H6B | 120.0 | C18—C17—H17 | 119.3 |
H6A—N6—H6B | 120.0 | N4—C18—C17 | 121.5 (4) |
C21—O1—H1 | 109.5 | N4—C18—C20 | 117.6 (4) |
C22—O2—H2 | 109.5 | C17—C18—C20 | 120.9 (4) |
N1—C1—N2 | 111.5 (3) | C16—C19—H19A | 109.5 |
N1—C1—C5 | 124.7 (3) | C16—C19—H19B | 109.5 |
N2—C1—C5 | 123.8 (3) | H19A—C19—H19B | 109.5 |
N2—C2—N3 | 119.8 (3) | C16—C19—H19C | 109.5 |
N2—C2—C3 | 119.9 (4) | H19A—C19—H19C | 109.5 |
N3—C2—C3 | 120.3 (3) | H19B—C19—H19C | 109.5 |
C4—C3—C2 | 120.2 (4) | C18—C20—H20A | 109.5 |
C4—C3—H3 | 119.9 | C18—C20—H20B | 109.5 |
C2—C3—H3 | 119.9 | H20A—C20—H20B | 109.5 |
C3—C4—C5 | 120.8 (3) | C18—C20—H20C | 109.5 |
C3—C4—H4 | 119.6 | H20A—C20—H20C | 109.5 |
C5—C4—H4 | 119.6 | H20B—C20—H20C | 109.5 |
C1—C5—C6 | 117.0 (3) | O1—C21—H21A | 109.5 |
C1—C5—C4 | 115.5 (3) | O1—C21—H21B | 109.5 |
C6—C5—C4 | 127.5 (3) | H21A—C21—H21B | 109.5 |
C7—C6—C5 | 117.7 (3) | O1—C21—H21C | 109.5 |
C7—C6—C9 | 120.5 (4) | H21A—C21—H21C | 109.5 |
C5—C6—C9 | 121.8 (4) | H21B—C21—H21C | 109.5 |
C6—C7—C8 | 121.6 (4) | O2—C22—H22A | 109.5 |
C6—C7—H7 | 119.2 | O2—C22—H22B | 109.5 |
C8—C7—H7 | 119.2 | H22A—C22—H22B | 109.5 |
N1—C8—C7 | 121.2 (4) | O2—C22—H22C | 109.5 |
N1—C8—C10 | 117.7 (4) | H22A—C22—H22C | 109.5 |
C7—C8—C10 | 121.1 (4) | H22B—C22—H22C | 109.5 |
C6—C9—H9A | 109.5 | ||
N5—Co1—N1—C8 | 32.8 (5) | N3—C2—C3—C4 | 179.3 (4) |
N2—Co1—N1—C8 | −179.2 (6) | C2—C3—C4—C5 | −0.4 (6) |
Cl2—Co1—N1—C8 | −68.0 (5) | N1—C1—C5—C6 | −0.3 (5) |
Cl1—Co1—N1—C8 | 175.7 (4) | N2—C1—C5—C6 | −180.0 (3) |
N4—Co1—N1—C8 | 91.4 (5) | N1—C1—C5—C4 | 179.6 (3) |
N5—Co1—N1—C1 | −146.2 (2) | N2—C1—C5—C4 | −0.1 (5) |
N2—Co1—N1—C1 | 1.79 (19) | C3—C4—C5—C1 | 0.6 (5) |
Cl2—Co1—N1—C1 | 112.95 (19) | C3—C4—C5—C6 | −179.6 (4) |
Cl1—Co1—N1—C1 | −3.3 (3) | C1—C5—C6—C7 | 1.5 (5) |
N4—Co1—N1—C1 | −87.6 (2) | C4—C5—C6—C7 | −178.3 (4) |
N5—Co1—N2—C2 | −121.2 (4) | C1—C5—C6—C9 | −178.5 (3) |
N1—Co1—N2—C2 | −177.4 (4) | C4—C5—C6—C9 | 1.7 (6) |
Cl2—Co1—N2—C2 | 101.1 (4) | C5—C6—C7—C8 | −0.8 (6) |
Cl1—Co1—N2—C2 | 0.7 (4) | C9—C6—C7—C8 | 179.2 (4) |
N4—Co1—N2—C2 | −88.3 (4) | C1—N1—C8—C7 | 2.6 (5) |
N5—Co1—N2—C1 | 54.4 (3) | Co1—N1—C8—C7 | −176.3 (4) |
N1—Co1—N2—C1 | −1.79 (19) | C1—N1—C8—C10 | −176.5 (3) |
Cl2—Co1—N2—C1 | −83.3 (2) | Co1—N1—C8—C10 | 4.6 (7) |
Cl1—Co1—N2—C1 | 176.32 (19) | C6—C7—C8—N1 | −1.4 (6) |
N4—Co1—N2—C1 | 87.4 (2) | C6—C7—C8—C10 | 177.7 (4) |
N5—Co1—N4—C18 | 178.9 (6) | C18—N4—C11—N5 | −179.3 (3) |
N2—Co1—N4—C18 | 22.7 (6) | Co1—N4—C11—N5 | 0.3 (3) |
N1—Co1—N4—C18 | 83.1 (6) | C18—N4—C11—C15 | −1.1 (5) |
Cl2—Co1—N4—C18 | 176.8 (5) | Co1—N4—C11—C15 | 178.5 (3) |
Cl1—Co1—N4—C18 | −75.3 (6) | C12—N5—C11—N4 | 178.6 (3) |
N5—Co1—N4—C11 | −0.21 (19) | Co1—N5—C11—N4 | −0.4 (3) |
N2—Co1—N4—C11 | −156.4 (2) | C12—N5—C11—C15 | 0.4 (5) |
N1—Co1—N4—C11 | −96.0 (2) | Co1—N5—C11—C15 | −178.6 (3) |
Cl2—Co1—N4—C11 | −2.3 (3) | C11—N5—C12—N6 | −178.3 (3) |
Cl1—Co1—N4—C11 | 105.60 (19) | Co1—N5—C12—N6 | 0.1 (6) |
N2—Co1—N5—C12 | −138.9 (3) | C11—N5—C12—C13 | 1.4 (5) |
N1—Co1—N5—C12 | −92.5 (4) | Co1—N5—C12—C13 | 179.8 (3) |
Cl2—Co1—N5—C12 | 0.9 (4) | N6—C12—C13—C14 | 177.9 (4) |
Cl1—Co1—N5—C12 | 100.7 (4) | N5—C12—C13—C14 | −1.8 (6) |
N4—Co1—N5—C12 | −178.4 (4) | C12—C13—C14—C15 | 0.4 (6) |
N2—Co1—N5—C11 | 39.7 (3) | C13—C14—C15—C16 | −179.6 (4) |
N1—Co1—N5—C11 | 86.1 (2) | C13—C14—C15—C11 | 1.2 (6) |
Cl2—Co1—N5—C11 | 179.49 (19) | N4—C11—C15—C16 | 1.0 (5) |
Cl1—Co1—N5—C11 | −80.7 (2) | N5—C11—C15—C16 | 179.0 (3) |
N4—Co1—N5—C11 | 0.22 (19) | N4—C11—C15—C14 | −179.6 (3) |
C8—N1—C1—N2 | 177.9 (3) | N5—C11—C15—C14 | −1.7 (5) |
Co1—N1—C1—N2 | −2.6 (3) | C14—C15—C16—C17 | 179.9 (4) |
C8—N1—C1—C5 | −1.8 (5) | C11—C15—C16—C17 | −0.9 (5) |
Co1—N1—C1—C5 | 177.6 (3) | C14—C15—C16—C19 | 2.1 (6) |
C2—N2—C1—N1 | 179.8 (3) | C11—C15—C16—C19 | −178.7 (3) |
Co1—N2—C1—N1 | 2.9 (3) | C15—C16—C17—C18 | 0.9 (6) |
C2—N2—C1—C5 | −0.5 (5) | C19—C16—C17—C18 | 178.7 (4) |
Co1—N2—C1—C5 | −177.4 (3) | C11—N4—C18—C17 | 0.9 (5) |
C1—N2—C2—N3 | −178.9 (3) | Co1—N4—C18—C17 | −178.0 (4) |
Co1—N2—C2—N3 | −3.9 (6) | C11—N4—C18—C20 | −179.5 (4) |
C1—N2—C2—C3 | 0.7 (5) | Co1—N4—C18—C20 | 1.6 (8) |
Co1—N2—C2—C3 | 175.7 (3) | C16—C17—C18—N4 | −0.9 (6) |
N2—C2—C3—C4 | −0.2 (6) | C16—C17—C18—C20 | 179.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···Cl1i | 0.82 | 2.35 | 3.162 (4) | 172 |
O1—H1···Cl1ii | 0.82 | 2.44 | 3.194 (4) | 154 |
N6—H6B···O2iii | 0.86 | 2.06 | 2.918 (4) | 175 |
N6—H6A···Cl2 | 0.86 | 2.45 | 3.269 (4) | 159 |
N3—H3B···O1iv | 0.86 | 2.09 | 2.947 (4) | 175 |
N3—H3A···Cl1 | 0.86 | 2.51 | 3.309 (3) | 156 |
C22—H22B···C17i | 0.96 | 2.91 | 3.789 (7) | 154 |
C22—H22B···C18i | 0.96 | 2.71 | 3.575 (6) | 150 |
C4—H4···Cl2v | 0.93 | 2.85 | 3.705 (4) | 153 |
C7—H7···Cl1vi | 0.93 | 2.87 | 3.757 (4) | 160 |
C13—H13···Cl1ii | 0.93 | 2.88 | 3.733 (4) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x+2, −y+2, −z; (vi) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [CoCl2(C10H11N3)2]·2CH4O |
Mr | 540.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.694 (3), 10.651 (3), 14.154 (4) |
α, β, γ (°) | 79.523 (4), 78.548 (4), 65.697 (4) |
V (Å3) | 1297.2 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.27 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.794, 0.855 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6885, 4521, 2999 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.125, 1.04 |
No. of reflections | 4521 |
No. of parameters | 300 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.27 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···Cl1i | 0.82 | 2.35 | 3.162 (4) | 172.2 |
O1—H1···Cl1ii | 0.82 | 2.44 | 3.194 (4) | 153.7 |
N6—H6B···O2iii | 0.86 | 2.06 | 2.918 (4) | 174.6 |
N6—H6A···Cl2 | 0.86 | 2.45 | 3.269 (4) | 159.0 |
N3—H3B···O1iv | 0.86 | 2.09 | 2.947 (4) | 174.8 |
N3—H3A···Cl1 | 0.86 | 2.51 | 3.309 (3) | 155.9 |
C22—H22B···C17i | 0.96 | 2.91 | 3.789 (7) | 153.6 |
C22—H22B···C18i | 0.96 | 2.71 | 3.575 (6) | 149.8 |
C4—H4···Cl2v | 0.93 | 2.85 | 3.705 (4) | 153.2 |
C7—H7···Cl1vi | 0.93 | 2.87 | 3.757 (4) | 159.8 |
C13—H13···Cl1ii | 0.93 | 2.88 | 3.733 (4) | 152.3 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y, z−1; (v) −x+2, −y+2, −z; (vi) x, y+1, z. |
Acknowledgements
The authors thank the Zhejiang Forestry University Science Foundation for financial support.
References
Bayer, J. W. (1979). US Patent 4 169 092, 1–14. Google Scholar
Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Che, C. M., Wan, C. W., Hoa, K. Y. & Zhou, Z. Y. (2001). New J. Chem. 25, 63–65. Web of Science CSD CrossRef CAS Google Scholar
Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383. Web of Science CrossRef PubMed CAS Google Scholar
Harvey, B. G., Arif, A. M. & Ernst, R. D. (2004). Polyhedron, 23, 2725–2731. Web of Science CSD CrossRef CAS Google Scholar
Jin, S. W., Liu, B. & Chen, W. Z. (2007). Chin. J. Struct. Chem. 26, 287–290. CAS Google Scholar
Kukrek, A., Wang, D., Hou, Y. J., Zong, R. F. & Thummel, R. (2006). Inorg. Chem. 45, 10131–10137. Web of Science CrossRef PubMed CAS Google Scholar
Mintert, M. & Sheldrick, W. S. (1995a). Inorg. Chim. Acta, 236, 13–20. CrossRef CAS Web of Science Google Scholar
Mintert, M. & Sheldrick, W. S. (1995b). J. Chem. Soc. Dalton Trans. pp. 2663–2669. CSD CrossRef Web of Science Google Scholar
Oskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72–81. Web of Science CSD CrossRef CAS Google Scholar
Oskui, B. & Sheldrick, W. S. (1999). Eur. J. Inorg. Chem. pp. 1325–1328. CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention (Kukrek et al., 2006; Che et al., 2001) as the ligands can link to metals via several coordination modes such as monodentate, chelating bidentate, and in a dinuclear bridging fashion (Gavrilova & Bosnich, 2004). 5,7-Dimethyl-1,8-naphthyridin-2-amine is a potentially tridentate ligand and is capable of linking two to four metal atoms together to form metal aggregates (Oskui et al., 1999; Mintert & Sheldrick, 1995a; Oskui & Sheldrick, 1999; Mintert & Sheldrick, 1995b). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (L) has not been well studied before although a Co(II) complex (Co(L)2Cl2) was once described in a US patent (Bayer, 1979). As an extension of our study on naphthyridine coordination chemistry (Jin et al., 2007), herein we report the synthesis and structure of the title complex as its bis methanol solvate, (Co(L)2(Cl)2).2(CH3OH).
The title compound was obtained as violet crystals by reacting cobalt chloride hexahydrate and L in methanol. The compound is air stable and light insensitive, and does not dissolve in water and most organic solvents. X-ray structural analysis shows that the complex is mononuclear, its molecular structure is shown in Fig. 1. The Co atom is positioned on an inversion center and is bonded to two L ligands and two chloride ions. Both of the two ligands coordinate to the metal center via two nitrogen atoms in a bidentate chelating fashion. The two chloride anions coordinated to the Co ion complete a very distorted octahedral geometry. With a N—Co—N bite angle of only 58.86 (11), and 60.39 (11) ° the structure can also be seen as a pseudotetrahedral complex with each of the naphthyridine ligands L counted as a singly bonded entity. The N—Co—N angle is of necessity quite small, thereby allowing for the Cl(2)—Co(1)—Cl(1) angle to expand to 96.99 (5) °. Perhaps as a result of the smaller spatial requirements of the chelating naphthyridine, the chloride ions are in cis-arrangement which is different from reported results (Harvey et al., 2004).
The two naphthyridine rings are basically planar with an r.m.s. deviation of only 0.0098, and 0.0183 ° respectively, and both ligands are almost perpendicular to each other with an angle between the root mean square planes of the two ligands of 85.4 °.
The free methanol molecules are connected to the (Co(L)2(Cl)2) moieties via O—H···Cl and N—H···O hydrogen bonds, and the (Co(L)2(Cl)2) moieties themselves are connected with each other by N—H···Cl hydrogen bonds (see Table 1). The closest C—C distance between adjacent parallel naphthyridyl rings is 3.378 (4) Å, the corresponding centroid to centroid distance for the naphthyridyl rings is 3.664 Å, which implies the presence of π-π stacking interactions between the naphthyridyl rings. Via all these interactions the compound forms a three-dimensional network structure as shown in Fig. 2.