organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Bi­phenyl-4-ylcarbon­yl)-N′-(2-pyridylmeth­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and bHEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: sammer_yousuf@yahoo.com

(Received 29 November 2007; accepted 18 December 2007; online 4 January 2008)

In the title compound, C20H17N3OS, the dihedral angle between the benzene rings of the biphenyl fragment is 36.84 (9)°. The transcis geometry of the thio­urea unit is stabilized by intra­molecular N—H⋯O and N—H⋯N hydrogen bonds between the H atom of the cis thio­amide and the carbonyl O and pyridine N atoms, respectively. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds form centrosymmetric dimers extending along the b axis.

Related literature

For the crystal structure of the biphenyl-4-carbonyl­thio­urea analogue, see: Arif & Yamin (2007[Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3OS

  • Mr = 347.43

  • Triclinic, [P \overline 1]

  • a = 7.467 (2) Å

  • b = 9.364 (2) Å

  • c = 13.184 (3) Å

  • α = 101.529 (5)°

  • β = 99.113 (4)°

  • γ = 101.543 (5)°

  • V = 865.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 273 (2) K

  • 0.45 × 0.37 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.965

  • 8243 measured reflections

  • 3036 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.05

  • 3036 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.99 2.6681 (19) 135
N2—H2⋯N3 0.86 2.24 2.6488 (19) 109
N1—H1⋯S1i 0.86 2.79 3.4759 (17) 138
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), analogous to N-(biphenyl-4-carbonyl)-N'- (2-chlorophenyl)thiourea (II) (Arif & Yamin, 2007) except the 2-chlorobenzene group is replaced by the 2-methyl-pyridine group (Fig.1). The molecule maintains its trans-cis configuration with respect to the position of the biphenyl-4-carbonyl and 2-methyl-pyridin groups relative the thiono sulfur atom across the C14—N1 and C14—N2 bonds, respectively. Other bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II). However, the dihedral angle between the benzene rings of the biphenyl fragment, (C1—C6) and (C7—C12) of 36,84 (9)° is larger than that (20.71 (17)°) in (II). Both the central C13/O1/N1/C14/S1/N2/C15 fragment and pyridine ring (N3/C16—C20), are planar with a maximum deviation of 0.032 (2)Å for atom N1 atom from the least square plane of the central fragment. The central fragment makes dihedral angles with the (C7—C12) benzene and (N3/C16—C20) pyridine rings of 16.39 (8) and 13.21 (6)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by the relatively strong N2—H2···O1 and a weak N2—H2···N3 intramolecular hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by N1—H1···S1 intermolecular hydrogen bonds to form centrosymmetric dimers and are arranged parallel to b axis (Fig.2). In (II), the molecule is stabilized by van der Waal and π-π interactions.

Related literature top

For the crystal structure of the biphenyl-4-carbonylthiourea analogue, see: (Arif & Yamin, 2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixrure of biphenyl 1–4 carbonyl chloride (5.417 g, 0.025 mol), with the equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 2-picolylamine (2.704 g, 0.025 mol) in 30 ml dry acetone was refluxed with stirring for 4 h. The solution was filtered and left to evaporate at room temperature. The black precipitate obtained after a few days, was washed with water and cold ethanol (80%; m.p 416.4–419.2 K). Suitable crystals for X-ray investigation were obtained byrecrystallization from mixture of dichloromethane and n-Hexane (1:3 v/v).

Refinement top

H atoms on both the C and N atoms were positioned geometrically with C—H = 0.93 - 0.97Å and N—H = 0.86Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the a axis. Hydrogen bonds are shown by dashed lines.
N-(Biphenyl-4-ylcarbonyl)-N'-(2-pyridylmethyl)thiourea top
Crystal data top
C20H17N3OSZ = 2
Mr = 347.43F(000) = 364
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.467 (2) ÅCell parameters from 3740 reflections
b = 9.364 (2) Åθ = 1.6–25.0°
c = 13.184 (3) ŵ = 0.20 mm1
α = 101.529 (5)°T = 273 K
β = 99.113 (4)°Block, colourless
γ = 101.543 (5)°0.45 × 0.37 × 0.18 mm
V = 865.9 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1111
Tmin = 0.915, Tmax = 0.965l = 1515
8243 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1413P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H17N3OSγ = 101.543 (5)°
Mr = 347.43V = 865.9 (4) Å3
Triclinic, P1Z = 2
a = 7.467 (2) ÅMo Kα radiation
b = 9.364 (2) ŵ = 0.20 mm1
c = 13.184 (3) ÅT = 273 K
α = 101.529 (5)°0.45 × 0.37 × 0.18 mm
β = 99.113 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2561 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.965Rint = 0.019
8243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3036 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04886 (8)0.78345 (5)1.01142 (3)0.06855 (19)
O10.0915 (2)0.84641 (13)0.68251 (9)0.0672 (4)
N10.1098 (2)0.91996 (14)0.85943 (10)0.0523 (4)
H10.13300.99850.91060.063*
N20.00553 (19)0.66245 (13)0.80744 (10)0.0481 (3)
H20.01450.67230.74480.058*
N30.09400 (19)0.44728 (14)0.63072 (10)0.0488 (3)
C10.3283 (3)1.20743 (18)0.85384 (13)0.0578 (4)
H1A0.35031.17860.91730.069*
C20.4042 (3)1.35237 (19)0.84981 (13)0.0570 (4)
H2A0.47741.41980.91090.068*
C30.3741 (2)1.40021 (17)0.75677 (12)0.0477 (4)
C40.2679 (2)1.29480 (18)0.66663 (13)0.0500 (4)
H40.24731.32310.60290.060*
C50.1927 (2)1.14970 (18)0.66996 (12)0.0497 (4)
H50.12321.08110.60840.060*
C60.2193 (2)1.10431 (17)0.76401 (12)0.0476 (4)
C70.4562 (2)1.55747 (18)0.75548 (13)0.0515 (4)
C80.4688 (3)1.6749 (2)0.84207 (15)0.0643 (5)
H80.41991.65500.89980.077*
C90.5536 (3)1.8209 (2)0.84273 (18)0.0762 (6)
H90.56161.89860.90090.091*
C100.6255 (3)1.8512 (2)0.7583 (2)0.0830 (7)
H100.68421.94910.75950.100*
C110.6113 (3)1.7377 (2)0.67184 (19)0.0781 (6)
H110.65911.75910.61410.094*
C120.5262 (2)1.5910 (2)0.66975 (15)0.0607 (5)
H120.51621.51470.61040.073*
C130.1346 (2)0.94586 (17)0.76308 (12)0.0500 (4)
C140.0520 (2)0.78342 (16)0.88501 (12)0.0471 (4)
C150.0600 (3)0.51329 (16)0.82179 (12)0.0506 (4)
H15A0.15820.51290.86190.061*
H15B0.04180.48410.86150.061*
C160.1336 (2)0.40249 (16)0.71635 (12)0.0433 (3)
C170.1583 (2)0.34846 (18)0.53719 (13)0.0531 (4)
H170.13120.37840.47710.064*
C180.2621 (2)0.20551 (18)0.52501 (13)0.0556 (4)
H180.30420.14030.45840.067*
C190.3025 (2)0.16096 (18)0.61372 (14)0.0571 (4)
H190.37310.06480.60800.069*
C200.2370 (2)0.26031 (17)0.71097 (13)0.0504 (4)
H200.26190.23220.77210.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1197 (5)0.0465 (3)0.0393 (3)0.0166 (3)0.0220 (2)0.00870 (19)
O10.1052 (10)0.0460 (7)0.0428 (6)0.0006 (6)0.0275 (6)0.0016 (5)
N10.0788 (9)0.0363 (7)0.0391 (7)0.0075 (6)0.0201 (6)0.0027 (5)
N20.0685 (9)0.0363 (7)0.0378 (7)0.0080 (6)0.0155 (6)0.0060 (5)
N30.0621 (8)0.0403 (7)0.0430 (7)0.0081 (6)0.0142 (6)0.0092 (6)
C10.0791 (12)0.0500 (9)0.0405 (9)0.0038 (8)0.0147 (8)0.0118 (7)
C20.0716 (11)0.0478 (9)0.0434 (9)0.0012 (8)0.0108 (8)0.0064 (7)
C30.0480 (9)0.0461 (8)0.0515 (9)0.0119 (7)0.0155 (7)0.0127 (7)
C40.0560 (9)0.0520 (9)0.0452 (9)0.0150 (8)0.0118 (7)0.0157 (7)
C50.0560 (9)0.0473 (9)0.0431 (9)0.0114 (7)0.0100 (7)0.0055 (7)
C60.0575 (9)0.0431 (8)0.0427 (8)0.0099 (7)0.0183 (7)0.0071 (7)
C70.0473 (9)0.0477 (9)0.0595 (10)0.0104 (7)0.0059 (7)0.0178 (8)
C80.0716 (12)0.0499 (10)0.0671 (12)0.0104 (9)0.0075 (9)0.0141 (9)
C90.0860 (14)0.0482 (10)0.0823 (15)0.0106 (10)0.0078 (11)0.0131 (10)
C100.0821 (14)0.0581 (12)0.0998 (17)0.0004 (10)0.0113 (12)0.0394 (13)
C110.0773 (14)0.0774 (14)0.0834 (15)0.0063 (11)0.0097 (11)0.0457 (13)
C120.0610 (10)0.0598 (11)0.0637 (11)0.0116 (8)0.0097 (9)0.0257 (9)
C130.0611 (10)0.0440 (9)0.0441 (9)0.0086 (7)0.0191 (7)0.0065 (7)
C140.0577 (9)0.0391 (8)0.0437 (9)0.0104 (7)0.0149 (7)0.0063 (7)
C150.0687 (10)0.0393 (8)0.0433 (9)0.0096 (7)0.0140 (8)0.0102 (7)
C160.0508 (9)0.0384 (8)0.0426 (8)0.0134 (7)0.0130 (7)0.0088 (6)
C170.0648 (10)0.0510 (9)0.0412 (9)0.0090 (8)0.0139 (7)0.0084 (7)
C180.0629 (10)0.0487 (9)0.0456 (9)0.0049 (8)0.0073 (8)0.0008 (7)
C190.0626 (10)0.0407 (8)0.0597 (10)0.0011 (8)0.0114 (8)0.0078 (8)
C200.0604 (10)0.0442 (9)0.0476 (9)0.0089 (7)0.0161 (7)0.0133 (7)
Geometric parameters (Å, º) top
S1—C141.6703 (16)C7—C121.383 (2)
O1—C131.2147 (18)C7—C81.394 (2)
N1—C131.3735 (19)C8—C91.385 (3)
N1—C141.390 (2)C8—H80.9300
N1—H10.8600C9—C101.365 (3)
N2—C141.3102 (19)C9—H90.9300
N2—C151.4449 (19)C10—C111.368 (3)
N2—H20.8600C10—H100.9300
N3—C161.3351 (19)C11—C121.386 (3)
N3—C171.336 (2)C11—H110.9300
C1—C21.377 (2)C12—H120.9300
C1—C61.386 (2)C15—C161.505 (2)
C1—H1A0.9300C15—H15A0.9700
C2—C31.389 (2)C15—H15B0.9700
C2—H2A0.9300C16—C201.381 (2)
C3—C41.391 (2)C17—C181.370 (2)
C3—C71.482 (2)C17—H170.9300
C4—C51.375 (2)C18—C191.374 (2)
C4—H40.9300C18—H180.9300
C5—C61.387 (2)C19—C201.375 (2)
C5—H50.9300C19—H190.9300
C6—C131.489 (2)C20—H200.9300
C13—N1—C14128.47 (13)C9—C10—H10119.9
C13—N1—H1115.8C11—C10—H10119.9
C14—N1—H1115.8C10—C11—C12120.4 (2)
C14—N2—C15123.28 (13)C10—C11—H11119.8
C14—N2—H2118.4C12—C11—H11119.8
C15—N2—H2118.4C7—C12—C11120.35 (19)
C16—N3—C17117.48 (13)C7—C12—H12119.8
C2—C1—C6120.47 (15)C11—C12—H12119.8
C2—C1—H1A119.8O1—C13—N1122.47 (14)
C6—C1—H1A119.8O1—C13—C6122.08 (14)
C1—C2—C3121.59 (15)N1—C13—C6115.45 (13)
C1—C2—H2A119.2N2—C14—N1117.11 (13)
C3—C2—H2A119.2N2—C14—S1124.42 (12)
C2—C3—C4117.39 (14)N1—C14—S1118.47 (11)
C2—C3—C7120.20 (14)N2—C15—C16110.45 (12)
C4—C3—C7122.41 (14)N2—C15—H15A109.6
C5—C4—C3121.30 (14)C16—C15—H15A109.6
C5—C4—H4119.4N2—C15—H15B109.6
C3—C4—H4119.4C16—C15—H15B109.6
C4—C5—C6120.79 (15)H15A—C15—H15B108.1
C4—C5—H5119.6N3—C16—C20122.55 (14)
C6—C5—H5119.6N3—C16—C15117.53 (13)
C1—C6—C5118.42 (14)C20—C16—C15119.92 (13)
C1—C6—C13123.02 (14)N3—C17—C18123.61 (15)
C5—C6—C13118.53 (14)N3—C17—H17118.2
C12—C7—C8118.43 (16)C18—C17—H17118.2
C12—C7—C3120.95 (16)C17—C18—C19118.35 (15)
C8—C7—C3120.60 (15)C17—C18—H18120.8
C9—C8—C7120.47 (19)C19—C18—H18120.8
C9—C8—H8119.8C18—C19—C20119.16 (15)
C7—C8—H8119.8C18—C19—H19120.4
C10—C9—C8120.2 (2)C20—C19—H19120.4
C10—C9—H9119.9C19—C20—C16118.86 (15)
C8—C9—H9119.9C19—C20—H20120.6
C9—C10—C11120.11 (19)C16—C20—H20120.6
C6—C1—C2—C30.3 (3)C14—N1—C13—O16.5 (3)
C1—C2—C3—C41.6 (3)C14—N1—C13—C6173.11 (16)
C1—C2—C3—C7179.29 (16)C1—C6—C13—O1156.33 (17)
C2—C3—C4—C51.2 (2)C5—C6—C13—O121.6 (2)
C7—C3—C4—C5179.76 (15)C1—C6—C13—N123.3 (2)
C3—C4—C5—C60.6 (2)C5—C6—C13—N1158.76 (15)
C2—C1—C6—C51.5 (3)C15—N2—C14—N1178.94 (15)
C2—C1—C6—C13179.51 (16)C15—N2—C14—S11.9 (2)
C4—C5—C6—C12.0 (2)C13—N1—C14—N23.7 (3)
C4—C5—C6—C13179.95 (15)C13—N1—C14—S1175.48 (14)
C2—C3—C7—C12141.85 (17)C14—N2—C15—C16170.01 (14)
C4—C3—C7—C1237.2 (2)C17—N3—C16—C200.1 (2)
C2—C3—C7—C836.5 (2)C17—N3—C16—C15179.56 (14)
C4—C3—C7—C8144.45 (17)N2—C15—C16—N313.4 (2)
C12—C7—C8—C91.5 (3)N2—C15—C16—C20166.90 (14)
C3—C7—C8—C9176.90 (16)C16—N3—C17—C180.2 (2)
C7—C8—C9—C100.1 (3)N3—C17—C18—C190.0 (3)
C8—C9—C10—C111.1 (3)C17—C18—C19—C200.3 (3)
C9—C10—C11—C120.8 (3)C18—C19—C20—C160.5 (3)
C8—C7—C12—C111.8 (3)N3—C16—C20—C190.2 (2)
C3—C7—C12—C11176.64 (16)C15—C16—C20—C19179.91 (15)
C10—C11—C12—C70.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.6681 (19)135
N2—H2···N30.862.242.6488 (19)109
N1—H1···S1i0.862.793.4759 (17)138
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC20H17N3OS
Mr347.43
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.467 (2), 9.364 (2), 13.184 (3)
α, β, γ (°)101.529 (5), 99.113 (4), 101.543 (5)
V3)865.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.45 × 0.37 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.915, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8243, 3036, 2561
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.05
No. of reflections3036
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.6681 (19)135
N2—H2···N30.862.242.6488 (19)109
N1—H1···S1i0.862.793.4759 (17)138
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia for the Fundamental Research Grant UKM-ST-01-FRGS-0003–2006 and Universiti Kebangsaan Malaysian for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds