organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro-2-nitro-1-phenyl­prop­yl)-4-methyl­benzene­sulfonamide

aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: jchyzhi2003@126.com

(Received 29 November 2007; accepted 19 December 2007; online 4 January 2008)

In the title compound, C16H17ClN2O4S, the dihedral angle between the phenyl and benzene rings is 19.4 (2)°. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds, as well as by intra- and inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background, see Kemp (1991[Kemp, J. E. G. (1991). Comprehensive Organic Synthesis, Vol. 3, edited by B. M. Trost & I. Fleming, pp. 469-513. Oxford: Pergamon Press.]); Qui & Silverman (2000[Qui, J. & Silverman, R. B. (2000). J. Med. Chem. 43, 706-720.]); Orlek & Stemp (1991[Orlek, B. S. & Stemp, G. (1991). Tetrahedron Lett. 32, 4045-4048.]), Han et al. (2007[Han, J., Zhi, S., Wang, L., Pan, Y. & Li, G. (2007). Eur. J. Org. Chem. pp. 1332-1337.]); Li et al. (2007[Li, G., Saibabu, K. S. R. S. & Timmons, C. (2007). Eur. J. Org. Chem. pp. 2745-2758.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClN2O4S

  • Mr = 368.83

  • Orthorhombic, P b c a

  • a = 7.8254 (8) Å

  • b = 19.610 (2) Å

  • c = 22.533 (3) Å

  • V = 3457.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.921

  • 17527 measured reflections

  • 3396 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.125

  • S = 1.01

  • 3396 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.98 2.46 2.933 (4) 109
C3—H3⋯O3 0.98 2.42 2.779 (4) 101
C1—H1A⋯O2i 0.96 2.52 3.369 (4) 147
C1—H1B⋯O1ii 0.96 2.58 3.310 (4) 133
N2—H2A⋯O2i 0.89 (2) 2.32 (3) 3.141 (3) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Since the vicinal haloamines are important building blocks in organic and medicinal chemistry, many attentions are attracted to the aminohalogenation reactions of functionalized alkenes (Kemp, 1991; Qui & Silverman, 2000). In recent years, many new aminohalogenation processes of several kinds of functionalized alkenes have been developed (Han et al., 2007), with the different nitrogen/halogen sources in the presence of metallic catalysts (Li et al., 2007). However, the aminohalogenation reactions of 2-nitro-propenyl benzene was not been well documented. Recently, we synthesized the title compound (I) from 2-nitro-propenyl benzene. As part of this study, we have undertaken the X-ray crystallographic analysis of (I) in order to elucidate the conformation and configuration of this product.

The bond lengths and angles in (I) are in good agree with expected values (Allen et al., 1987). The dihedral angle between the phenyl and benzene rings is 19.4 (2)°. The packing is stabilized by intermolecular N—H···O as well as intra and intermolecular C—H···O interactions in the crystal structure (Table 1).

Related literature top

For general background, see Kemp (1991); Qui & Silverman (2000); Orlek & Stemp (1991), Han et al. (2007); Li et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

N-cChlorosuccinimide (400 mg, 3.0 mmol) was added into a solution of MnSO4 (30.2 mg, 0.20 mmol), 1-benzyl-2-nitro-propene (163 mg, 1 mmol), tolunesulfonamide (513 mg, 3 mmol) and 4 Å molecular sieves (500 mg) in CH2Cl2 (5.0 ml) with nitrogen atmosphere. The resulting mixture was stirred at room temperature for 48 h. Reaction was quenched with saturated aqueous Na2S2O3 solution. The solid precipitates were filtered off and washed with ethyl acetate (3 × 10 ml). The organic solution was concentrated and then purified via flash chromatography (ethyl acetate/ hexane, 1:4, v/v) provide the title compound (I) as white solid (276 mg) in yield of 75%. A colourless crystal of (I) for X-ray analysis was obtained by slow evaporation from ethyl acetate solution system.

Refinement top

The H atom bonded to N was located in a difference map and refined with restraint of N—H = 0.89 (3) Å, and with Uiso(H) = 1.2Ueq(N). Other H atoms were geometrically placed and were treated as riding, with C—H distances of 0.93, 0.96 and 0.98 Å for aromatic, methyl and methine H atoms, respectively, and with Uiso(H) = 1.2Ueq(aromatic and methyne C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
N-(2-Chloro-2-nitro-1-phenylpropyl)-4-methylbenzenesulfonamide top
Crystal data top
C16H17ClN2O4SDx = 1.417 Mg m3
Mr = 368.83Melting point: 423.2 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7468 reflections
a = 7.8254 (8) Åθ = 2.3–27.9°
b = 19.610 (2) ŵ = 0.36 mm1
c = 22.533 (3) ÅT = 291 K
V = 3457.8 (7) Å3Block, colourless
Z = 80.30 × 0.26 × 0.24 mm
F(000) = 1536
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3396 independent reflections
Radiation source: sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.901, Tmax = 0.921k = 2424
17527 measured reflectionsl = 1627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 0.58P]
where P = (Fo2 + 2Fc2)/3
3396 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H17ClN2O4SV = 3457.8 (7) Å3
Mr = 368.83Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8254 (8) ŵ = 0.36 mm1
b = 19.610 (2) ÅT = 291 K
c = 22.533 (3) Å0.30 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3396 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2467 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.921Rint = 0.070
17527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
3396 reflectionsΔρmin = 0.26 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7916 (4)0.10320 (17)0.61740 (13)0.0374 (7)
H1A0.77090.10300.65940.056*
H1B0.86060.14200.60720.056*
H1C0.85030.06210.60640.056*
C20.6185 (4)0.10723 (16)0.58376 (13)0.0333 (7)
C30.5059 (4)0.16923 (14)0.59888 (13)0.0292 (6)
H30.39950.16450.57630.035*
C40.5853 (3)0.23727 (15)0.58138 (13)0.0293 (6)
C50.5405 (4)0.26704 (17)0.52790 (13)0.0362 (7)
H50.46510.24450.50280.043*
C60.6055 (4)0.32954 (17)0.51103 (14)0.0415 (8)
H60.57650.34840.47450.050*
C70.7156 (4)0.36407 (18)0.54968 (15)0.0437 (8)
H70.75700.40700.53960.052*
C80.7623 (4)0.33466 (18)0.60226 (15)0.0444 (8)
H80.83810.35720.62730.053*
C90.6972 (4)0.27113 (17)0.61859 (14)0.0414 (8)
H90.72900.25160.65450.050*
C100.3185 (3)0.28495 (15)0.69070 (12)0.0314 (6)
C110.2653 (4)0.32776 (18)0.64579 (14)0.0402 (7)
H110.20850.30990.61310.048*
C120.2959 (5)0.39679 (18)0.64904 (15)0.0465 (8)
H120.26010.42520.61840.056*
C130.3804 (4)0.42454 (18)0.69822 (14)0.0419 (8)
C140.4350 (4)0.38054 (17)0.74268 (15)0.0423 (8)
H140.49390.39800.77510.051*
C150.4037 (4)0.31171 (16)0.73966 (13)0.0349 (7)
H150.43920.28310.77020.042*
C160.4064 (4)0.49975 (18)0.70326 (17)0.0491 (9)
H16A0.32410.51840.73040.074*
H16B0.39220.52040.66500.074*
H16C0.51960.50870.71770.074*
Cl10.65350 (9)0.10276 (4)0.50665 (3)0.03580 (19)
N10.5083 (4)0.04372 (13)0.59707 (12)0.0407 (6)
N20.4620 (3)0.16217 (13)0.66251 (11)0.0334 (6)
H2A0.547 (4)0.1794 (17)0.6841 (15)0.040*
O10.1557 (3)0.18367 (12)0.64347 (10)0.0439 (6)
O20.2635 (3)0.17162 (12)0.74582 (9)0.0432 (6)
O30.3667 (3)0.04155 (12)0.57591 (12)0.0547 (7)
O40.5674 (3)0.00057 (13)0.62846 (12)0.0595 (7)
S10.28433 (9)0.19677 (4)0.68662 (3)0.03081 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (16)0.0483 (18)0.0233 (14)0.0236 (14)0.0020 (12)0.0033 (14)
C20.0365 (16)0.0373 (16)0.0261 (14)0.0020 (13)0.0056 (12)0.0015 (13)
C30.0296 (15)0.0309 (14)0.0270 (14)0.0002 (12)0.0055 (11)0.0002 (12)
C40.0267 (14)0.0322 (15)0.0290 (15)0.0027 (11)0.0033 (12)0.0024 (12)
C50.0344 (15)0.0448 (17)0.0295 (15)0.0005 (14)0.0042 (12)0.0001 (13)
C60.056 (2)0.0446 (19)0.0242 (16)0.0022 (15)0.0026 (14)0.0134 (14)
C70.0534 (19)0.0383 (18)0.0393 (19)0.0083 (15)0.0079 (15)0.0100 (15)
C80.0513 (19)0.0471 (19)0.0349 (18)0.0214 (16)0.0037 (15)0.0031 (15)
C90.0496 (18)0.0467 (19)0.0279 (15)0.0154 (15)0.0060 (14)0.0084 (14)
C100.0265 (14)0.0402 (17)0.0275 (15)0.0008 (12)0.0057 (11)0.0011 (12)
C110.0452 (17)0.0461 (19)0.0293 (16)0.0124 (14)0.0042 (14)0.0062 (14)
C120.059 (2)0.0433 (19)0.0368 (18)0.0120 (16)0.0016 (16)0.0137 (16)
C130.0474 (19)0.0432 (18)0.0350 (17)0.0008 (14)0.0099 (14)0.0068 (15)
C140.0435 (18)0.0471 (19)0.0363 (17)0.0077 (14)0.0042 (14)0.0025 (15)
C150.0373 (15)0.0392 (16)0.0281 (15)0.0009 (13)0.0026 (12)0.0021 (13)
C160.0394 (17)0.050 (2)0.058 (2)0.0181 (15)0.0056 (17)0.0087 (18)
Cl10.0403 (4)0.0396 (4)0.0275 (4)0.0017 (3)0.0128 (3)0.0108 (3)
N10.0507 (17)0.0366 (15)0.0347 (15)0.0014 (13)0.0048 (13)0.0007 (12)
N20.0326 (13)0.0325 (14)0.0351 (15)0.0000 (10)0.0028 (11)0.0005 (11)
O10.0323 (10)0.0607 (15)0.0387 (12)0.0070 (10)0.0006 (10)0.0059 (11)
O20.0565 (14)0.0451 (13)0.0281 (11)0.0041 (10)0.0182 (11)0.0042 (10)
O30.0564 (15)0.0482 (14)0.0597 (17)0.0259 (12)0.0007 (13)0.0081 (12)
O40.0644 (16)0.0474 (15)0.0667 (18)0.0107 (12)0.0152 (14)0.0303 (14)
S10.0299 (3)0.0364 (4)0.0261 (4)0.0028 (3)0.0059 (3)0.0004 (3)
Geometric parameters (Å, º) top
C1—C21.555 (4)C10—C111.379 (4)
C1—H1A0.9600C10—C151.392 (4)
C1—H1B0.9600C10—S11.752 (3)
C1—H1C0.9600C11—C121.377 (5)
C2—C31.539 (4)C11—H110.9300
C2—N11.544 (4)C12—C131.400 (5)
C2—Cl11.761 (3)C12—H120.9300
C3—N21.481 (4)C13—C141.390 (5)
C3—C41.524 (4)C13—C161.493 (5)
C3—H30.9800C14—C151.373 (4)
C4—C91.382 (4)C14—H140.9300
C4—C51.384 (4)C15—H150.9300
C5—C61.380 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.400 (5)C16—H16C0.9600
C6—H60.9300N1—O31.207 (3)
C7—C81.367 (5)N1—O41.212 (3)
C7—H70.9300N2—S11.639 (3)
C8—C91.395 (4)N2—H2A0.89 (3)
C8—H80.9300O1—S11.423 (2)
C9—H90.9300O2—S11.432 (2)
C2—C1—H1A109.5C11—C10—C15119.8 (3)
C2—C1—H1B109.5C11—C10—S1121.1 (2)
H1A—C1—H1B109.5C15—C10—S1119.1 (2)
C2—C1—H1C109.5C12—C11—C10120.5 (3)
H1A—C1—H1C109.5C12—C11—H11119.8
H1B—C1—H1C109.5C10—C11—H11119.8
C3—C2—N1105.9 (2)C11—C12—C13120.4 (3)
C3—C2—C1115.5 (2)C11—C12—H12119.8
N1—C2—C1110.5 (2)C13—C12—H12119.8
C3—C2—Cl1110.3 (2)C14—C13—C12118.3 (3)
N1—C2—Cl1103.78 (19)C14—C13—C16121.1 (3)
C1—C2—Cl1110.1 (2)C12—C13—C16120.6 (3)
N2—C3—C4115.3 (2)C15—C14—C13121.3 (3)
N2—C3—C2105.9 (2)C15—C14—H14119.3
C4—C3—C2113.6 (2)C13—C14—H14119.3
N2—C3—H3107.2C14—C15—C10119.7 (3)
C4—C3—H3107.2C14—C15—H15120.2
C2—C3—H3107.2C10—C15—H15120.2
C9—C4—C5119.1 (3)C13—C16—H16A109.5
C9—C4—C3121.5 (3)C13—C16—H16B109.5
C5—C4—C3119.4 (3)H16A—C16—H16B109.5
C6—C5—C4121.4 (3)C13—C16—H16C109.5
C6—C5—H5119.3H16A—C16—H16C109.5
C4—C5—H5119.3H16B—C16—H16C109.5
C5—C6—C7119.0 (3)O3—N1—O4123.8 (3)
C5—C6—H6120.5O3—N1—C2117.7 (3)
C7—C6—H6120.5O4—N1—C2118.6 (3)
C8—C7—C6120.0 (3)C3—N2—S1118.6 (2)
C8—C7—H7120.0C3—N2—H2A109 (2)
C6—C7—H7120.0S1—N2—H2A107 (2)
C7—C8—C9120.5 (3)O1—S1—O2119.59 (14)
C7—C8—H8119.8O1—S1—N2107.37 (14)
C9—C8—H8119.8O2—S1—N2105.25 (14)
C4—C9—C8120.0 (3)O1—S1—C10108.79 (14)
C4—C9—H9120.0O2—S1—C10107.97 (14)
C8—C9—H9120.0N2—S1—C10107.24 (13)
N1—C2—C3—N259.6 (3)C12—C13—C14—C151.7 (5)
C1—C2—C3—N263.2 (3)C16—C13—C14—C15176.7 (3)
Cl1—C2—C3—N2171.28 (19)C13—C14—C15—C101.2 (5)
N1—C2—C3—C4172.9 (2)C11—C10—C15—C140.4 (4)
C1—C2—C3—C464.4 (3)S1—C10—C15—C14178.4 (2)
Cl1—C2—C3—C461.2 (3)C3—C2—N1—O350.9 (3)
N2—C3—C4—C936.7 (4)C1—C2—N1—O3176.7 (3)
C2—C3—C4—C985.7 (3)Cl1—C2—N1—O365.3 (3)
N2—C3—C4—C5141.2 (3)C3—C2—N1—O4128.4 (3)
C2—C3—C4—C596.3 (3)C1—C2—N1—O42.5 (4)
C9—C4—C5—C60.2 (5)Cl1—C2—N1—O4115.5 (3)
C3—C4—C5—C6178.1 (3)C4—C3—N2—S180.2 (3)
C4—C5—C6—C71.6 (5)C2—C3—N2—S1153.3 (2)
C5—C6—C7—C82.4 (5)C3—N2—S1—O141.9 (3)
C6—C7—C8—C91.8 (5)C3—N2—S1—O2170.3 (2)
C5—C4—C9—C80.5 (5)C3—N2—S1—C1074.9 (2)
C3—C4—C9—C8177.4 (3)C11—C10—S1—O118.0 (3)
C7—C8—C9—C40.4 (5)C15—C10—S1—O1163.2 (2)
C15—C10—C11—C120.0 (5)C11—C10—S1—O2149.2 (2)
S1—C10—C11—C12178.8 (3)C15—C10—S1—O232.0 (3)
C10—C11—C12—C130.4 (5)C11—C10—S1—N297.8 (3)
C11—C12—C13—C141.2 (5)C15—C10—S1—N280.9 (2)
C11—C12—C13—C16177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.982.462.933 (4)109
C3—H3···O30.982.422.779 (4)101
C1—H1A···O2i0.962.523.369 (4)147
C1—H1B···O1ii0.962.583.310 (4)133
N2—H2A···O2i0.89 (2)2.32 (3)3.141 (3)153
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17ClN2O4S
Mr368.83
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)7.8254 (8), 19.610 (2), 22.533 (3)
V3)3457.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.901, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
17527, 3396, 2467
Rint0.070
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.125, 1.01
No. of reflections3396
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.982.462.933 (4)109
C3—H3···O30.982.422.779 (4)101
C1—H1A···O2i0.962.523.369 (4)147
C1—H1B···O1ii0.962.583.310 (4)133
N2—H2A···O2i0.89 (2)2.32 (3)3.141 (3)153
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the 863 High Technology Program (to YP). The research funds for YP from the Qing-Lan Program of Jiangsu Province and the Kua-Shi-Ji Program of the Education Ministry of China are also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J., Zhi, S., Wang, L., Pan, Y. & Li, G. (2007). Eur. J. Org. Chem. pp. 1332–1337.  Web of Science CSD CrossRef Google Scholar
First citationKemp, J. E. G. (1991). Comprehensive Organic Synthesis, Vol. 3, edited by B. M. Trost & I. Fleming, pp. 469–513. Oxford: Pergamon Press.  Google Scholar
First citationLi, G., Saibabu, K. S. R. S. & Timmons, C. (2007). Eur. J. Org. Chem. pp. 2745–2758.  Web of Science CrossRef Google Scholar
First citationOrlek, B. S. & Stemp, G. (1991). Tetrahedron Lett. 32, 4045–4048.  CrossRef CAS Web of Science Google Scholar
First citationQui, J. & Silverman, R. B. (2000). J. Med. Chem. 43, 706–720.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds